

Norm Christensen Lissa Leege Justin St. Juliana

330 Hudson Street, NY NY 10013

Director, Courseware Portfolio Management: Beth Wilbur Courseware Portfolio Manager, Specialist: Alison Rodal

Courseware Director, Content Development: Ginnie Simione Jutson

Courseware Senior Analyst: Hilair Chism

Development Editor: Mary Hill

Courseware Editorial Assistant: Alison Candlin Courseware Managing Producer: Mike Early Content Producer: Becca Groves, SPi-Global Senior Content Developer: Sarah Jensen Rich Media Content Producer: Ziki Dekel Content Producer, Video Development: Tim Hainley

Full-Service Vendor: Jason Hammond/Kelly Murphy, SPi-Global

Design Manager: Mark Ong, Side By Side Studios

Interior and Cover Designer: Lisa Buckley, Buckley Designs

Art Studio: Kevin Lear, International Mapping

Rights & Permissions Management: Matt Perry, Cenveo Publishing Services

Photo Researcher: Kristin Piljay

Senior Procurement Specialist: Stacey Weinberger Product Marketing Manager: Christa Pelaez Field Marketing Manager: Mary Salzman

Cover Photo Credits: WDG Photo/Shutterstock; Hangingpixels/Shutterstock; Michael Potter11/Shutterstock; Fenkieandreas/Shutterstock; Oticki/Shutterstock; Mary Amerman/Moment/Getty Images; Hero Images/Getty Images; Visual Walkthrough: iShift/Shutterstock; Artjazz/Shutterstock; Nik Merkulov/Shutterstock

Copyright ©2019, 2016, 2013 Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third party content appear on page C-1, which constitutes an extension of this copyright page.

PEARSON, ALWAYS LEARNING and Mastering™ Environmental Science are exclusive trademarks in the U.S. and/or other countries owned by Pearson Education, Inc. or its affiliates.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

Names: Christensen, Norman L, 1946- author.

Title: The environment and you / Norm Christensen, Lissa Leege, Justin St. Juliana

Description: Third edition. | New York : Pearson Education, Inc., [2018] Identifiers: LCCN 2017042314 | ISBN 9780134646053 (Student edition) |

ISBN 0134646053 (Student edition) | ISBN 9780134818764 (A La Carte) |

ISBN 0134818768 (A La Carte) Subjects: LCSH: Environmentalism. | Environmental policy. | Environmental

protection. Classification: LCC GE195 .C575 2018 | DDC 304.2/8--dc23

Classification: LCC GE195 .C575 2018 | DDC 304.2/8--dc23 LC record available at https://lccn.loc.gov/2017042314

1 18

ISBN 10: 0-13-464605-3; ISBN 13: 978-0-13-464605-3 (Student edition) ISBN 10: 0-13-481876-8; ISBN 13: 978-0-13-481876-4 (A La Carte)

www.pearsonhighered.com

About the Authors

Norm Christensen is professor emeritus and founding dean of Duke University's Nicholas School of the Environment. A central theme in Norm's career has been ecosystem change from both natural and human causes. Norm has worked on numerous national advisory committees on environmental issues and on the boards of several environmental organizations including Environmental Defense Fund and The Wilderness Society. He is a fellow in the American Association for the Advancement of Science and a fellow and past president of the Ecological Society of America. Norm was the 2017 recipient of the Herbert Stoddard Lifetime Achievement Award from the American Association for Fire Ecology.

This book is very much a product of Norm's passion for connecting students with their environment. Norm was honored twice by the Duke University with awards for distinguished undergraduate teaching. He was instrumental in the development of Duke's undergraduate program in environmental science and policy, and he taught the introductory course for this program for over 15 years.

Lissa Leege is a professor of biology and the founding director of the Center for Sustainability at Georgia Southern University. She earned her undergraduate degree in biology from St. Olaf College and received her Ph.D. in plant ecology at Michigan State University. Her ecological research concerns threats to rare plants, including the effects of fire and invasive species on endangered plant populations and communities. She has also conducted 20 years of research on the impacts of invasive pines on the sand dunes of Lake Michigan and the subsequent recovery of this system following invasive species removal. Lissa was instrumental in the development of an Interdisciplinary Concentration in Environmental Sustainability for undergraduates at Georgia Southern. Under her direction, the Center for Sustainability engages the campus and community with annual sustainability celebrations, a sustainability grant program, and a robust speaker series. Lissa is also involved with the environment on a statewide level as a member of the 2013 Class of the Institute for Georgia Environmental Leadership and a founding member of the Georgia Campus Sustainability Network.

Lissa has taught nonmajors environmental biology for 19 years with an emphasis on how students can contribute to environmental solutions. In 2006, she established an Environmental Service Learning project, through which thousands of environmental biology students have engaged in tens of thousands of hours of environmental service in the local community. Lissa has been honored with both college and university service awards and has served as a faculty fellow in Service-Learning. Her contributions to this book have been inspired by her passion for engaging students in positive solutions to environmental problems.

Justin St. Juliana is a lecturer in the Ecology and Evolutionary Biology Department at Cornell University. He received his bachelor's degree in animal ecology at lowa State University, his master's degree in evolutionary ecology from Ben Gurion University of the Negev (Israel), and his Ph.D. in biology from Indiana State University. Justin's research lies at the interface of predator prey interactions, optimal foraging, and stress hormones. His study organisms include rodents, foxes, fleas, owls, snakes, and feral cats. Before taking his position at Cornell University, Justin was an associate professor at Ivy Tech Community College (Terre Haute Campus) in Indiana. While at Ivy Tech he taught at multiple biological levels from microbiology to environmental science. Justin also developed and still administers a statewide online nonmajors biology course taken by thousands of Ivy Tech students every year.

