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What would it be like to have your students be problem posers, rather than just problem solvers?
What if they could use advanced, free software to explore captivating mathematical patterns so that
what they see allows them to generate the conjectures they will be proving? How motivating will
it be when they are proving their own conjectures, rather than rehashing proofs from a textbook?
One route for this kind of learning is to use Modular Residue Designs.

[20 : 17] [44 : 10] [156 : 13] [195 : 25]

Figure 1: Modular Residue Designs: Levels of Complexity

1 History

Residue designs seem to have evolved from string art. They emerged in the middle of the last
century, when they appeared as articles or chapters on recreational mathematics. As a beginning,
for a modulus m, take a circle of radius 1 and place m equally spaced points around the circle,
labeling them in order from 0 to m− 1. In Figure 2 you can see the circle for m = 5. This will be
the base from which residue designs will be drawn.
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Figure 2: Circle with 5 points.

Thinking about m = 5, we can look at k = 2 and a = 2. Since 2 · 2 = 4 we have 2 7→ 4. This is
shown in the first diagram in Figure 3. In a similar what, when a = 3 we get 2 ·3 = 6, which reduces
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to 1 modulo 5, so 3 7→ 1, as shown in the second diagram in 3. For m = 5 there are five different
pertinent multiplications, giving five relations:

0 7→ 0

1 7→ 2

2 7→ 4

3 7→ 1

4 7→ 3

These relations give the lines shown in Figure 4. This will be denoted as the [5: 2] diagram. If you
have a more general modulus m and you use a multiplier n to draw in the lines, you get the design
[m, n]. Usually, however, we don’t draw the arrowheads, the points on the circle, or even the circle
itself. The full set of residue designs modulo 5 is shown in Figure 5.
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Figure 3: 2 7→ 4 and 3 7→ 1
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Figure 4: [5: 2]

With larger moduli, a variety of patterns present themselves. Because some of these patterns
reflect algebraic properties such as commutativity, identities and inverses, articles about residue
designs also showed up in mathematics education journals. The [5 : 1] design, for example, has no
chords, as seen in Figure 5, because 1 is the multiplicative identity.

Figure 6 shows all of the modulo 10 designs. Within these designs, several different patterns
appear which recur in many moduli. The [10 : 0] design has all chords going to 0. The [10 : 9]
design has all horizontal chords. The [10 : 4] design has perpendicular chords. All the chords in the
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[5 : 0] [5 : 1] [5 : 2] [5 : 3] [5 : 4]

Figure 5: Modulo 5 designs

[10 : 6] design are diameters. The [10 : 3] and [10 : 7] designs look identical. All of the designs have
bilateral symmetry, while only some of them have any sort of rotational symmetry.

[10 : 0] [10 : 1] [10 : 2] [10 : 3] [10 : 4]

[10 : 5] [10 : 6] [10 : 7] [10 : 8] [10 : 9]

Figure 6: Modulo 10 designs

2 Explorations

For a long time, people could only generate residue designs by hand. This limited the ways they
could be used for explorations. Now, however, there are free computer applications like LaTeX and
GeoGebra which can quickly generate large numbers of designs. With a large number of designs
to look at, for example, students might find several designs with perpendicular chords, as shown in
Figure 7. Looking at these designs, they can recognize a pattern and make a conjecture that, for a
residue design [m : n], the chords will be perpendicular when m = 2n + 2. They can check other
values of n and see that [8 : 3], [14 ; 6] and [20 ; 9] also match the pattern.

From this point, depending on the level of the students, they can explore why the designs with
m = 2n+ 2 have perpendicular chords and even prove that the pattern will continue. They can also
explore the patterns of how many horizontal and vertical lines will be in the [m : n] design and see
these numbers as functions of n.

As noted above, the mod 10 designs present other patterns for students to explore: why will all
of the chords in the design [m : n] be horizontal when m = n+ 1?; when will the chords in a designs
be only diameters and how many will show up in each design; when will the design have rotational
symmetry; etc.
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[10 : 4] [12 : 5] [16 : 7] [18 : 8] [24 : 11]

Figure 7: Perpendicular Chords

3 Cycloids

In the earliest writing about residue designs, one of the main topics was what happens when you
pick a multiplier and then look at larger and larger moduli. Figure 8 shows four designs of increasing
modulus where the multiplier is 2. The shape framed by the chords is a cardioid. It shows up in
polar coordinates as the graph of r = 1 + sin(θ), but it can also be generated by rolling one circle
around another, fixed circle and tracing the path of a point on the rolling circle. In this way, it
resembles designs drawn using the Spirograph toy.

