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INTRODUCTION 

 

This paper reports on an instructional intervention that involved two related tasks, both 

aimed at eliciting attention to, and questions about, variability in data taken from a task 

about Random Walks and a task about Falling Raindrops. The intervention was structured 

to promote middle school preservice teachers’ confidence in developing and assessing 

criteria to make informal inferences about experimental results. 

  

First, we give some background material for the overall intervention. Then, for each of the 

two tasks, the design of how the task was carried out will be described, along with the 

outcomes of some representative responses from the preservice teachers (PSTs) who 

participated. Finally, in conclusion we offer some thoughts on the implications for future 

classroom teaching and learning on the topic of variability. 

 

BACKGROUND 

 

Importance of Variability 

While attempting to increase student focus on variability in data, our aim was for them to 

attend to the variation that arises in probabilistic situations. Within the statistics education 

community, variation “...does not mean an understanding of ‘standard deviation’ but of 

something more fundamental - the underlying change from expectation that occurs when 

measurements are made or events occur” (Watson, Kelly, Callingham, & Shaughnessy, 

2003, p. 2). We live in a world filled with variation, yet much of the standard curricula at 

the primary grades focuses mostly on simply finding probabilities, graphing data, or 

finding descriptive measures such as a mean, median, or mode (Shaughnessy, 1997). 

Looking to collegiate math courses that prepare future teachers, developing a greater 

appreciation for variability can help transcend a narrow focus on descriptive statistics and 

bland calculations of probability.  

 



Moreover, a report of the joint curriculum committee of the American Statistical 

Association (ASA) and the Mathematical Association of America (MAA) supports not 

only the “omnipresence of variation” as one of their core elements of statistical thinking 

(Moore, 1990, p. 135), but also the elements of “measuring and modeling variation” (p. 

127).  The “omnipresence of variability” was cited as giving rise to the very need for the 

discipline of statistics (Cobb & Moore, 1997, p. 801, italics in original).  The idea that 

variability is everywhere makes sense when thinking about the world in which we live.  

Not only do people and their environments vary, but even repeated measurements on the 

same person or thing can vary (Wild & Pfannkuch, 1999).  Also, “natural variation appears 

in the heights, reading scores, or incomes of a group of people” (Moore, 1990, p. 98).   

 

There is also a chance variation component to our world.  Moore (1990) points out that one 

use of probability instruction is to lead students to the understanding that chance variation, 

as opposed to deterministic causes, explains most outcomes in our world. Philosophically, 

living in a stochasticized world implies an existence beset by variation on all sides (Davis 

& Hersch, 1986); mathematically, “statistics provides means for dealing with data that take 

into account the omnipresence of variability” (Cobb & Moore, 1997, p. 801).  Professional 

statisticians see the centrality of variation in their work, and others have framed a model of 

statistical thinking in which variation is the core element (Pfannkuch, 1997; Pfannkuch & 

Wild, 1998; Wild & Pfannkuch, 1999; Pfannkuch & Wild, 2001). The above examples lend 

credence to the tenet that variation is indeed the central feature behind statistics, and offer 

support for why others agree that “statisticians consider variation to be the foundation of 

statistical thinking, the very reason for the existence of their discipline” (Shaughnessy & 

Ciancetta, 2001). 

 

Previous Work 

To explore variability in a two-dimensional context, one idea was to use the concept of a 

simple Random Walk: While described in detail later in this paper, the basic premise was 

having a starting place and then taking a step either up or down with a probability of 0.50 

in each case. The walk would terminate after reaching a given number of steps up or down 

from the initial launch. By asking participants to predict how many steps they might expect 

to take, and then by simulating the situation and gathering and representing experimental 

data, the intent was to be guided by the main elements of a conceptual framework for 

characterizing conceptions of variability listed below (Canada, 2006):  

 

[1] Expecting Variation  

 A] Describing What is Expected     

 B] Describing Why (Reasons for Expectations)    

[2] Displaying Variation       

 A] Producing Graphs  

 B] Comparing Graphs 

 C] Making Conclusions about Graphs 

[3] Interpreting Variation       

 A]  Defining Variation 

 B] Causes of Variation       



 C] Effects of Variation       

 D]   Influencing Expectations and Variation 

 

