Solving quadratic equations without factorising

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $a x^{2}+b x+c=0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose products is $a c$.
- When the product of two numbers is 0 , then at least one of the numbers must be 0 .
- If a quadratic can be solved it will have two solutions (these may be equal).

Example 1 Solve $(x+3)^{2}=5$. Give your solutions in surd form.

$(x+3)^{2}=5$	$\mathbf{1}$Rearrange the equation to work out $x+3= \pm \sqrt{5}$ $x= \pm \sqrt{5}-3$	$\mathbf{2}$Square root both sides. Remember that the square root of a value gives two answers.
So $x=-\sqrt{5}-3$ or $x=\sqrt{5}-3$	3Subtract 3 from both sides to solve the equation.	
4Write down both solutions.		

Practice questions

1 Solve
a $(x+1)^{2}=7$
b $5 x^{2}=20$
c $\quad(x-4)^{2}=8$
d $(2 x-3)^{2}=36$

Answers

1 a $\quad x=-\sqrt{7}-1$ or $x=\sqrt{7}-1$
b $\quad x=-2$ or $x=2$
c $x=4-2 \sqrt{2}$ or $x=4+2 \sqrt{2}$
d $x=\frac{9}{2}$ or $x=-\frac{3}{2}$