[10 : 2] [24 : 2] [50 : 2] [100 : 2]

Figure 8: Multiplier of 2

Figure 9 shows several designs where the multiplier is 3. In these designs, the chords frame a
shape called a nephroid, which can be generated by rolling a circle around a fixed circle where the
fixed circle has double the radius of the rolling circle. A point on the rolling circle will trace out the
nephroid.

[10 : 3] [24 : 3] [50 : 3] [100 : 3]

Figure 9: Multiplier of 3
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The cardioid and the nephroid are two examples of epicycloids, which are shapes that trace a
point on a circle which rolls around the outside of a fixed circle. The exact shape of a given epicycloid
is determined by the ratio of the radii of the two circles. As noted, a cardioid occurs when the ratio
is 1, while a nephroid is traced when the ratio of the fixed radius to the rolling radius is 2 to 1.
The cardioid is sometimes called an epicycloid of one cusp while the nephroid is also known as the
epicycloid of two cusps.

When the multiplier in the residue design is increased further, still more epicycloids are generated.
Figure 10 shows designs for multipliers of 4, 5, 6 and 7. These generate, respectively, epicycloids of
3, 4, 5 and 6 cusps, which are also shown in Figure 10.

[100 : 4] [100 : 5] [100 : 6] [100 : 7]

Figure 10: Designs with Increasing Multipliers and their Cycloids

Figure 11 shows designs with still larger multipliers and, in each case, the number of lobes and
cusps in the epicycloid is one less than the multiplier n. As I pointed out above, the earliest articles
I’ve seen on residue designs describe this result. Even though none of the writings I’ve seen gives a
formal proof, it is provable.

What I have not seen published yet is a deeper connection between residue designs and epicy-
cloids. These are difficult, I suppose, to see until you look at a large number of residue designs,
which in turn isn’t easy or likely until you have a fast method for generating residue designs. I found
the pattern using GeoGebra. I chose a single multiplier but used a “slider” in GeoGebra for the
modulus. I then automated the slider, which made a slide show of many different designs. Some of
them stood out, as shown in Figure 12.

You may notice two epicycloids in each of these designs; you might say that one of them is
on the outside border of the design while the other is in the center. The bordering epicycloid, in
each case, has nineteen cusps. This is because, simply, they each have 20 for their multiplier. The
central epicycloids, however, are more complex than the ones we have looked at so far. They tend to
have more “depth” to them, especially since for many of them, the lines of the epicycloids intersect
themselves.

These epicycloids are drawn in Figure 13. For the most part, they come from circles where the
ratio of the radii is not just a : 1. Instead, they can be a : b where the radius of the fixed circle is
not always a whole number multiple of rolling radius. In fact, sometimes the radius of the rolling
circle is larger.
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[210 : 10] [210 : 13] [210 : 21]

Figure 11: Still Larger Multipliers

[172 : 20] [173 : 20] [174 : 20] [175 : 20]

[176 : 20] [177 : 20] [178 : 20] [179 : 20]

Figure 12: More Complex Patterns
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Figure 13: More Complex Epicycloids

What is the pattern in m and n that generates these epicycloids. In each design here,

m = 9× 20− r

where r is a between number between 0 and 9. If, for comparison, you let n = 25 and run through
the same values of k, you get the designs in Figure 14. They have exactly the same central epicycloid
patterns as those found in Figure 12.

As a principle, when there are numbers k and r, with 0 < r < k so that m = k · n− r, then the
chords of the residue design [m : m] are all tangent to an epicycloid whose fixed to rolling ratio is
k − r : r. Or, to be more careful, they will when k and r are relatively prime.

You might have noticed, when looking at the epicycloids in Figure 13, that the third and sixth
epicycloids rather stand out as being less complex than the others and rather lacking in rotational
symmetry, especially compared to the corresponding residue designs. This is because 3 and 6 are
not relatively prime to k = 9. In these cases, you need not just the epicycloid, but also two rotated
copies of it to match the pattern in the corresponding residue design. Figure 15 shows this. Here
the two extra copies of the epicycloid are drawn in red and green.