The other idea for a task looking at variability in two dimensions was inspired by the work 

of others (e.g. Engel & Sedlmeier, 2005; Green, 1982; Piaget & Inhelder, 1975). Falling 

Raindrops, described in more detail later in this paper, posits raindrops just beginning to 

fall across a patio of sixteen square tiles in a 4 x 4 array: Where might the first sixteen 

drops land? In Engel and Sedlmeier’s work, the context of falling snowflakes was used 

with their objecting being “to find out how children decide between random variation and 

a global uniform distribution of flakes” (2005, p. 169). Using a framework that considered 

the degree to which student responses reflected a perspective of randomness versus 

determinism, those researchers found evidence across a range of tasks and grade levels that 

students’ ability to coordinate randomness and variability seems to deteriorate with age.  

 

Of particular interest was the call by the researchers for instructional interventions that 

would leverage technology (such as computer simulations) to bolster gathering 

experimental data in a quest to develop “students’ intuitions about chance variation” (Engel 

& Sedlmeier, 2005, p. 176). In fact, as detailed in the subsequent two main sections, the 

intervention comprising the two tasks  reflects the first four aspects of Engel’s (2002) five-

step procedure: Making initial conjectures or observations of a given phenomenon, 

developing a model for the purposes of simulation, gathering data, and comparing 

subsequent results to initial predictions. The fifth step, involving formal mathematical 

analysis, was beyond the purview of the preservice teachers (PSTs) that we were our 

participants in the two tasks. This paper also refers to the PSTs as students (since they were 

participating in a university class), if the context makes it clear. 

 

Next, we turn to how the Random Walks task unfolded, and what we learned. 

 

FIRST TASK: RANDOM WALKS 

 

Design 

Our in-class Random Walks task was based on the classic Random (Drunken) Walk 

scenario where an intoxicated person decides to start walking on a road or sidewalk that 

only runs in opposite directions, say north and south. In their drunken condition, they are 

equally likely to either take a step north (forward) as south (backward).  Thus, there is a 

probability of ½ in taking a step in either of the two directions.) After each step, it is again 

equally likely that their next step is either forward or backward. Each of their steps are of 

the same length but randomly occur in either direction, north or south.  

 

To model this phenomenon, the context of the task was switched to a two-person board 

game, appropriate for young students (whom the PSTs would eventually be working with 

in their own classrooms). This also helped create more relevance and interest among the 

college students. At one university in Oregon, the game was called “First to 4”, and here’s 

how the game and rules were presented to the PSTs:  

 



 

     

 This is a 2 player game with a bead on a string that is strung over a game board. 

 The game board has a number line that goes from -4 to +4, by integers. 

 

• The bead starts at 0.   

• The students take turns flipping a coin. 

• If the coin lands Heads, then the bead is moved 1 step in the positive direction.  

• If the coin lands on Tails the bead is moved one step in the negative direction.  

• The game ends when the bead reaches -4 or +4 and the student with that  

number is the winner. 

 

 

 

  

Figure 1: The “First to 4” Game 

 

Because the expected value of the typical number of moves to terminate the game in “First 

to 4” might take too long to play repeated games in class, we also modified this to “First to 

3” (thus shortening the typical time to play one game).  

 

Similarly, in a university in Washington, a class of PSTs used this analogous version of a 

game, often called “Out of Bounds in 3” by participants. Here’s how it was first introduced: 

 

 You’re in the middle of a long, straight corridor, facing ahead. With you is a fair  

 spinner that is 50% Black and 50% White. You’ll take a step forward and left if  

 the spinner lands on White, or forward and right if the spinner lands on Black. 

 

 Here’s an example of what might happen in five spins: 

 

 

 

 

 

 

 

 

 

 

 

 

 You’ll stop taking steps once you hit either of the DARK (BOLD) Dashed Lines. 

