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(Abstract.) The study of Earth’s motions of rotation once a day, revolution once 

a year, and precession once in 26,000 years, is modeled by taking the Earth as 

an elastic symmetric sphere acted upon solely by gravitation. Using Lagrange’s 

equations for the Euler angles of the Earth in a moving coordinate system, we 

find that the Earth also executes a nutation (a bobbing up and down of the 

symmetry axis) superimposed on the precession.  
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The major motions of the Earth are: 

1. Rotation about its axis once a day 

2. Revolution about the Sun once a yearn 

3. Precession of its axis once in 26,000 year. n 

We wish to study these motions from basic principles by considering the Earth as a 

symmetric ellipsoid and see if there are other motions we can derive. As a starting point, 

we would like to see by studying the motion of a symmetric top if we can apply the same 

analysis to the motions of the Earth. 

We have evidence of the Earth’s rotation by the changing view of the night sky every 24 

hours (Figure 1). The constellations visible to the observer change with the hours. 
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      Figure 1. The view of the night sky changes due to rotation of the Earth. 

The rotation of the Earth was first ably demonstrated by Leon Foucault in 1851 with his 

pendulum: a 62 lb bob, hanging in a 220-ft string at the Pantheon in Paris. At that latitude 

(48.90), the pendulum had a precession rate of 𝑇 =
24

sin 𝜙
= 31. 80, or equivalently,   the 

pendulum appeared to swing its plane of oscillation by 11.30/ℎ𝑟 (Figures 2 and 3). 



   

Figure 2. Le pendule Foucault  

                        

                        Figure 3. A modern-day Foucault pendulum. 

 

The tilt of the Earth’s axis, together with its revolution around the Sun, give us the changing 

seasons (Figure 4). 



 

   Figure 4. Revolution around the Sun 

The North-South axis of the Earth is not fixed, rather, it precesses once in 26,000 years, 

like a wobbling top near the end of its spin (Figure 5).  

 

          Figure 5. The Earth’s axis precesses like a wobbling top at the end of its spin.  

 

Because of this, the North star is not always Polaris. 4000 years ago, it was Thuban in 

Draco, in 15,000 years, it will be Vega in Lyra (Figure 6). 



                       

  Figure 6. Precession of the axis causes the North star to change with the years. 

 

We can understand the precession of a top’s axis from basic physics. The torque acting on 

the top is (Figure 6):                                           

          𝜏 = 𝑟 × �⃗�,    perpendicular to both 𝑟 and �⃗�.   

Its magnitude is  𝜏 = 𝑀𝑔𝑟 sin 𝜃. In time dt, the change in angular momentum is 

          𝑑𝐿 = 𝜏𝑑𝑡. 

The rate of precession 𝜔𝑃 is given by  

          𝜔𝑃 =
𝑑𝜙

𝑑𝑡
=

𝑑𝐿

𝐿 sin 𝜃
=

𝜏𝑑𝑡

𝐿 sin 𝜃
=

𝑀𝑔𝑟 sin 𝜃

𝐿 sin 𝜃
=

𝑀𝑔𝑟

𝐿
=

𝑀𝑔𝑟

𝐼𝜔
 . 

Astronomers tell us that for the spinning Earth, the gravitational pull of the Sun and Moon 

on the equatorial bulges causes the precession, with a half-angle of 23.50 in 26,000 years. 

  

The equations of motion of a rigid body in space are given by: 

            
𝑑�⃗⃗�

𝑑𝑡
= �⃑� ,     

𝑑�⃗⃗�

𝑑𝑡
= �⃗⃗⃗�,     �⃗⃗� = 𝑀�⃗⃗�,     �⃗⃗� = 𝐼 ∙ �⃗⃗⃗�  



�⃑⃗�, �⃑⃗� = the linear & angular momenta;  �⃑�, �⃑⃗⃗� = the total force & the total torque about 

O;  �⃗⃗� = velocity of the c.m.;  𝐼, �⃗⃗⃗� = the inertia tensor & the angular velocity about O.   

     

                                            Figure 7.  The body axes relative to the space axes. 

𝐼 changes as the body rotates; this may be avoided by referring the motion to axes fixed in 

the body (Figure 7): 

  
𝑑′�⃗⃗�

𝑑𝑡
= �⃗⃗⃗� × �⃗⃗� = �⃗⃗⃗� = 𝐼 ∙

𝑑�⃗⃗⃗⃗�

𝑑𝑡
+ �⃗⃗⃗� × (𝐼 ∙̃ �⃗⃗⃗�).                

Choose as body axes the principal axes of the body: �̂�1, �̂�2, �̂�3 (Euler’s equations of motion)   

 𝐼1𝜔1̇ + (𝐼3 − 𝐼2)𝜔3𝜔2 = 𝑁1(The fixed point O is taken as the origin 

 𝐼2𝜔2̇ + (𝐼1 − 𝐼3)𝜔3𝜔1 = 𝑁2  for the body axes.)   

