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The problem that we shall examine in this paper is that of finding the launch angle to obtain 

the maximum distance of a projectile in an atmosphere with wind. We shall show the 

optimal launch angle depends on factors such as the characteristics of the projectile, the 

launch velocity, and the magnitude of the wind. We will approximate the flight trajectory 

and distance traveled under various launch angles and different wind conditions, where the 

wind shall be implemented as a vector field in three-dimensional space. 

Using the mass and cross-sectional areas of the projectiles, the trajectories of the objects 

under the effect of wind are a set of differential equations whose solution will be 

approximated by numerical methods. These solutions can then be rendered in a 3D graphics 

package allowing students to study the flight paths of objects from any position and 

orientation in three-dimensional space. 

This paper is geared towards people teaching differential equations, numerical analysis, 

and mathematical modeling. 

Creating a Model of Flight 

 

Figure 1-An Easy to See Projectile. 



The projectile we will use in this paper will be that of a (simulated) pumpkin with the 

following parameters: 

Cross-section=.0324294 meters 

Coefficient of drag=.3 

Mass=4 kg 

Such an object was chosen for two reasons: 1) Pumpkins show up much better in 3D 

flight animations than just about any other object and 2) For years there was “Pumpkin 

Chunkin” competitions about how to launch a pumpkin the maximum distance. 

To Create a Mathematical Model of Flight we need to consider the following parameters: 

• Gravity 

• Mass 

• Cross-Sectional Area 

• Shape of Surface 

• Initial Velocity Vector 

• Coefficient of Drag 

• Rotation of Object 

• Vector Field of Wind 

• Rotation of Earth 

Using these parameters, we shall give equations which define the equations for the 

trajectory of a projected object [2][3]. Since the derivation of these equations was 

discussed in detail in [2], we shall just present the equations that we need. 

Notation for our Model of the Flight of a Projectile 

v is the velocity vector 

a is the acceleration vector 

Fx, Fy and Fz are the forces in the x, y, and z-directions respectively (where x is distance, 

y is height, and z is the distance in the horizontal direction) 

g is the force of gravity 

m is the mass of the projectile in kg. 

vx, vy, and vz are the velocities in the x, y, and z directions 

ax, ay, and az are the accelerations in the x, y, and z directions 

Velocity and acceleration is measured in meters/sec. 

The force on an object due to the drag of the atmosphere is given as follows: 

FD=
1

2
ρ𝑣2𝐴𝑐𝐷 

where: 



ρ= the density of the fluid 

v=the velocity of the object 

A=the cross-sectional area 

CD=the coefficient of drag 

𝑐𝐷 = 𝑐𝐷 (𝑅𝑒) where Re is the Reynold’s number which is a function of: the fluid’s 

density, the velocity of the object, the body length parallel to the direction of fluid flow, 

and the viscosity (thickness of the fluid) (Note: 𝑐𝐷 is not constant) 

𝑅𝑒 =
𝜌𝑣𝐿

𝜇
 

At sea-level the air density is ρ=1.225 kg/m3. 

Total velocity is defined by: 

𝑣 = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 

The wind affects the amount of drag on the object [3]. 

Define the velocity of the wind as follows: 

 
𝑣𝑤 = [

𝑣𝑤𝑥

𝑣𝑤𝑦

𝑣𝑤𝑧

](t) 
(1) 

This gives us the equations for the velocity and acceleration of the object under the effect 

of wind [3]: 

 𝑣𝑎𝑥 = 𝑣𝑥 + 𝑣𝑤𝑥 (2) 

 𝑣𝑎𝑦 = 𝑣𝑦 + 𝑣𝑤𝑦 (3) 

 𝑣𝑎𝑧 = 𝑣𝑧 + 𝑣𝑤𝑧 (4) 

The Equations for Our Model of Flight of a Projectile [2][3] 

 
𝑎𝑥 =

−𝐹𝐷𝑣𝑎𝑥

𝑚𝑣𝑎
=

𝑑𝑣𝑥

𝑑𝑡
 

(5) 

 
𝑎𝑦 =

−𝐹𝐷𝑣𝑎𝑦

𝑚𝑣𝑎
=

𝑑𝑣𝑦

𝑑𝑡
 

(6) 



 
𝑎𝑧 = −𝑔 −

−𝐹𝐷𝑣𝑎𝑧

𝑚𝑣𝑎
=

𝑑𝑣𝑧

𝑑𝑡
 

(7) 

 
𝐹𝐷 =

1

2
𝜌𝑣𝑎

2𝐴𝑐𝐷 
(8) 

 

Where va is defined as follows: 

 
𝑣𝑎 = √𝑣𝑥𝑎

2 + 𝑣𝑦𝑎
2 + 𝑣𝑧𝑎

2  
(9) 

Approximating the solution of the above set of differential equations (1)-(9) one may 

approximate the position vector (x, y, z) as a function of time. Standard techniques are 

Euler’s method and the Runge-Kutta methods. 

Side Note: One can also consider the Magnus force of a spinning object where lift is in 

the direction orthogonal to direction of flight and spin axis. 

A Python Program Approximating the Solution the Equations of 

(1)-(9) 

The following program uses a 1st order Euler approximation of the above system of 

differential equations. 

Highlighted are the launch angle, velocity, and the velocity of the wind. 