 

Figure 2: The “Out of Bounds in 3” Game 

 



 

We could easily adjust either game (the Coin-Bead version or the Spinner-Steps version) 

to end in 3 or 4, and while the versions were mathematically analogous, one reason for the 

“Out of Bounds in 3” style was because it lent itself well to the simulations we had already 

created using the Tinkerplots and Fathom software. By asking students ahead of time what 

they expected to happen, we gained an idea of their sense of variability: Someone might 

suggest that only four coin flips would be needed to win at “First to 4”, implying no 

variability at all – Either repeated heads or repeated tails upon flipping the coin. 

Meanwhile, a suggestion of ten steps in “Out of Bounds in 3” would imply some variability 

in the results of repeated spins on the spinner.  

 

The discussion on, for example, “How many steps on average do think it might take?”, 

which took place before the scenario was physically acted out, was quite revealing. Some 

people held firmly to the idea that the steps taken in “Out of Bounds in 3” might never end, 

just going back and forth. Since the minimum number of steps was established as three, 

having the theoretical maximum of an infinite number of steps suggested that the typical 

number of steps was “above 3”, with much disagreement on what to expect. Whereas 

computing an exact expected value was beyond the scope the classes we tried this in, we 

therefore turned to collecting experimental results. 

 

In physically acting out the “First to 4” scenario (involving Coins-Beads), the PSTs wrote 

down what they noticed and what they wondered about. Much of their initial thoughts were 

geared toward a deterministic mindset rather than thinking in terms of randomness and 

variability. For example, if they “never got a negative number”, then they surmised that 

they “weren’t good at flipping”. Their thoughts mirrored much of what has been written 

about using binary sequences of Heads and Tails, such as the use of heuristics and 

representativeness (Reimers, Donkin, & Le Pelley, 2018). To keep track of their results, 

they recorded the string of integers that the bead landed on with each move (coin flip), such 

as: +1, 0, -1, 0, +1, +2, +3, +4: This result was for a game that took eight total moves (coin 

flips) to end at +4. 

 

Similarly, in physically acting out the “Out of Bounds in 3” scenario (involving Spinners-

Steps), there was initial attention given to manipulating the spinner “fairly” so that it wasn’t 

prone to being predictable, according to the language and thinking of the participants. 

Because we first assembled in small groups in the hallway, we assigned roles to people 

who taped off lines, who spun the spinners, who took the actual steps, and who recorded 

the results (on paper containing templates akin to what’s shown in Figure 2). Later, after 

we did a few random walks in the hallway, we reconvened in the classroom to replicate 

some more simulated games. There, we didn’t physically take the steps, but just moved a 

token on the recording paper so we could determine who many steps (spins) it would take 

to end a game. 

 

Once the game(s) had been acted out physically, and some results had been collected, more 

discussion ensued. What did they notice? What surprised them? What did they wonder 

about? Before turning to the outcomes of these discussions in the next section, we present 



an important next phase in our activities, which was to use Tinkerplots and then Fathom to 

run many more simulations and collect those results in an expedited way. The Tinkerplots 

simulation produced a result like this (for “Out of Bounds in 3”): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A Tinkerplots Simulation for “Out of Bounds in 3” 

 

Note that the use of the software simulation really seemed to make sense only after having 

participated in the physical enactment: Even for those playing a “First in 3” game with the 

coins and beads, the analogy could easily be seen. In Figure 3 above, the Index along the 

horizontal axis indicates how many “moves” was needed. Another advantage in using 

Tinkerplots is that the graph actually spools out slowly, step-by-step, just as the participants 

did in the hallway. Of course, the speed of the simulation can be adjusted so that the results 

just appear almost instantly, but at first the students appreciated seeing the action unfold 

on the screen. In using the Fathom software, a similar style of graph is obtained (Figure 4), 

but there are limits to how slowly or quickly the results appear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A Fathom Simulation for “Out of Bounds in 3” 



Outcomes 

Once students were comfortable accepting the computer simulations as being automated 

versions of what they themselves had performed physically, we were then able to look at 

far more many results than what had been collected by our classes thus far. Among the 

kinds of comments that emerged were how many “switchbacks” there might be, referring 

to the times that the direction got reversed. For example, in Figure 3 there were eight 