 𝐼3𝜔3̇ + (𝐼2 − 𝐼1)𝜔2𝜔1 = 𝑁3. 

Consider a freely rotating symmetrical body, with no applied. The last three equations 

become:   

𝐼3𝜔3̇ = 0, 𝜔1̇ + 𝛽𝜔3𝜔2 = 0, 𝜔2̇ − 𝛽𝜔3𝜔1 = 0, 𝛽 =
𝐼3−𝐼1

𝐼1
 . 

Eq. (i) →  𝜔3 = 𝑐𝑜𝑛𝑠𝑡. ; Eqs. (ii) & (iii) are a couple of 1st-order equations with solutions 



 𝜔1 = 𝐴1𝑒𝑝𝑡, 𝜔2 = 𝐴2𝑒𝑝𝑡, with   𝑝 = ±𝑖𝛽𝜔3, 𝐴2 = ∓𝑖𝐴1. 

The complex conjugate pair of solutions may be superimposed to form real solutions 

            𝜔1 = 𝐴 cos(𝛽𝜔3𝑡 + 𝜃),  𝜔2 = 𝐴 sin(𝛽𝜔3𝑡 + 𝜃). 

The angular velocity �⃗⃗⃗� therefore precesses in a circle of radius A about �̂�3, with angular 

velocity 𝛽𝜔3, in the same sense as 𝜔3 if 𝐼3 > 𝐼1, and opposite if  𝐼3 < 𝐼1.                                      

The magnitude of �⃗⃗⃗� is 

 𝜔 = [𝜔3
2 + 𝐴2]1/2 =  𝑐𝑜𝑛𝑠𝑡. 

The instantaneous axis of rotation, determined by �⃗⃗⃗�, traces out a cone in the body (body 

cone) as it precesses around the axis of symmetry, with half-angle 𝛼𝑏 (Figure 8) 

  tan 𝛼𝑏 =
𝐴

𝜔3
.    

The angular momentum, �⃗⃗� = 𝑐𝑜𝑛𝑠𝑡., since �⃗⃗⃗� = 0. The angle 𝛼𝑠 between �⃗⃗⃗� and �⃗⃗� is given 

by   

cos 𝛼𝑠 =
�⃗⃗⃗� ∙ �⃗⃗�

𝜔𝐿
=

�⃗⃗⃗� ∙ 𝐼 ∙ �⃗⃗⃗�

𝜔𝐿
=

2𝑇

𝜔𝐿
= 𝑐𝑜𝑛𝑠𝑡. 

since T = const. The axis of rotation traces out a cone in space (the space cone), with half-

angle 𝛼𝑠.  Since 

𝐼 = (�̂�1�̂�1 + 𝑒2̂�̂�2)𝐼1 + 𝑒3̂�̂�3𝐼3 = 𝐼11̃ + 𝑒3̂�̂�3(𝐼3 − 𝐼1).  

2𝑇 = 𝜔2𝐼1[1 + 𝛽𝑐𝑜𝑠2𝛼𝑏]  

  �⃗⃗� = 𝜔𝐼1[�̂� + 𝛽𝑐𝑜𝑠𝛼𝑏�̂�3] ,   

  cos 𝛼𝑠 =
1+𝛽𝑐𝑜𝑠2𝛼𝑏

[1+(2𝛽+𝛽2)𝑐𝑜𝑠2𝛼𝑏]1/2 .  



   

                               Figure 8.  The body cone and space cone.   

  

Now, we need to introduce a coordinate system carried by the body, where (𝑥, 𝑦, 𝑧) are the 

space axes. Among the most useful are the Euler angles (𝜃, 𝜙, 𝜓), akin but not identical to 

the pitch, roll, and yaw angles familiar to pilots of ships, planes, and transporters of objects 

with large vertical components (Figure 9). 

   

                    Figure 9. The Euler angles 𝜃, 𝜙, 𝜓. 



𝜃 = angle between the z- and the 3-axes;   

the 1,2-plane intersects the xy-plane in the line of nodes, 𝜉  

 𝜙 = measured in the xy-plane from the x-axis to 𝜉;  

  

            𝜓 = measured in the 1,2-plane from 𝜉 to the 1-axis. 

  

As the body moves, 𝜃, 𝜙, 𝜓 change with time. If 𝜃 alone changes, while 𝜙, 𝜓 are fixed, the 

body rotates around 𝜉 with angular velocity �̇��̂�𝜉 . If 𝜙 alone changes, the body rotates 

around the z-axis with angular velocity �̇��̂�. If  𝜓 alone changes, the body rotates around 

the 3-axis with angular velocity �̇��̂�3. Thus, 

  �⃗⃑⃗� = �̇��̂�𝜉 + �̇��̂� + �̇��̂�3.   