Justin teaches the large mixed majors/nonmajors Ecology and the Environment course at Cornell University. He is very interested in the latest teaching innovations and heavily incorporates active and community-based learning into his courses. Justin believes

that scientific concepts can be taught as stories that relate to a student's life. He also extensively utilizes technology to improve student learning outcomes. In addition to being a coauthor, Justin developed the Process of Science, Global Connects, and Focus on Figures activities associated with this book, in *Mastering™ Environmental Science*.

Dedication

To Nicholas, Natalie, Noelle, Nicole, Riley, and all other of Earth's children. May we make decisions today that ensure the future beauty, diversity, and health of the environment on which they will depend.

To Micah and Emory, my constant joy and inspiration. I owe you the beautiful world I inherited, and it is my hope that education will motivate all kinds of students to take leadership and action in bringing about a bright and sustainable future.

To my father, Ronald, who, having spent his formative years as a hunting and fishing guide, enabled me to appreciate the natural world and taught me the value of a strong land ethic. I hope that, in this book, I can pass his valuable lessons along to the readers.

iii

Preface

It has been said that change is the only constant. For billions of years, Earth's environment and the organisms that inhabit it have been constantly changing. Over tens of millennia we, our species, have constantly changed; each generation's technologies, values, and understanding of its environment have differed from those that preceded it. As a consequence of those technologies and our growing numbers, we have changed Earth's environment more than any other species living now or in the past.

You and the world around you are the current manifestation of this process of inexorable change. The health and well-being of most of Earth's people have markedly improved over the past century but our impacts on Earth's environment have increased significantly. A century ago, our global population was fewer than 2 billion; today there are well over 7.5 billion of us. What's more, each of us today uses several times more resources and generates several times more waste than our century-ago ancestors. The effects on our environment are alarming. Resources such as water and petroleum are dwindling. Air pollution and water pollution have become commonplace. Rates of extinction among Earth's species are more than 100 times higher than in pre-industrial times, and Earth's climate is warming because of human-caused changes in the chemistry of its atmosphere. Sea level rise, dwindling sea ice in the Arctic, and increased severity of droughts and hurricanes are just a few of the consequences of this global warming.

These changes threaten the health of Earth's ecosystems and the well-being of many of its people; they directly affect you. These changes are unsustainable, but they are not inevitable. Sustainability and ecosystems are important themes throughout this book. Sustainable action and change require knowledge and understanding of the ecosystems upon which we depend. Yes, they are complex, but the key elements of ecosystem function and sustainability are beautifully simple. In an increasingly urban and technology-driven world, the connections between Earth's ecosystems and our well-being may seem distant, even irrelevant. But they are at all times immediate and compelling.

We have not downplayed the significant challenges presented by the variety of environmental issues that affect our lives because a balanced view of the challenges is needed. Naïve optimism is not likely to motivate substantial change in our actions and impacts, but neither is pessimism. We can all change the world in directions that are truly sustainable. We are convinced you will be part of that process of change. That confidence and conviction were the motivation for writing this book; hope was the inspiration.

New Innovations and Hallmark Features

A New Author

We welcome Justin St. Juliana to the author team of *The Environment and You*. Justin is a lecturer in the Ecology and Evolutionary Biology Department at Cornell University. Justin believes that scientific concepts can be taught as stories that relate to a student's life. His ability to relate scientific concepts to a student's experiences fits perfectly with our goal of bringing environmental science to life. His ability to use technology to improve student learning and engagement has been brought to bear on the various activities in Mastering™, both in this edition and previous ones. Justin's energy, interests, and teaching philosophy are a welcome addition to the team

New to this Edition

- Misconception New to the third edition, this feature addresses common student misunderstandings related to matters of scientific fact and offers a new take on the Q&A feature from prior editions. Is Earth getting warmer because of the ozone hole? Is bottled water safer to drink than tap water? Do vaccines lead to autism in children?
- You Decide New to the third edition, this feature presents you with a real environmental issue and challenges you to take a stand on that issue, using scientific evidence to support your position. Remember Cecil the lion? Are there some situations where it could be permissible to hunt endangered species? How would you react if fracking were to come to your town?

A Focus on You

A hallmark of each edition, now further reinforced in the third edition, is the importance of humans as agents of environmental change. The effects of those changes on human well-being continue to be a central theme in the third edition. *The Environment and You* emphasizes problem solving and solutions that will enable you to make more informed choices on actions to support the well-being of humans and the health of the planet.

- Where You Live This feature invites you to use primary data sources to explore environmental principles, issues, and sustainable solutions within the context of your local community. By answering the questions posed, you'll see how concepts and examples from your textbook can be applied to where you live and learn. This will not only satisfy your curiosity but also help you connect local discoveries to central themes of the chapters. Do you know, for example, what biome you live in (Chapter 7) or whether you share your local environment with an endangered species (Chapter 8)? Do you ever think about just how much water you use every day (Chapter 11)? How about the size of your waste footprint (Chapter 17)? These are just a few of the questions you will explore.
- Seeing Solutions Problems need solutions and this feature highlights how individuals and groups around the world are using new approaches to solve environmental problems. Topics include a city that is investing in green space to solve problems associated with transportation, the local economy, and the health of its citizens (Chapter 16); a business that lessens its impact while improving profit and employee–community relations with a focus on the triple bottom line (Chapter 1); a group that supports increased educational opportunity for young women as a means to improve the health and well-being of their communities (Chapter 5); and efforts designed to support underdeveloped countries in dealing with the economic pressures of a changing world (Chapter 8).
- **Agents of Change** This feature showcases the efforts of college students and recent graduates who have taken action to produce sustainable environments and improve human well-being. It is intended to provide guidance and encouragement for any student with a similar drive to make the world a better place. The third edition features six new inspiring Agents of Change: Will Amos and Aldrin Lupisan, inventors of a bike-powered plastic recycling system; Erica Davis, contributor to a reform bill that keeps money from natural resource extraction within local communities; Amira Odeh, leader of a campus-wide plastic bottle ban; Dejah Powell, creator of an environmental summer camp targeted at disadvantaged inner city youth; Swarnav Pujari, inventor and founder of TouchLight, a company that captures kinetic energy from human foot traffic; and Destiny Watford, champion of clean air and environmental justice in Baltimore.