“switchbacks”, which corresponded to the relative minimums and maximums along the 

path shown of 22 total steps. In Figure 4, there were fourteen “switchbacks”, from among 

21 total steps. Similarly, in what many wondered might be a correlated phenomenon, many 

of the PSTs wondered about how many times, on average, a path might “return to 0” – 

Looking again at Figure 3, we see five “returns to 0” (not counting the initial position), and 

in Figure 4 this was seen as six “returns to 0”. Already we could see the potential in 

exploiting the technology to records such phenomena, and even to investigate a conjecture 

between how many “switchbacks” , “returns to 0”, or overall number of steps a game might 

take. Other questions included things like “how likely is it for the bead to stay only on one 

side”, meaning just on the positive or negative sides of the initial position. 

 

Since our initial prompt was in terms of how many steps a game might take (or moves of 

the bead in that version of the game), we then collected data from many games that focused 

on just that parameter. Using Fathom, for example, we ran five quick simulations, keeping 

track of “how many steps” in total each game took: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The results of five Fathom simulations 

 

Just as we manually recorded how many total steps each of the in-class physical 

simulations took, so too was Fathom able to run multiple simulations and display the 

results: In Figure 5 we see that the five simulations took 17 steps, then 5, 11, 3, and the 

final simulation (displayed in the center) took 9 steps. Each of those results is presented in 

table form (displayed at the right) and in a simple dot plot (displayed at the left). Again in 

the spirit of inquiry about variability, student comments would include how that fifth and 

final simulation (displayed in the center of Figure 5) never went into the “negative 



territory”.  After building a distribution of results from five simulations, students naturally 

wanted to see what many more results would look like, and here is where the power of 

Fathom really showed: It was simple to generate what we called a “batch” of 200 results: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The results of two hundred Fathom simulations 

 

Similar to Figure 5, again we see the final simulation (displayed in the center) took 9 steps.  

Not only is that result (of 9 total steps) the same as in Figure 5, but the actual trajectory 

(the step-by-step result) is identical: This is a complete coincidence, since the simulations 

were independently done at separate times. Nonetheless, students rightfully wondered what 

the likelihood is of two paths totaling 9 steps having identical trajectories. We saw this as 

a gateway to further explorations into probability and variation. The utility in having 200 

results, however, is in giving PSTs the sense of a distribution of data. And in the case of 

Figure 6, we see a highly-skewed distribution: Many of the results had fewer number of 

steps, but what caught our students’ eyes were the upper extremes.  

 

In the end, after examining ever-larger amounts of data, students were inclined to think that 

“around 9 steps” would appear likely for playing “Out of Bounds in 3” (or “First to 3”), 

but given the variability in the results they would not be surprised at a result under 6 steps, 

or more than 12 steps. As a final line of inquiry, many commented on the phenomenon 

they called a “major switchback” : This occurred when the movement of the game (beads 

or steps) was within 1 of the finish mark, only to reverse course and finish on the complete 

opposite side of the starting position. Using “Out of Bounds in 4” as an example, Figure 7 

shows what students noticed and commented upon. Although the path hits +3 at four 

different times, it still end up finishing at -4 . It seemed to students that, if a path was 

“close” in the sense of being within 1 step of ending the game, then that’s the direction the 

path should ultimately end. As one student wrote: “Our results took many tries, & once we 

were close to the end, we would get pulled in the other direction.” Figure 7 shows the idea 

of a “major switchback” (or four major switchbacks depending on how they wanted to 

count the multiplicities). 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: An example of a “Major Switchback” 

 

Just as the use of Tinkerplots and Fathom allowed the generation of copious results from 

simulated data in the case of the Random Walks task, so too did we find great utility in 

exploring our second task of Falling Raindrops. 