From the figure, we have the relations: 

  𝑒�̂� =  �̂�1𝑐𝑜𝑠𝜓 − �̂�2𝑠𝑖𝑛𝜓,    

  𝑒�̂� =  �̂�1𝑠𝑖𝑛𝜓 + �̂�2𝑐𝑜𝑠𝜓,    

  𝑒�̂� =  �̂�3,    

  �̂� =  �̂�𝜁𝑐𝑜𝑠𝜃 + �̂�𝜂𝑠𝑖𝑛𝜃    

      =  �̂�1𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 + �̂�2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + �̂�3𝑐𝑜𝑠𝜃.    

Therefore, �⃗⃗⃗� may be expressed along the principal axes: 

  𝜔1 = �̇�𝑐𝑜𝑠𝜓 + �̇�𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓,      

  𝜔2 = −�̇�𝑠𝑖𝑛𝜓 + �̇�𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 

                        𝜔3 = �̇� + �̇�𝑐𝑜𝑠𝜃.                

The kinetic energy:     

  𝑇 =
1

2
𝐼1𝜔1

2 +
1

2
𝐼2𝜔2

2 +
1

2
𝐼3𝜔3

2 

is a complicated expression in 𝜃,̇ 𝜙,̇ 𝜓,̇ 𝜃, 𝜓. The Euler angles are not orthogonal, cross 

terms appear in �̇��̇� and �̇�𝜓.̇  For a symmetrical body (𝐼1 = 𝐼2), T  simplifies to: 

𝑇 =
1

2
𝐼1�̇�2 +

1

2
𝐼2�̇�2𝑠𝑖𝑛2𝜃 +

1

2
𝐼3(�̇� + �̇�𝑐𝑜𝑠𝜃)

2
.         

The generalized forces 𝑄𝜃, 𝑄𝜙, 𝑄𝜓 are the ‘torques’ about the 𝜉−, 𝑧 − ,3 −a  xes. Note that 

the variables 𝜙 and 𝜓 are ignorable. We have three constants of the motion. The Lagrangian 

 𝐿 =
1

2
𝐼1�̇�2 +

1

2
𝐼2�̇�2𝑠𝑖𝑛2𝜃 +

1

2
𝐼3(�̇� + �̇�𝑐𝑜𝑠𝜃)

2
− 𝑚𝑔𝑙𝑐𝑜𝑠𝜃  



Lagrange’s equations give us three integrals of the motions: 

 
𝑑𝑝𝜓

𝑑𝑡
=

𝜕𝐿

𝜕𝜓
= 0,     →      𝑝𝜓 = 𝐼3(�̇� + �̇�𝑐𝑜𝑠𝜃), 

 
𝑑𝑝𝜙

𝑑𝑡
=

𝜕𝐿

𝜕𝜙
= 0,     →      𝑝𝜙 = 𝐼1�̇�𝑠𝑖𝑛2𝜃 + 𝐼3𝑐𝑜𝑠𝜃(�̇� + �̇�𝑐𝑜𝑠𝜃),       (*) 

𝑑𝐸

𝑑𝑡
= −

𝜕𝐿

𝜕𝑡
= 0,     →      𝐸 =

1

2
𝐼1�̇�2 +

1

2
𝐼2�̇�2𝑠𝑖𝑛2𝜃 +

1

2
𝐼3(�̇� + �̇�𝑐𝑜𝑠𝜃)

2
+ 𝑚𝑔𝑙𝑐𝑜𝑠𝜃    

  

or,  𝐸 =
1

2
𝐼1�̇�2 +

(𝑝𝜙−𝑝𝜓𝑐𝑜𝑠𝜃)
2

2𝐼1𝑠𝑖𝑛2𝜃
+

𝑝𝜓
2

2𝐼3
+ 𝑚𝑔𝑙𝑐𝑜𝑠𝜃. 

Set  𝐸′ = 𝐸 −
𝑝𝜓

2

2𝐼3
 ,   𝑉′ =

(𝑝𝜙−𝑝𝜓𝑐𝑜𝑠𝜃)
2

2𝐼1𝑠𝑖𝑛2𝜃
+ 𝑚𝑔𝑙𝑐𝑜𝑠𝜃. 

Then 

  

 �̇� = {
2

𝐼1
[𝐸 − 𝑉′]}

1/2

     and 𝜃 is given by: 

 ∫
𝑑𝜃

[𝐸−𝑉′]1/2

𝜃

𝜃0
= (

𝐼1

2
)

1/2

𝑡     →     𝜃(𝑡) = 𝜃(𝜙, 𝜓, 𝑡). 

The effective potential energy, V’, is plotted as a function of 𝜃, for 𝜔3 ≠ 0 (Figure 10). 