Solid Coverage of Environmental Science

Our current understanding of environmental issues is built on a foundation of decades of careful research by generations of scientists. The third edition not only continues to provide many examples to help you understand the role science and scientific data can play in reducing uncertainty surrounding environmental issues but also engages you in the spirit of inquiry scientists use to ask questions and gather evidence to support predictions.

- Currency New discoveries are constantly occurring, and our understanding is quickly evolving in all areas of environmental science. Among the many updates to the third edition are recently revised United Nations forecasts for the growth of human populations, the latest information on changes in Earth's climate from the Intergovernmental Panel on Climate Change, and recent innovations in agriculture, energy conservation, and green building practices. This edition provides the most current synthesis of such changes in every environmental field. Graphs and charts use the latest available data, and recent events such as Hurricanes Harvey and Irma; the devastating wildfires in northern California; and the rise and spread of the Zika virus are included.
- Motivation Each chapter opens with an essay about humans and their interaction with or understanding of the environment. From the historic collapse of the Newfoundland cod fishery (Chapter 1) to the restoration of breeding populations of the California Condor (Chapter 8) or the spread of the Zika virus into the Americas (Chapter 18), environmental science is full of interesting stories. These stories will help you connect to the scientific concepts introduced in each chapter.
- Applications and Examples The Environment and You
 provides numerous explanations of how scientists
 have found innovative ways to gather the evidence that
 supports current conclusions and enables informed
 predictions.
- Focus on Science This feature encourages you to think about the process of scientific inquiry and the different methods scientists use to gather evidence by highlighting the work of individual scientists and the contributions they have made. For example, how does a scientist measure the amount of plastic waste in the ocean (Chapter 11)? We emphasize the strategies scientists use to conduct scientific research and include critical thinking questions that will spark class discussion and encourage you to think like a scientist.
- New Frontiers This feature highlights interesting
 areas of environmental research as well as unique
 approaches to problem solving. New Frontier features
 emphasize the complex interactions between new
 scientific discovery, ethics, and policy and ask you
 to consider the implications of the power science
 has to change the way we live and interact with the
 environment.

Organized for Learning

The Environment and You is organized to help students understand environmental science.

- Each lesson begins with a big idea so students always have a way to see the forest as well as the trees.
- Manageable amounts of information are organized by key concepts within modules, giving students complete lessons before moving on to the next topic.
- Important concepts are illustrated with clear, purposeful charts and graphs and supported with photographs that capture the essence of the concept being presented.

Supporting All Levels of Students

Students in introductory environmental science classes have vastly different levels of science background. *The Environment and You* is designed and written to serve that diversity.

- Self-assessment: Questions at the end of every module allow students to assess whether they have truly grasped a topic before they move on. Questions at the end of each chapter are designed to encourage synthesis of concepts and application to real situations.
- Mastering™ Environmental Science: Used by over a million science students, the Mastering platform is the most effective and widely used online tutorial, homework, and assessment system for the sciences. It motivates students to come to class prepared; provides students with personalized coaching and feedback; quickly monitors and displays student results; easily captures data to demonstrate assessment outcomes; and automatically grades assignments, including concept review activities, 3-D BioFlix® animation activities and quizzes, Graphit! activities, and chapter reading quizzes.

Mastering™ Environmental Science has a suite of activities designed to help your students practice concepts and develop scientific inquiry skills. Assignable activities include:

- Focus on Figures videos, new to the third edition, walk students through fifteen of the most critical environmental science figures from *The Environment and You*. Each video, created by Justin St. Juliana, helps students explore and interpret key figures such as the carbon cycle, the Keeling curve, and logistic population growth. The videos are assignable in *Mastering™ Environmental Science* as part of an interactive activity that further reinforces student understanding.
- Process of Science activities encourage your students to put scientific inquiry skills into action. These interactive activities guide them through current environmental research and help them understand concepts such as developing a hypothesis, making a prediction, understanding variables and independent variables, and more.
- Global Connection activities demonstrate the global relevance of local environmental issues and chapter themes. Your students will be able to draw comparisons between environmental issues in the United States and other countries such as water usage, air pollution, or species habitat loss.
- Interpreting Graphs and Data activities allow students to practice quantitative skills related to graph interpretation and analysis.
- Video Field Trips bring real environmental issues to life. These fourteen videos are embedded in the eText and assignable in Mastering™ Environmental Science.
 Take a tour of a water desalination plant, explore the sustainability features of a college campus, or visit a coal-fired power plant. These are just a few examples of the issues each video explores.

Acknowledgments

We accept all of the responsibilities of authorship for the third edition of *The Environment and You*, most particularly for any mistakes or flaws. But others deserve much of the credit for its development, organization, presentation, and production. As this project evolved over the course of several years, the Pearson Education publishing team and numerous environmental science colleagues have provided much needed guidance and encouragement.

We are especially grateful to Alison Rodal, our courseware portfolio manager for the second and third editions of *The Environment and You*. She was the catalyst for many of this edition's new features, and her contagious enthusiasm for this project motivated us at every stage.