 

SECOND TASK: FALLING RAINDROPS 

 

Design 

Our in-class Falling Raindrops task was based on others’ work profiled earlier in this paper 

(e.g. Engel & Sedlmeier, 2005; Green, 1982; Piaget & Inhelder, 1975): Assuming a patio 

of sixteen square tiles in a 4 x 4 array, where on the patio might the first sixteen drops of 

rain land on the tiles? It should be noted that for many iterations of doing this task around 

the globe (notably in Vietnam, Tanzania, Oregon, and Washington), the context of Falling 

Raindrops became “Falling Snowflakes” depending on weather conditions. Doing this task 

in the winter of the Pacific Northwest region of the United States (Eastern Washington or 

Western Oregon, for instance), students could be more apt to think in terms of big drifting 

snowflakes than of large scattered raindrops. 

 

Initially, when presented with the question of “Where might the first sixteen drops land?”, 

to gauge their initial expectations, students made marks on a 4 x 4 grid and also wrote down 

why they held that view. Whole-group discussion ensued, with student opinions ranging 

from a more deterministic approach (i.e. expressing that each of the sixteen tiles should 

contain a raindrop in the center of each tile) to more of random approach (i.e. the raindrops 

should look like less of a discernible pattern). The nature of the discussion had similar 

types of thinking as reported in similar results from other researchers (Engel & Sedlmeier, 

2005; Green, 1982). Some students wondered how it was possible to make any prediction 

since “anything can happen” or “rain can fall anywhere”, while others mused about how 

factors like wind might influence the results. 

 

To model this phenomenon using a physical simulation, students were very creative. 

Among the ideas were finding a way to “splatter” water over a grid, or other (more viscous) 

liquids that were easier to record a single drop. Eventually students turned to other methods 



like tossing coins, blocks, and even “confetti” they made from shredded newspaper (the 

latter actually gave a strong impression of falling snow). Some students went up to a 2nd - 

floor balcony to distribute their “raindrops” (many of which missed the grid entirely), 

tossing things out into an alley or hall, and others used the height of a desk, chair, or simply 

standing up in a room over a grid. We allowed for all kinds of different materials and 

different sizes of grids (as long as they comprised sixteen squares in a 4 x 4 array), with 

the only requirement being that students felt their modelling technique was “as 

unpredictable as rain”. 

 

Once sixteen token “raindrops” had landed somewhere on the 4 x 4 grid of their choice, 

we did provide uniform pages of identical 4 x 4 grids on paper where they could record 

their results, carefully marking on the recording paper what their physical model showed. 

We then hung the recording papers all around the classroom: Each paper recorded one 

“trial” of their successful toss of sixteen “raindrops”. After having at least thirty trials 

recorded and up around the room (all on identically-sized recording paper grids), we then 

entered in a period of reflection: In particular, students were asked what they noticed, and 

what they wondered about. 

 

In this phase of generating new questions to pursue, the first thing many students noticed 

was that none of the experimental results looked like the typical “one raindrop per tile, 

perfectly centered in each square” which so many had suggested beforehand. In fact, soon 

the observation arose that most if not all of the grids up on display were without a “one 

raindrop per tile” result (let alone the idea of being perfectly centered). This led to the 

obvious connection: If there wasn’t “one raindrop per tile” on a grid, then by necessity 

there must be some empty squares on that grid. Students began to wonder how many empty 

squares were among their displayed experimental results: What was the most and least 

number of empty squares? What was the most number of raindrops in any given square? 

 

As students tabulated different aspects they were interested in, based on the questions about 

the results they raised, the notion of likelihood came up by wondering what would happen 

if we repeated the whole experiment on another day? The language of a “batch” of results 

was used to describe how many trials were on display: For example, if there were thirty 

grids of experimental results, we just called it a batch of thirty “trials”. If, at another time, 

we generated a new batch of thirty results, how would students think the new batch would 

compare to the initial batch? As an example of a specific observation, students saw in their 

initial batch a grid with five empty squares, which seemed surprising to them: Would we 

expect to see such a grid in another batch of thirty results?  