More generally, when k and r are not relatively prime, let g = gcd(k : r). The ratio k− r : r can
be simplified and the actual epicycloid will be correspondingly simpler. In the residue design there
will then be g copies of the epicycloid rotated to be spaced evenly about the circle. The proof of
this result moves the discussion to a generalization of residue designs, what Joseph Madachy called
Lost Chord Designs.

4 Lost Chords

Lost chord designs showed up in Joseph Madachy’s Madachy’s Mathematical Recreations in 1979.
He learned them from W. H. Cozens, but they may go back to curve stitching designs introduced
by Mary Everest Boole. Here is the general idea.

Equally space points around the circle, as we have been doing with residue designs. Draw a
chord of the circle running between the two points, a beginning point and an ending point. The
next step is to draw a new chord by shifting the beginning point by one space to get the beginning
point of the second chord and shifting the ending point by two spaces to get the ending point of
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[217 : 25] [218 : 25] [219 : 25] [220 : 25]

[221 : 25] [222 : 25] [223 : 25] [224 : 25]

Figure 14: More Complex Patterns

[219 : 25] [222 : 25]

Figure 15: When k and r are not Relatively Prime
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the second chord. A third chord is found by again shifting the beginning point by one space and
the ending point by two spaces, and so on. This iterative process is continued to give a sequence of
chords. Figure 16 shows the result of five such steps on a circle divided by 36 points. The process is

B0

E0

B1

E1

B2

E2

B3

E3

B4

E4

B5

E5

Figure 16: Plotting Lost Chords Figure 17: The (1 : 2 : 36) Design

continued recursively until the design returns to the original chord. After that, it will repeat without
drawing any new chords. The design in Figure 17 shows the result when the points are 10◦ apart
and the starting chord is the vertical diameter. Not coincidentally, this is also the [36 : 2] residue
design.

The process can be generalized, first by changing the way that the beginning and ending points
move in each iteration and, second, by changing the starting chord. A rotation of the starting chord
by any central angle will cause a rotation of the design, while changing the length of the initial chord
can actually change the design. As the figure above shows, the design you get by moving chords
can actually match a residue design, but this won’t necessarily happen. Theoretically, you can pick
any chord and use any sequence of initial and ending chords to generate a design. We will, however,
restrict our exploration to arithmetic sequences where the initial points are shifted by adding a each
time and the ending points by adding b each time. It would seem, for example, that starting with
a null chord with beginning and ending points both 0 and letting a = 1 and b = n should give the
same design as [m : n].

A lost chord design is determined by the combination of m, the number of points on the circle,
a and b, and the choice of the beginning chord. We will denote by (m : a : b) the lost chord design
where the the circle is subdivided by m points and the initial and terminal ends of the chords are
moved, respectively, by a and b points each time. Additionally, the initial chord will be a null chord
where both endpoints are at 0. An important question, then, is when will the design (m : a : b) is
the same as [m : n] for some n.

Suppose that a and m are relatively prime. Then there are integers x and y, with x > 0 so that
ax+my = 1. This means that after x iterations of moving the chord, the initial point will be at 1.
The ending point will be at xb. If xb reduces to n modulo m then the chord from 1 to n will be in
the design. By extension, the chord from i to ni will also be in the design, so [m : n] is a subset of
(m : a : b).

On the other hand, we know that the chords of (m : a : b) are determined by the relation ai 7→ bi
for each i. In [m : n],

(ai)n = (an)i

≡ (axb)i

≡ (1b)i

= bi.
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The chords in (m : a : b) are, therefore, in [m : n].
Now we can get back to our epicycloid designs. Suppose that k and r are relatively prime with

0 < r < k. From this, we can write 1 = kx+ ry. Also, for some n, let m = kn− r. Then

1 = kx+ ry

= kx+ (kn−m)y

= kx+ kny −my
= k(x+ ny) +m(−y)

This means that k and m are relatively prime and, if we can find the value j that r(x+ny) reduces
to modulo m, it follows that (m : k : r) is the design [m : j]. Notice that

r(x+ ny) = rx+ rny

= (kn−m)x+ rny

= knx−mx+ rny

= (kx+ ry)n−mx
= n−mx.

This means that j = n and (m : k : r) is [m : n].
From here, our next step is to connect the lost chord designs with the epicycloids.

5 Lost Chords and Epicycloids

The Lost Chord Designs always present at least one epicycloid. More specifically, when a > b, the
chords in the design (m : a : b) will always be tangent to an epicycloid whose ratio of fixed radius
to rotating radius is a − b : b. Figure 18 shows examples where a : b is 3 : 1, 7 : 2, and 4 : 3.
respectively.