Our development editor, Mary Hill, expertly and cheerfully guided us on this third edition journey,

from start to finish, as she did for the second edition. Mary has an exceptional eye for detail on matters ranging from grammar to module organization and layout to connections among chapters. Even more, we are awed by her nuanced understanding of so many facets of environmental science that informed her suggestions on substance and presentation. Her wonderful sense of humor sustained us throughout this process.

We thank Courseware Portfolio Management, Director Beth Wilbur and Courseware Director, Content Development Ginnie Simione Jutson who encouraged and facilitated this project throughout its second and third editions. In addition, we would not have been able to publish this project without the support from SVP Portfolio Management-Science Adam Jaworski and Managing Director, Higher Education Courseware Paul

Corey. Thank you for taking a risk on this project and for your ongoing collective leadership in science education.

Sophie Mitchell and her wonderful team at Dorling Kindersley Education helped craft and execute the original vision for the first edition of this project.

Producing a book where text and art are created, designed, and arranged in tandem requires a highly collaborative approach to publishing. We are grateful to our production colleagues for overseeing and orchestrating this effort. Mike Early and the content production team oversaw the project's many details and milestones. Mark Ong and Lisa Buckley were responsible for the page and cover design of this third edition, Jason Hammond and Kelly Murphy of SPi-Global oversaw the composition of our text files to actual page layouts, along with Becca Groves who managed to keep all members of the team on point. We thank Kevin Lear of International Mapping for his leadership in the production of illustrations, graphs, and maps and Hilair Chism for her graphic talents utilized in creating this edition's cycle diagrams and other complex figures.

We want to thank Editorial Assistant Alison Candlin for coordinating the Agents of Change contributors and elements so masterfully, and for continuing to follow the vision of this great feature. We also appreciate the support she provided to the entire publishing team.

Special thanks to Rich Media Content Producer Ziki Dekel for overseeing all details on the production of media for the new edition and for *Mastering™ Environmental Science*, and to Libby Reiser and Sarah Jensen for bringing their creativity and expertise to the development of our new *Mastering™ Environmental Science* activities. Todd Brown ensured the smooth release of *Mastering™ Environmental Science* for the third edition of the text.

We would also like to thank each contributing supplement author for the edition. Jacquelyn Jordan, Clayton State University, did a wonderful job carefully updating the Instructor's Guide. The Test Bank was written and assembled by David Serrano, Broward State College. David is also the author of the third edition PowerPoint presentations, carefully updating each chapter presentation to help give instructors a headstart in planning each lecture. Reading Questions were crafted by Nilo Marin, Broward State College. We also thank Erica Kipp, Pace University, for her contribution to the updates in *Mastering™ Environmental Science* resources for this edition.

After many years spent creating and crafting this book, there comes a time to pass the torch to marketing and sales. We are grateful to Allison Rona Director of Product Marketing, for her support of this text. Christa Pelaez and Mary Salzman brought endless enthusiasm in promoting *The Environment and You*, communicating our vision to instructors all over the country. We are fortunate to have the support of the many sales representatives who work tirelessly to communicate our vision to faculty and ensure instructors' needs are satisfied. We thank them for their dedication and commitment!

Terrence Bensel, Brian Bovard, Robert Kingsolver, and Lester Rowntree made important contributions in the first edition to chapters on climate change, biodiversity, agriculture, energy, and waste management. Their detailed outlines provided road maps through sometimes unfamiliar territory, and many elements from their drafts of several of these chapters are part of the final product.

We owe much to our students at Duke, Georgia Southern, and Cornell Universities. In many ways, they helped shape the spirit and content of this text. They have been guinea pigs for each of its chapters and volunteered many editorial comments. The book is much the better for their input.

Over the years, each of us has had the benefit of working with wonderful mentors and colleagues, all the while being supported by our families. For each of us, individually, we want to thank those people who are so special to us.

Norm: My undergraduate and master's advisor Bert Tribbey passed along much knowledge and wisdom that appears in these pages, and he has long served as my primary role model for teaching excellence. My Duke colleagues William Chameides, Deborah Gallagher, Prasad Kasibhatla, Emily Klein, Randy Kramer, Susan Lozier, Marie Lynn Miranda, Joel Meyer, Lincoln Pratson, William Schlesinger, and Dean Urban were key sources of information and constructive criticism.

I am grateful to my family for their patience with me over the life of this project. My wife Portia has been a sounding board for new ideas, an editor of essays and features, and the best friend ever.

Lissa: My Ph.D. advisor Peter Murphy was an excellent role model who always encouraged my love of teaching and ultimately inspired my desire to reach a wider audience. I am grateful to Georgia Southern University and the Department of Biology for supporting my pursuit of this project, and to my museum colleagues for opening my eyes to the exhilaration of teaching beyond my classroom.

I thank my parents for believing in my passion for sustainability and supporting my path. I owe much to my children Micah and Emory for the time they allowed me to dedicate to this book. Finally, I extend my deepest gratitude to my remarkably patient and supportive husband Frank D'Arcangelo, who encouraged me to follow this dream, even though it meant that he would take on a greater share of parenting responsibilities.

Justin: I would like to thank my undergraduate advisors Fred Janzen and Brent Danielson, my master's advisor Burt Kotler as well as Berry Pinshow, my Ph.D. advisor William Mitchell as well as Steve Lima, and my former department head Janice Webster. Each of these people taught me valuable lessons about science and education.

I am grateful to my family, Paloma, Tanner, Vincent, and Lourdes. When I was a young child I wanted to be an environmental author. Although, I never thought this would take the form of a textbook, or textbook associated activities, my family afforded me the time to pursue this dream

ors' needs are satisfied. We thank them for activities, my family afforded me the time to pursue this dream.