 

During the next part of the intervention, occurring on a different day, instead of generating 

more data using physical experimentation, the Fathom software was used. A simulation 

was created in Fathom that randomly placed sixteen dots on a 4 x 4 grid, as shown in Figure 

8 below: 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: A Fathom Simulation for “Falling Raindrops” 

 

We haven’t yet figured out how to simulate this graphically on Tinkerplots, but only on 

Fathom so far – And while the final display of results appears quite quickly (as opposed to 

the gradual unfolding of results that students could emulate when doing the simulation 

physically), the key was for students to question the veracity of the displayed result: How 

could they be sure the computer was doing it correctly? More salient was the question: Did 

the Fathom results look reasonable when compared to what the students had just done 

physically? Connected to the many questions students had was the listing of how many 

raindrops were in each square, something Fathom could easily record (after numbering 

each tile 1-16). Figure 9 below shows the Fathom tabulation of frequencies in squares for 

the result corresponding to Figure 8, along with a legend showing the square labelling 

convention for the grid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: How many raindrops in each of 16 squares from Figure 8 

Sixteen Raindrops 

Sixteen Raindrops 



 

In comparing Figure 8 and 9, students could see that there were indeed four empty squares, 

to the surprise of those who predicted a uniform distribution (i.e. one raindrop per tile or 

square).  

 

Outcomes 

After some discussion that led to the class accepting Fathom as being just as unpredictable 

as their physical models, we then were able to use Fathom to look at many trials, very 

quickly. In fact, whereas we had previously displayed on paper a batch of at least thirty 

trials (done through physical simulation), we could next use Fathom to see a batch of thirty 

trials within seconds. This time, for each of the thirty “trials” (each representing 16 

raindrops on the grid), we had Fathom keep track of how many empty squares were in a 

trial. 

 

It was important to run the initial “batch of 30 trials” on Fathom as slowly as possible, so 

that students could see that everything Fathom was doing mirrored the same ideas they had 

explored with their own paper recording grids. For example, Figure 10 shows results of 

such a batch of thirty trials, with frequencies for how many empty squares were in each 

trial. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Counting the empty squares in each of thirty trials  

 

In Figure 10, that last (30th) trial had exactly four empty squares such as was seen in 

Figures 8 and 9. And so a tally mark (a dot in this case) was added to that column, to denote 

four empty squares. Students could see that of the thirty trials, eight trials had happened to 

have exactly four empty squares. And if needed, they could go back through the other 

displays and match a tally mark with the grid result it came from to verify that tally mark. 

But what surprised students the most was seeing that two of the thirty simulated trials had 

exactly eight empty squares, and the wanted to compare that (seemingly unusual) event 

with the results of their own physical simulations.  

 

Among the questions in seeing repeated “batches of thirty trials” (which we sped up once 

the idea of what was going on was understood and accepted) was about what was 

reasonable to expect in terms of how many empty squares might be in any given trial. In 

A Batch of 30 Trials (Each Trial = 16 Falling Raindrops) 



Figure 3, representing a single batch of thirty trials, we see a minimum of three and a 

maximum of eight empty squares. So, what would be typical for the number of empty 

squares? If zero empty squares was considered very unlikely (corresponding to one 

raindrop per square), then wouldn’t one or two empty squares be fairly likely? In fact, 

students realized that Figure 10 was of poor use in ascertaining what was typical, since 

nothing too definitive emerges regarding the center of that distribution. After examining 

repeated batches of thirty trials, students wanted to aggregate the batches and we ended up 

doing 100 or more trials per batch. The time it would take Fathom to generate such results 

varied according to the relevant computer power, but usually something like 1000 trials 

only took about one minute or less. Figure 11 (below) shows the same idea of Figure 10 

but a much stronger sense of distribution emerges 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Counting the empty squares in each of 1000 trials 

 

As the PSTs examined graphs of the larger sets of data for the numbers of empty squares 

for the Falling Raindrops task, it was clear that the graphs helped the PSTs see the 

emergence of a distribution, similar to that of Random Walks, which led them to look  

beyond just the measures of central tendency to focus on aspects of variability. For 

example, based on Figure 11 above, while students might typically expect around 5 or 6 

empty squares (in a single trial of 16 falling raindrops), they would not be surprised by 3 

or 4 empty squares, nor 7 or 8 empty squares. Yet they wondered about the true probability 

of “zero empty squares”, which they knew would at least correspond to one raindrop on 

each of the 16 tiles – Precisely what so many of them predicted at the outset (and many 

even “centered” the raindrop within each tile).  