To show this, we will start with a parametrization of the epicycloid.

x(t) = k sin(rt) + r sin(kt)

y(t) = k cos(rt) + r cos(kt)

We can differentiate with respect to the parameter t to get

dy

dt
= −rk sin(rt)− rk sin(kt)

dx

dt
= rk cos(rt) + rk cos(kt)

dy

dx
=
−rk sin(rt)− rk sin(kt)

rk cos(rt) + rk cos(kt)

= − sin(rt) + sin(kt)

cos(rt) + cos(kt)

This gives the slope of the tangent line to the epicycloid at the point (x(t), y(t)).
Additionally, the endpoints for a chord in the (m : k : r) lost chord design will have endpoints

(sin(kt), cos(kt)) and (sin(rt), cos(rt)) where t is a whole number multiple of 360◦

m . It follows that
the slope of the chord is

∆y

∆x
=

cos(rt)− cos(kt)

sin(rt)− sin(kt)
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(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)(100 : 3 : 1)

(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)(100 : 7 : 2)

(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)(100 : 4 : 3)

Figure 18: Lost Chord Designs and Epicycloids
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Using trigonometric identities and algebraic manipulation, we have

∆y

∆x
=

cos(rt)− cos(kt)

sin(rt)− sin(kt)

=
cos(rt)− cos(kt)

sin(rt)− sin(kt)
· (sin(rt) + sin(kt))(cos(rt) + cos(kt))

(sin(rt) + sin(kt))(cos(t) + cos(kt))

=

(
cos2(rt)− cos2(kt)

)
(sin(rt) + sin(kt))

(sin2(rt)− sin2(kt))(cos(rt) + cos(kt))

=
((1− sin2(rt))− (1− sin2(kt)))(sin(t) + sin(kt))

(sin2(rt)− sin2(kt))(cos(rt) + cos(kt))

=
(sin2(kt)− sin2(rt))(sin(rt) + sin(kt))

(sin2(rt)− sin2(kt))(cos(rt) + cos(kt))

= − sin(rt) + sin(kt)

cos(rt) + cos(kt)

=
dy

dx
.

This shows that the chord has the same slope as the tangent line. A little work shows that the
chord will actually go through the point (k sin(rt) + r sin(kt), k cos(rt) + r cos(kt)) on the epicycloid,
making the chord part of the tangent line. Additionally, the point on the epicycloid will break the
chord into two segments whose ratio is k : r. Visually, this shows that the chords of the design will
frame the epicycloid.

6 Greatest Common Divisors

We saw, with [174 : 20] and [177 : 20] that when m = kn− r where gcd(k, r) > 1, the shape framed
by the residue design is more complex than the epicycloid with fixed to rotating ratio of k − r : r,
which simplifies. Correspondingly, the lost chord design (m : k : r) matches the epicycloid, but
doesn’t give the full complexity of the residue design, since it only contains chords whose endpoints
are multiples of g = gcd(k, r).

6.1 The Non-Relatively Prime Cases

Suppose that gcd(k, r) = g > 1. Then, by the definition of m as kn−r. it follows that gcd(m, k) = r.
We can factor out g to give m′ = m

g , k′ = k
g and r′ = r

g . Then m′ = k′n − r′. It follows that m′

and k′ are relatively prime, as are k′ and r′. Additionally, the design (m : k : r is the same as
(m′ : k′ : r′), which matches [m′ : n]. We can see this in Figure 19 where n = 20, k = 9 and r = 6.

The chords the [58 : 20] design are exactly the chords in the (174 : 9 : 6) design, and they are
the chords in [174 : 20] design where the initial edge is a multiple of g = 3. Figure 20 shows this set
in red, as well as two other sets in purple and blue which are the chords from [174 : 20] where the
initial points is congruent either to 1 or 2 modulo g = 3. These each give rotations of the epicycloid
in [58 : 20] of either 120◦ or 240◦. These three sets combined give the [174 : 20] and the three
epicycloids combined give the pattern framed by the [174 : 20] design.