Third Edition Reviewers

Shamili Ajgoankar College of DuPage

Elaine K Alexander Fagner McLennan Community College

John All

Western Kentucky University

Stefan Becker

CUNY - Lehman College Marguerite Bishop Nash Community College

Judy Bluemer Morton College Randi Brazeau

Metropolitan State University of Denver

Robert Bruck

North Carolina State University

Susan Burgoon Amarillo College Kelly Cartwright College of Lake County LuAnne Clark

Lansing Community College

Scott Connelly University of Georgia JodyLee Estrada Duek Pima Community College Jeffrey French

North Greenville University

Tracy Gartner Carthage College Anne Gasc

Honolulu Community College

Richard Gill

Brigham Young University

Richard Groover

Reynolds Community College

Jennifer Harper Bainbridge State College Meshagae Hunte-Brown

Drexel University Douglas Kane Defiance College Jennifer Latimer Indiana State University

Nilo Marin Broward College Terri Matiella

The University of Texas at San Antonio

John McClain Temple College Eric Myers

South Suburban College

Gregory O'Mullan Queens College Hari Pant

CUNY - Lehman College

Dan Perlman Brandeis University

Juan Carlos Ramirez-Dorronsoro

Ball State University Keith Summerville Drake University Daniel Wagner

Eastern Florida State College

Albert Walls

Cape Fear Community College

Jennifer Welch

Madison Community College,

Kentucky Community and Technical College

System

Justin Williams

Sam Houston State University

Brian Wolff

Normandale Community College

John Zahina-Ramos Loyola University Chicago

Second Edition Reviewers

Mark Basinger Barton College Terrence Bensel Allegheny College Leonard Bernstein Temple University Judy Bluemer Morton College Scott Brame Clemson University James R Brandle

College of Agriculture and Natural

Resources

Meshagae Hunte-Brown Drexel University Robert Bruck

North Caroline State University

Kelly Cartwright College of Lake County David Charlet

College of Southern Nevada

Peter G. Chege Black Hawk College Lu Anne Clark

Lansing Community College Jacqueline Courteau University of Michigan

Anthony D. Curtis Radford University Andy Dyer

University of South Carolina

Gregory S. Farley Chesapeake College Eric G. Haenni

Franciscan University of Steubenville

Jennifer Harper Bainbridge College Stephanie Hart

Lansing Community College Alyssa Haygood

Arizona Western College Tara Holmberg

Northwestern Connecticut Community

College

Barbara Ikalainen

North Shore Community College

Jacqueline Jordan Clayton State University

Natalie Kee

University of Mount Union

Reuben Keller Loyola University Erica Kipp Pace University

Katherine LaCommare Lansing Community College

Nilo Marin Broward College Carolyn Martsberger Loyola University Chicago John McClain

Temple College Charles McClaugherty University of Mount Union Greg O'Mullan Queens College CUNY

Raymond S. Pacovsky Palm Beach State College Barry Perlmutter

Community College of Southern Nevada

Tim Rhoads

Central Virginia Community College

James Salazar Galveston College David Serrano Broward College Rich Sheibley

Edmonds Community College

Lynnda Skidmore

Wayne County Community College

viii

Justin R St. Juliana Ivy Tech Community College Keith Summerville Drake University Claire Todd Pacific Lutheran University **Brad Turner**

McLennan Community College

Daniel Wagner Eastern Florida State College Albert Walls Cape Fear Community College Jennifer Welch Madison Community College Kentucky Community & Technical College Jennifer Wiatrowski Pasco-Hernando State College Porter Campus James R Yount Eastern Florida State College

First Edition Reviewers

David A. Aborn University of Tennessee, Chattanooga Isoken Aighewi University of Maryland Saleem Ali University of Vermont John All Western Kentucky University Mary Allen Hartwick College Mark W. Anderson University of Maine Joe Arruda Pittsburg State University Daphne Babcock Collin County Community College Narinder S. Bansal Ohlone College Jon Barbour University of Colorado, Denver Morgan Barrows Saddleback College

Christy Bazan Illinois State University Hans Beck Aurora University Peter Beck St. Edwards University Diane B. Beechinor Northeast Lakeview College Terry Bensel Allegheny College Leonard Bernstein Temple University William Berry University of California,

Berkeley Lisa K Bonnaeu Metropolitan Community College Brian Bovard Florida Golf Coast University Peter Busher Boston University Kelly Cartwright

College of Lake County Paul Chandler Ball State University

David Charlet College of Southern Nevada Marina Chiarappa-Zucca De Anza College Van Christman Brigham Young University, Idaho Donna Cohen Massachusetts Bay Community College John Conoley East Carolina University Jessica Crowe Valdosta State University Jean DeSaix University of North Carolina Chapel Hill

Doreen Dewell Whatcom Community College Dr. Darren Divine Community College of Southern Nevada Rebecca Dodge

Midwestern State University James English Gardner-Webb University JodyLee Estrada Duek Pima Community College Douglas Flournoy

Indian Hills Community College Steven Frankel Northeastern University Jonathan Frye McPherson College Karen Gaines Eastern Illinois University Kurt Haberyan

Northwest Missouri State

Anne Hall **Emory University** Stephanie Hart Lansing Community College Harlan Hendricks Columbus State University

Carol Hoban Kennesaw State University

Kelley Hodges Gulf Coast Community College Tara Holmberg

Northwestern Connecticut Community College

Kathryn Hopkins McLennan Community College Meshagae Hunte-Brown Drexel University Emmanuel Iyiegbuniwe Western Kentucky University Tom Jurik Iowa State University Richard Jurin University of Northern Colorado Susan W. Karr Carson-Newman College David K Kern Whatcom Community College Kevin King Clinton Community College Jack Kinworthy