********************************* 

from math import * 

p=1.225 

cs=.0324294 #units in square meters 

cd=.3 

c=.5*p*cs*cd 

v0=300 #in meters per second 

theta=33 #launch angle in degrees 

thetarad=theta*pi/float(180.0) 

vx0=v0*cos(thetarad) 

vy0=v0*sin(thetarad) 

vz0=0 

mass=4 #in kg 

lxwind=0 #in meters per second 

lywind=0 

lzwind=0 



xn=0 

yn=0 

zn=0 

h=.01 

n=2500 

vx=[] 

vy=[] 

vz=[] 

x=[] 

y=[] 

z=[] 

vx.append(vx0) 

vy.append(vy0) 

vz.append(vz0) 

x.append(0) 

y.append(0) 

z.append(0) 

 

for i in range(n): 

    v=sqrt(pow(vx[i],2.0)+pow(vy[i],2.0)+pow(vz[i],2.0)) 

    vw=sqrt(pow(vx[i]+lxwind,2.0)+pow(vy[i]+lywind,2.0)+pow(vz[i]+lzwind,2.0)) 

    dx=-c*pow(vw,2.0)*(vx[i]+lxwind)/(vw*float(mass)) 

    vxn=vx[i]+dx*h 

    vx.append(vxn) 

    dy=-c*pow(vw,2.0)*(vy[i]+lywind)/(vw*float(mass))-9.81 

    vyn=vy[i]+dy*h 

    vy.append(vyn) 

    dz=-c*pow(vw,2.0)*(vz[i]+lzwind)/(vw*float(mass)) 

    vzn=vz[i]+dz*h 

    vz.append(vzn) 

for i in range(n): 

    xn+=vx[i]*h 

    x.append(xn) 

    yn+=vy[i]*h 

    y.append(yn) 

    zn+=vz[i]*h 

    z.append(zn) 

for i in range(n): 

    print("at time %.2f x is %.2f y is %.2f and z is %.2f" %(i*h,x[i],y[i],z[i])) 

********************************* 



Obtaining a Launch Angle to Obtain a Maximum Distance with No 

Wind 

Using the parameters from our pumpkin: 

Cross-section=.0324294 meters 

Coefficient of drag=.3 

Mass=4 kg 

with the above parameters, our Python program, with launch velocities v0= 100 m/s, 300 

m/s, and 500 m/s for angles from 10 to 60 degrees we get the results in Figures 2, 3, and 

4: 

 

Figure 2-Distance of Projectile for Launch Velocity v0=100 m/s 

We see the launch angle of 38° yields the maximum distance. 
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Figure 3-Distance of Projectile for Launch Velocity v0=300 m/s 

We see the launch angle of 33° yields the maximum distance. 

 

 

Figure 4-Distance of Projectile for Launch Velocity v0=500 m/s 

We see the launch angle of 28° yields the maximum distance. 

 

Summary: For our given pumpkin: 
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Launch Velocity Launch Angle Yielding  

Maximum Distance 

100 m/s 38° 

300 m/s 33° 

500 m/s 28° 

Figure 5-Table Relating Launch Velocity and Launch Angle which Yields a Maximum 

Distance. 

So, for our projectile, we see the launch angle needed to obtain maximum distance in our 

atmosphere is not 45° and depends on the initial velocity of the projectile. 

Note: If we are dealing with a point mass, it can be shown a launch angle of 45° does 

indeed yield a maximum distance. 

Showing That Wind Affects the Launch Angle Needed to Obtain a 

Maximum Distance 
 

With a wind of 10 m/s headwind in the x direction and launch velocity of v0=300 m/s 

(using the same parameters as in the previous example) we get: 

 

Figure 6-Distance of Projectile for Launch Speed v0=300 m/s and a headwind of 10 m/s. 

Comparing Figures 3 and 6 we see: 
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HeadWind m/s Launch Angle Yielding  

Maximum Distance 

0 m/s 33° 

10 m/s 30° 

Figure 7-Table Relating Wind Velocity and Launch Angle which Yields a Maximum 

Distance. 

Hence the velocity and vector of the wind does indeed affect the optimal launch angle. 

Two factors that we have not considered here are: 

• The spin of the projectile and 

• The surface characteristics of the object. 
 

 

Figure 8-The Dimples and Spin of a Golf Ball Effect its Distance 

 

Not About Distance-But Another Application of our Equations and 

our Python Program: Terminal Velocity 

If we were to shoot a skydiver out of a cannon (do not try this at home), where the skydiver 

is of average height (approximately 6’) and average mass (approximately 80 kg), at 300 

m/s straight up we want to find what their terminal velocity is. Using the above parameters 

in our Python program, we get the following data from our program: (again, y is the height 

above the ground in meters): 



 

Figure 9-The Poor Skydiver Hits Terminal Velocity 

Using the above data, we can see the skydiver’s terminal velocity is about 110 miles/hour. 

Given the parameters I used, the theory would say 112 miles/hour [3]. 

Summary 

To attain the angle necessary to obtain a maximum distance in an atmosphere, we need to 

consider at a minimum: 

• The atmosphere itself 

• The mass, cross-sectional area, and density of the object 

• The initial velocity 

• The direction and velocity of the wind 

• Alterations to the surface of the projectile 
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