This separation illustrates the general setting when g = gcd(k, r) > 1. The design (m : k : r) is
the same as the design (m′ : k′ : r′), which frames an epicycloid with ration k′ − r′. The chords in
(m′ : k′ : r′) are the chords in [m : n] where the initial endpoint is a multiple of g. The other chords
in [m : n] can be separated into g−1 subsets, where each of the subsets consists of chords where the
intitial point is congruent to a (mod g) for some 0 < a < g. Each subset then frames a rotation of
the epicycloid by a multiple of 360◦

g .
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[174 : 20] [58 : 20] (174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)(174 : 9 : 6)

Figure 19: Simplified Form

Figure 20: Three Separate Sets Combined

7 Using GeoGebra

GeoGebra is a powerful for exploring mathematics, including residue designs. The following links
are for GeoGebra activities that allow you to explore residue designs, epicycloids and lost chord
designs. You can use them as is or, if you know GeoGebra, modify them.

1. Residue Design: https://www.geogebra.org/classic/xknznmjk

2. Epicycloid: https://www.geogebra.org/classic/vntpxv5r

3. Lost Chord Deisgn: https://www.geogebra.org/classic/wsywpvpa

4. Flower Designs: https://www.geogebra.org/classic/nxdbuxmj

8 Using LATEX

While LaTeX can be used to explore residue designs, it is very good for communicating them.
The TikZ package provides tools for generating residue designs. The code that follows provides
commands for generating residue designs and lost chord designs.
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8.1 DrawMod

The DrawMod command will draw residue designs. The user has to include values for four param-
eters: the modulus, the multiplier, the color of the chords and the radius of the circle.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% The \DrawMod command takes four arguments:

%%% #1 is the modulus,

%%% #2 is the multiplier,

%%% #3 is the color of the chords,

%%% #4 is the radius of the design.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\newcommand\DrawMod[4]{%

\foreach \x in {0, 1, ..., #1}{

\draw [color=#3, line width=0.1pt] ({#4*sin(360/#1*\x)},{#4*cos(360/#1*\x)}) --

({#4*sin(360/#1*\x*#2)},{#4*cos(360/#1*\x*#2)});

}

\large

\draw (0, -1.2*#4) node {[#1 : #2]};

}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The command needs to be used within a TikZ environment, such as

\begin{tikzpicture}

\DrawMod{42}{7}{black}{2.5cm}

\end{tikzpicture}

which produces the [42 : 7] design.

[42 : 7]

Figure 21: [42 : 7] Design

14



8.2 DrawChords

The DrawChords command produces a lost chord design which begins with a null chord at 0 as its
initial chord. It takes five parameters: The modulus, the shift for the intial point, the shift for the
terminal point, the color of the chords and the radius of the design.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% The \DrawChords command takes four arguments:

%%% #1 is the modulus,

%%% #2 shifts the initial point,

%%% #3 shifts the terminal point,

%%% #4 is the color of the chords,

%%% #5 is the radius of the design.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\newcommand\DrawChords[5]{%

\foreach \x in {0, 1, ..., #1}{

\draw [color=#4, line width=0.1pt] ({#5*sin(360/#1*\x*#2)},{#5*cos(360/#1*\x*#2)}) --

({#5*sin(360/#1*\x*#3)},{#5*cos(360/#1*\x*#3)});

\large

\draw (0, -1.15*#5) node {(#1 : #2 : #3)};

}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Like the DrawMod command, the DrawChords command must be placed within a TikZ environ-
ment. As an example,

\begin{tikzpicture}

\DrawChords{50}{3}{2}{black}{2.5cm}

\end{tikzpicture}

will produce the (50 : 3 : 2) design.

(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)(50 : 3 : 2)

Figure 22: (50 : 3 : 2) Design
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LaTeX is not as robust as GeoGebra in generating the designs. This makes sense, since the main
goal of LaTeX is to to mathematical type setting. One important limitation is that it will run over
run its memory allowance if the multiplier is too big. Also, as the modulus gets larger, more and
more time is required to generate the designs. If there are dozens of designs with larger moduli, a
document can take minutes to compile. GeoGebra, by contrast, can run through hundreds of designs
very quickly. This means that GeoGebra is the better tool for exploring the designs.

9 Conclusion

Residue designs provide a great way to engage students in mathematical explorations. They have
a low entry level and a very high ceiling when it comes to student engagement. The visual appeal
can draw some students in, but there is also great depth and breadth to the mathematics that can
be explored. GeoGebra and LaTeX provide valuable tools for generating the designs, which in turn
increases their availability for exploration. These explorations can provide students with a personal
motivation for proofs, since they will be proving conjectures that are their own.
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