The torque associated with V’ is 

     

       Figure 10.  The effective potential energy, V’. 



  𝑁′ = −
𝜕𝑉′

𝜕𝜃
= 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 −

(𝑝𝜙−𝑝𝜓𝑐𝑜𝑠𝜃)(𝑝𝜓−𝑝𝜙𝑐𝑜𝑠𝜃)

𝐼1𝑠𝑖𝑛3𝜃
 . 

We find that 𝑁′ > 0  for  𝜃 ≃ 0  and  𝑁′ < 0  for  𝜃 ≃ 𝜋. Hence,  V’ has a minimum at 𝜃0: 

  𝑚𝑔𝑙𝐼1𝑠𝑖𝑛4𝜃0 − (𝑝𝜙 − 𝑝𝜓𝑐𝑜𝑠𝜃0)(𝑝𝜓 − 𝑝𝜙𝑐𝑜𝑠𝜃0) = 0. 

Solving for (𝑝𝜙 − 𝑝𝜓𝑐𝑜𝑠𝜃0), with 𝑝𝜓 = 𝐼3𝜔3: 

   (𝑝𝜙 − 𝑝𝜓𝑐𝑜𝑠𝜃0) =
1

2
𝐼3𝜔3

𝑠𝑖𝑛2𝜃0

𝑐𝑜𝑠𝜃0
[1 ± (1 −

4𝑚𝑔𝑙𝐼1

𝐼3
2𝜔3

2
)

1/2

]. 

For 𝜃0 < 𝜋/2, there is a minimum spin angular velocity below which the top cannot 

precess uniformly at an angle 𝜃0:  

  𝜔𝑚𝑖𝑛 = (
4𝑚𝑔𝑙𝐼1

𝐼3
2 𝑐𝑜𝑠𝜃0)

1/2

. 

For 𝜔3 > 𝜔𝑚𝑖𝑛, there are two values of 𝜃0, both in the same direction as 𝜔3: 

  �̇�0 (𝑓𝑎𝑠𝑡) =
𝐼3

𝐼1

𝜔3

𝑐𝑜𝑠𝜃0
 ,  �̇�0 (𝑠𝑙𝑜𝑤) =

𝑚𝑔𝑙

𝐼3𝜔3
 . 

It is the slow precession that is usually observed with a rapidly spinning top. 

The more general motion (𝑝𝜙 ≠ 𝑝𝜓) involves a nutation or oscillation of the 3-axis in the 

𝜃 − direction as it precesses. The axis oscillates between angles 𝜃1and 𝜃2 from: 

  𝐸′ = +
(𝑝𝜙−𝑝𝜓𝑐𝑜𝑠𝜃)

2

2𝐼1𝑠𝑖𝑛2𝜃
+

𝑝𝜓
2

2𝐼3
+ 𝑚𝑔𝑙𝑐𝑜𝑠𝜃, 

where 𝑝𝜙, 𝑝𝜓, 𝐸′ are determined from the initial conditions. The cubic equation has two 

real roots; the third one is unphysical (cos𝜃 > 1). During nutation, the precession velocity 

varies according to Eq. (*): 

                        �̇� =
𝑝𝜙−𝑝𝜓𝑐𝑜𝑠𝜃

𝐼1𝑠𝑖𝑛2𝜃
 . 

The motion is as shown in the figure (Figure 11), depending on the direction of the initial 

velocity imparted to the 3-axis. A third case arises when the top, spinning about its axis 

with velocity 𝜔3, is held with its axis initially at rest at an angle 𝜃1 and then released (shown 

as case c). 



                 

 

                                                 Figure 11.  Nutations of the symmetry axis. 

 

Conclusions:   

• The major motions of the Earth are: rotation about its axis once a day, revolution 

about the Sun once a year, and precession of its axis about a celestial point o nce in 

26,000 years;  

• The Earth motions are often referred to those of a spinning top;  

• Looking more closely at a symmetric spinning top, we find that the precessing 

motion falls out naturally. There is also nutation or a small bobbing up and down 

of the body’s symmetry axis, superposed on the precession, of the order of 9” of 

arc with a period of 18.6 years; 

• We found these results by solving Lagrange’s equations for the Euler angles of a 

symmetric top, with a fixed point and acted only by gravity; 

• We would like to model the Earth as a symmetrpolar radius ical spinning top. We 

anticipate that the analog of the top’s weight could be the asphericity of the oblate 

spheroid, with equatorial radius 6.3784 × 108𝑐𝑚 and polar radius 2.15 

× 106𝑐𝑚 shorter. Among other things, we wish to find out which of the three cases 

of nutation is actually being executed by the Earth; 

• All of these motions can be developed physically from a playing top or gyroscope, 

as have been ably demonstrated on YouTube.  
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