 

In looking at repeated results from many trials, students also made a conjecture about 

variability in “the number of empty squares” as being related or correlated to “the 

maximum number of raindrops in any square”. Again, this came only after seeing not only 

their own data from in-class experimentation, but from many results that were simulated 

by Fathom: The reasoning was that a high “maximum number” of raindrops in a single tile 

or square might be correlated with a higher number of empty squares. The computing 

power of Fathom makes conjectures such as these easier for students to investigate. 

A Batch of 1000 Trials (Each Trial = 16 Falling Raindrops) 



Lastly, beyond simply counting the number of empty squares, the issues of placement of 

the raindrops across the 4 x 4 grid seemed to be important for our students. For example, 

although “four empty squares” may not be surprising numerically, seeing those squares 

empty placed across the top row of the grid would be a surprise to some PSTs. In other 

words, the actual placement where empty squares occur should be random, according to 

some comments. Similarly, seeing four empty squares across the main diagonal of the grid 

doesn’t suggest the kind of variability in placement that students were expecting. That is, 

students wondered how likely of an occurrence would a specific placement be? 

 

CONCLUSION 

 

By generating more data, whether in increasing the number of trials (beyond 30, for 

instance), or in simply replicating many batches of the same number of trials, students were 

able to pursue deeper questions about what was expected. In Random Walks, they found it 

easier to make probabilistic statements about results: If a batch of 35 games or trials all had 

results of more than 19, just as a hypothetical example, then PSTs would be inclined to say 

that was highly unlikely. In Falling Raindrops, students would similarly be suspicious a 

claim was made that a batch of 35 trials all had less than 3 empty squares in each trial.  The 

likelihood of such events (35 random walks all having results more than 19, or 35 trials of 

falling raindrops all having less than 3 empty squares) is adjudged as quite low based on 

the variability they saw in repeated trials. Thus, experiencing variability in repeated trials 

made an influence on the PSTs’ ability to make inferences. 

 

In extending the issue of confidence in making inferences about a single trial, for the future 

we plan to ask students to respond to a scenario which posits a “Real or Fake?” aspect to a 

single trial of a Random Walk. We’ll give our PSTs the following prompt: 

 

  You ask your class to go home and conduct a single trial  

  of “Out of Bounds in 4”, and bring back the resulting path 

  the next day. One student hands in the graph below. You 

  wonder: Did the student really do the trial, or just make up 

  the results? 
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Figure 12: “Real or Fake?” A Question about a Random Walk 

 



Our conjecture is that PSTs who’ve gone through the intervention described in this paper 

will debate the question: On the one hand, having a result of 22 in a single game (trial) of 

“Out of Bounds in 4” seems plausible. On the other hand, they’ll likely want to review 

many trials to see if that exact pattern ever emerged (3 up, 6 down, 6 up, 7 down), and we 

imagine they’ll question the probability of the “result” in Figure 12 happening naturally. 

 

We did ask a related “Real or Fake?” question in the context of Falling Raindrops, and 

here is the prompt: 

 

 You ask your class to go home  

 and conduct a single trial of  

 “Falling Raindrops”, and bring  

 back the resulting grid the next  

 day. One student hands in the  

 graph shown.  

 

 You wonder: Did the student  

 really do the trial, or just make  

 up the results? 

 

 ___ Those are real results 

 ___ Those are made-up results 

 ___ No one can have much confidence in 

        whether the results are real or made-up 

 

 

Figure 13: “Real or Fake?” A Question about Falling Raindrops 

 

In Figure 13, we provided some prompts, and most participants decided that the results 

were made-up, with the next favorite response being that no one can have much confidence. 

Very few PSTs thought they were real results (which in fact they are, although we had to 

run Fathom through an extraordinarily high number of trials to obtain that exact 

placement). Again, while the total number of 7 empty squares did seem plausible, based 

on past results they had seen, most participants were skeptical of the “pattern” shown. 