Concordia University Rob Kingsolver Bellarmine University Cindy Klevickis James Madison University Steven A. Kolmes University of Portland Ned Knight

Linfield College Erica Kosal North Carolina Wesleyan College Janet Kotash

Moraine Valley Community

College Robert Kremer University of Missouri Diana Kropf-Gomez Richland College James David Kubicki The Pennsylvania State University Kody Kuehnl Franklin University

Moravian College Troy A. Ladine East Texas Baptist University Elizabeth Larson-Keagy Arizona State University

Jejung Lee University of Missouri Lissa M. Leege

Frank Kuserk

Georgia Southern University

Kurt Leuschner College of the Dessert Honqi Li

Frostburg State University

Satish Mahajan Lane College Kenneth Mantai

State University of New York,

Fredonia

Anthony Marcattilio St. Cloud State University Heidi Marcum **Baylor University** Allan Matthias University of Arizona Kamau Mbuthia

Bowling Green State University John McClain Temple College

Joseph McCulloch Normandale Community College

Robert McKay Bowling Green State University Bram Middeldorp

Minneapolis Community and

Technical College Chris Migliaccio Miami Dade College Kiran Misra Edinboro University of Pennsylvania James Morris

Columbia Sherri Morris **Bradley University** Eric Myers

University of South Carolina,

South Suburban College Jason Neff

University of Colorado, Boulder **Emily Nekl** High Point University John Olson Villanova University Bruce Olszewski San Jose State University Gregory O'Mullan Queens College

A01 CHRI6053 03 SE FM.indd 9 12/9/17 1:16 AM

ix

Stephen Overmann Southeast Missouri State University William J. Pegg Frostburg State University Barry Perlmutter Community College of Southern Nevada Shana Petermann Minnesota State Community and Technical College Julie Phillips De Anza College Frank Phillips McNeese State University John Pleasants Iowa State University Brad Reynolds University of Tennessee, Chattanooga Kayla Rihani

Northeastern Illinois University

Carleton Lee Rockett Bowling Green State University Susan Rolke Franklin Pierce University Deanne Roquet Lake Superior College Steven Rudnick University of Massachusetts, Boston Dork Sahagian Lehigh University Milton Saier University of California, San Diego James Salazar Galveston College Kimberly Schulte Georgia Perimeter College Michele Schutzenhofer McKendree University Rebecca Sears

David Serrano Broward College Garey Simpson Kennesaw State University Debra Socci Seminole Community College Ravi Srinivas University of St. Thomas Craig W. Steele Edinboro University Michelle Stevens California State University, Sacramento Robert Strikwerda Indiana University, Kokomo Keith Summerville Drake University Jamey Thompson Hudson Valley Community College Ruthanne Thompson University of North Texas

Bradley Turner McLennan Community College Lina Urquidi New Mexico State University Sean Watts Santa Clara University John Weishampel University of Central Florida Timothy Welling **Dutchess Community College** Kelly Wessell Tompkins Cortland Community College James Winebrake Rochester Institute of Technology Chris Winslow Bowling Green State University Danielle M. Wirth Des Moines Area Community College Todd Yetter University of the Cumberlands

Class Test and Interview Participants

Western State College of Colorado

Ginny Adams, University of Central Arkansas; John All, Western Kentucky University; Jeff Anglen, California State University, Fresno; Dave Armstrong, University of Colorado; Berk Ayranci, Temple University; Roy Barnes, Scottsdale Community College; Christy Bazan, Illinois State University; Sandy Bejarano, Pima College East Campus; Leonard Bernstein, Temple University; William Berry, University of California, Berkeley; Neil Blackstone, Northern Illinois University; Christopher Bloch, Texas Tech University; Gary M. Booth, Brigham Young University; James Brandle, University of Nebraska, Lincoln; Robert Bruck, North Carolina State College; George Byrns, Illinois State University; John Calloway, University of San Francisco; Frank Carver, Forsyth College; Ken Charters, Cochise Community College; Dave Charlet, Community College of Southern Nevada; LuAnn Clark, Lansing Community College; Jaimee Corbet, Paradise Valley Community College; Robert Cromer, Augusta State University; Wynn Cudmore, Chemeketa Community College; Jane Cundiff, Radford University; Lynnette Danzl-Tauer, Rock Valley College; James Diana, University of Michigan, Ann Arbor; Darren Divine, Community College of Southern Nevada; Rebecca Dodge, Midwestern State University; David Dolan, University of Wisconsin, Green Bay; Michael Draney, University of Wisconsin, Green Bay; Renee Dutreaux-Hai, California State University, Los Angeles; Johannes Feddema, University of Kansas; Richard S. Feldman, Marist College; Kevin Fermanich, University of Wisconsin, Green Bay; Linda Fitzhugh, Gulf Coast College; Laurie Fladd, Trident Technical University; Chris Fox, Catonsville Community College; Katie Gerber, Santa Rosa Junior College; Thaddeus Godish, Ball State University; James Goetz, Kingsborough Community College; Robert Goodman, Citrus College; Larry Gray, Utah Valley University; Peggy Green, Broward Community College, North; Joshua Grover, Ball State University; Kurt Haberyan, Northwest Missouri State; George Hagen, Palo Alto College; Nigel Hancock, Long Beach City College; Wendy Hartman, Palm Beach Community College; Kim Hatch, Long Beach City College; James Haynes, State University of New York, Brockport; Kathi Hopkins, McClennan Community College; James J. Horwitz, Palm Beach Community College; Joseph Hull, Seattle Central Community College; Carolyn Jensen, Pennsylvania State University, University Park; David Jones, North Eastern Illinois University; Susan

Karr, Carson-Newman College; Leslie Kanat, Johnson State College; Julie Klejeski, Mesabi Range Community College; Janet Kotash, Moraine Valley Community College; Katherine LaCommare, Lansing Community College; John Lendvay, University of San Francisco; Paul Lorah, University of St. Thomas; Deborah Marr, Indiana University, South Bend; Allan Matthias, University of Arizona; Shelly Maxfield, Pima Community College; John McClain, Temple Junior College; Joesph McCulloch, Normandale Community College; Rachel McShane, St. Charles Community College; Steven J. Meyer, University of Wisconsin, Green Bay; Alex Mintzer, Cypress College; Jane Moore, Tarrant County Community College; James Morris, University of South Carolina, Columbia; William Muller, Temple University; Hari Pant, City University of New York, Lehman; Robert Patterson, North Carolina State University; Dan Pavuk, Bowling Green State University; Christopher Pennuto, Buffalo State University; Barry Perlmutter, Community College of Southern Nevada; Julie Phillips, De Anza College; Mai Phillips, University of Wisconsin, Milwaukee; John Pleasants, Iowa State University; Ron Pohala, Luzerne County Community College; Juan Carlos Ramirez-Darronsoro, Ball State University; Marco Restani, St. Cloud University; Brad Reynolds, University of Tennessee, Chattanooga; Howard Riessen, Buffalo State University; Shamili A. Sandiford, College of Dupage; Jodi Shann, University of Cincinnati; Loris Sherman, Somerset Community College; Brent Sipes, University of Hawaii, Manoa; Shobha Sriharan, Virginia State University; Edward Standora, Buffalo State University; Philip Stevens, Indiana University, Fort Wayne; John Suen, California State University, Fresno; Jamey Thompson, Hudson Valley Community College; Claire Todd, Pacific Lutheran University; William Trayler, California State University, Fresno; Carl N. Von Endem, Northern Illinois University; Zhi Wang, California State University, Fresno; Sharon Ward, Montgomery College; Jeff Watanabe, Ohlone College; Paul W. Webb, University of Michigan, Ann Arbor; James W.C. White, University of Colorado; Deb Williams, Johnson County Community College; Christopher J. Winslow, Bowling Green State University; Don Wujek, Oakland Community College, Auburn Hills; Lori Zaikowski, Dowling College; Carol Zellmer, California State University, Fresno; Joseph Zurovchak, Statue University of New York, Orange Community College.

Contents

Environment, Sustainability, and **Science**

It Takes a Community

1.1	Environment and Sustainability
	The Environment and You
	Defining Sustainable Actions
	Planet, People, and Profit: The Triple Bottom Line

Seeing Solutions DIRTT

.2	Ecosystems
	Ecosystem Function and Integrity
	Ecosystem Services

1.3 Principles of Ecosystem Function Conservation of Matter and Energy Ecosystems Are Open **Ecosystem Stability Ecosystem Change**

1.4	Acting Sustainably
	Managing Resources
	Understanding Boundaries
	Maintaining Balance and Integration
	Embracing Change

1.5	Uncertainty, Science, and Systems Thinking
	Uncertainty
	Reducing Uncertainty with Science
	Systems Thinking

Focus on Science Ways of Knowing

1.6	Sustainable Development, The Environment
	and You
	Sustainable Development Goals
	Challenges to Sustainable Development

Agents of Change Earth Rebirth

SYNTHESIS	AND VEV	CONCEDIO
	AINIIINET	C.C.INIC.EPI

7	

Environmental Ethics, Economics

and Policy

"		
		32

34

36

About the Authors	I
Preface	i
Acknowledgments	\
Contents	>

Dam-nation!

2

6 7 9

10 11

12

13

13

14

15

20 20

21 22

23

24 24 27

28

30

	Pre-Industrial Views	36
	The Enlightenment and Industrial Revolution	38
	Living in the Modern World: Conservation vs.	
	Preservation	39
2.2	Environmental Ethics	40
	Doing the Right Thing	40
	Who or What Matters?	41
	Ecofeminism and Environmental Justice	42
2.3	The Environment and the Marketplace	43
	Economic Systems	43
	Supply and Demand	44

2.1 Changing Views of Humans and Nature

	Economic Systems	43
	Supply and Demand	44
	Economic Value	45
	Market Complications	46
2.4	Valuing Ecosystems	47
	Economic Valuation of Ecosystem Services	47
	Ecological Valuation	48

	Ecological Valuation	48
ocı	us on Science Calculating Ecological Value	49
	Measuring the Wealth of Nations	50
.5	Environmental Policy: Deciding and Acting	51

		٠.
	The Policy Cycle	51
	Policy Decision Framework	52
2.6	U.S. Environmental Law and Policy	55
	Governmental Functions	55
	The Constitution and Environmental Policy	56
2.7	International Environmental Law and Policy	57
	Environmental Laws	57
	International Institutions	58

eeing Solutions	The Global Environmental
Facility and th	e Mesoamerican Biological
Corridor	

Agents of Change	Reducing Plastic Waste
at the Universit	y of Puerto Rico
SYNTHESIS AND KE	Y CONCEPTS