 

Our initial purpose in conducting the intervention using the two tasks as described was to 

informally gauge how the use of Tinkerplots and Fathom could bring aspects of variability 

to the forefront of PSTs’ attention in probabilistic situations. Among the surprising results 

of the project so far has been the new avenues for questions that came from looking at the 

data generated by the software. A good example was when students asked a wait-time 

question concerning Falling Raindrops: “How many trials would we expect before we hit 

exactly 6 empty squares?” This question seemed natural enough, given that one student 

after another might do a trial and not have that particular result. Or it might happen on the 

first try. 



Some students did have bit of prior knowledge about an expected value for wait time as 

the reciprocal of the underlying probability, although it wasn’t phrased that way. For 

instance, they might expect to roll a die six times to hit a “4”. But again, there is variability 

to consider. In the context of the “falling raindrops” task, students could see that six empty 

squares had a high likelihood, say 0.342 for example. They then wonder if in fact 1/0.342 

≈ 2.92 might mean that “three trials” ought to be reasonable to hit exactly six empty 

squares. We then turned to Fathom to see if that in fact “three” was a reasonable answer 

for the above question on wait-time (again, we haven’t yet figured out how to replicate the 

Falling Raindrops scenario on Tinkerplots). 

 

Perhaps the most intriguing question from students had to do with the probability of a 

square having a particular nonzero number of raindrops. They surmised a correlation 

between “number of empty squares” and “maximum number of raindrops in a square”, but 

it turned out to be a challenging question to determine a specific probability for a given 

nonzero number of raindrops. For instance, “What’s the likelihood any given trial will have 

6 raindrops as a maximum on a square?” was a question that arose. Certainly we could look 

at our original experimental data – the paper grids up around the room – and compute that 

experimental probability. But getting Fathom to “keep track” of how many trials had 

exactly six raindrops on a square (and no more than six) was complicated for us.  

 

Instead, it was very easy to have Fathom run trials until the number of raindrops was six 

or greater. So, we changed the question to “What’s the likelihood any given trial will have 

6 raindrops or more on a square?” To gain insight into that question, we ran 100 

experiments on Fathom, where an experiment was defined as “Count how many trials are 

needed to be run until a trial hits 6 raindrops or more on any given square”.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: 100 Experiments of “How many trials to get 

a square with 6 or more drops?” 

 

Before running 100 experiments, we discussed what the results might look like. Students 

knew an experiment could end with “one trial” because we could get 6 or more drops on a 

square with the first trial. Some students thought an experiment could go on for “thousands 

of trials” since maybe it would take a while to get the desired result. We also noted that 



none of our initial experimental data had that result. After discussion of initial expectations, 

we ran Fathom for 100 experiments as defined above, and the results are in Figure 14. 

 

Using the mean result from 100 experiments, which was about 230 trials for Figure 14, 

students conjectured that the question of “What’s the likelihood any given trial will have 6 

raindrops or more on a square?” might be the reciprocal of the wait-time: 1/230 ≈ 0.0043. 

However, this low probability did not satisfy those who thought any given trial must surely 

have be fairly likely to have the desired result. Again, precise mathematical computations 

were not the aim of the project, but students did raise very interesting probabilistic and 

statistical questions. They were left musing about the correlation between “maximum 

number of drops” and “number of empty squares”, so in that sense their curiosity had not 

been fully slaked. 

 

Overall, by the end of the intervention students seemed to demonstrate three features useful 

for developing a more robust engagement in a world beset by variability. First, students 

markedly changed their predictions on the results for both Random Walks and Falling 

Raindrops, as they were exposed to ever-increasing amounts of experimental data. Second, 

students were better able to integrate a reasoning about variability in making inferences 

about hypothetical results. Third, and perhaps most intriguing, students generated further 

questions that were based on what they noticed, and what they wondered about, in the face 

of large amounts of simulated data.  

 

The latter questions are what really made this project and paper unique, in the way that 

students furthered their investigation of the two tasks. The next step will be to employ a 

conceptual framework to assess student responses in order to describe in more detail the 

ways in which their appreciation and use of variability improved by the end of the 

instructional intervention. 
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