59

	The Physical Science of the	
	Environment	64
Sea	rching for Life Elsewhere	66
3.1	Chemistry of the Environment Atoms and Isotopes Molecules and Ionic Compounds The Water Molecule	68 68 69 70
3.2	The Organic Chemistry of Life Biological Chemicals	71 71
3.3	Energy and the Environment Energy Laws of Thermodynamics Forms of Energy Energy Units	74 74 75 76 79
3.4	Earth's Structure The Core, Mantle, and Crust Building and Moving Continents The Rock Cycle	80 80 81 83
3.5	Element Cycles in Earth's Ecosystems Biogeochemical Cycles Nutrients	85 85 86
3.6	Earth's Atmosphere Composition of Gases Layers of the Atmosphere Water in the Atmosphere	87 87 88 89
3.7	Earth's Energy Budget, Weather, and Climate Earth's Energy Budget Weather and Climate Wind Cells Ocean Currents	90 90 91 92 93
	The Seasons Depicting Earth's Climate	94 95
SYN	THESIS AND KEY CONCEPTS	96

	Organism and Population Ecology and Evolution	98
	etic Change and Population wth—Fact and Fiction	100
4.1	The Cell—The Fundamental Unit of Life Cell Structure Energy Transformations and the Cell	102 102 102
4.2	DNA Is the Key to the Diversity of Life Reproduction Mutations Phenotypes	104 104 104 105
4.3	The Growth of Populations Birth, Death, and Migration Exponential Population Growth: A Case Study Survivorship and Fertility	106 106 107 108
4.4	Limits on Population Growth Environmental Resistance Limits Growth Alternative Patterns of Population Growth	109 109 110
Focu	Is on Science The Myth of Lemming Suicide	111
	Other Limits on Population Growth Habitat and Ecological Niche	112 113
4.5	Evolution and Natural Selection Darwin's Finches Finch Studies Continue Natural Selection Works on Inherited Variations Evolution Is Genetic Change	114 114 115 116 117
4.6	The Evolution of Species Reproductive Isolating Mechanisms	118 118
4.7	The Hierarchy of Life Evolutionary Map	1 20 120
SYN	THESIS AND KEY CONCEPTS	122

	Growth	124
Hun	nan Population Growth—By the Numbers	120
5.1	The History of Human Population Growth Three Periods of Growth	128 129
Seei	ng Solutions Demography Is Not Destiny	130
	Demographic Transition Model A Tale of Two Countries	13 13
5.2	Global Variation in Human Population Growth Birth Rate Death Rate Age Structure Migration	134 134 136 138
5.3	Predicting Human Population Growth Population Growth Forecasts	14 14
Focu	Is on Science Forecasting Future Population Trends and Their Uncertainties	14
5.4	Managing Population Growth	142
	Family Planning	142
	Development and Population	143
	Aging Populations	143
	Two Approaches to Population Growth	144
Seei	ng Solutions Women Deliver	14:
5.5	Resource Use and Population Sustainability	140
	Sustainability vs. Carrying Capacity	146
	Human Resource Use	14
	Affluence and Technology	14
SYN	THESIS AND KEY CONCEPTS	150

Communities and Fcosystems

	Leosystems	132
The	Straight Poop on Dung Beetles	154
6.1	Competition for Shared Resources Interspecific Competition How Competitors Coexist Exploitation and Interference	156 156 157 159
6.2	Herbivory, Predation, and Parasitism Herbivores Predators Parasites	160 160 161 162
6.3	Mutualism and Commensalism Mutualisms and Commensalisms	164 164
6.4	The Flow of Energy in Ecological Communities Food Chains Energy and Biomass Pyramids Food Web and Species Diversity Keystone Species Is on Science The Little Things Do Matter	166 166 167 168 169
6.5	The Carbon Cycle and Ecosystem Productivity The Carbon Cycle Terrestrial Carbon Aquatic and Marine Carbon Human Impacts	172 172 173 174 175

6.5	The Carbon Cycle and Ecosystem Productivity	172
	The Carbon Cycle	172
	Terrestrial Carbon	173
	Aquatic and Marine Carbon	174
	Human Impacts	175
5.6	Disturbance and Community Change	176
5.6	Disturbance and Community Change Primary Succession	176 176
5.6		
5.6	Primary Succession	176
5.6	Primary Succession Secondary Succession	176 178

gents of Change	Vermicomposting at	
Michigan State	University	182

xiii

	The Geography of Life	186	Biodiversity Conservation 226
Ехр	oring Life's Diversity and Geography	188	Back from the Brink? 228
7.1 7.2 7.3 7.4 7.5	The Geography of Terrestrial Biomes Characteristics of Terrestrial Biomes Tropical Biomes Tropical Rain Forest Tropical Seasonal Forest Tropical Savanna Temperate Biomes Temperate Deciduous Forest Temperate Evergreen Forest Chaparral Temperate Grassland Polar Biomes Boreal Forest Tundra Deserts Defining Deserts Mountains and Coastlines	188 190 190 194 194 196 197 198 198 200 201 202 204 204 205 206 206 208	Back from the Brink? 8.1 What Is Biodiversity? Landscape Biodiversity Community Biodiversity Genetic Biodiversity 8.2 Why Biodiversity Matters Existence Value Ecosystem Functions and Services Ecosystem Stability Economic Value 8.3 Global Patterns of Biodiversity Mapping Species Richness Biodiversity Hotspots 8.4 Differences in Biodiversity Among Communities Habitat Diversity Species Interactions Disturbance Local Immigration and Extinction Rates 230 232 233 234 235 235 235 236 237 237 238 238 238 238 238 240 240 241 241 241 241 241 241 242 242 243 243 243 243
7.7 7.8	Mountains Is on Science Shifting Biomes Coastlines Aquatic Biomes Streams Lakes and Ponds Wetlands Marine Biomes Estuaries Oceans	208 210 211 212 212 214 216 218 218 220	Habitat Loss and Degradation Habitat Fragmentation Overharvesting Non-Native Invasive Species Pollution Altered Patterns of Disturbance Climate Change Strategies for Conserving Biodiversity Preserves and Protected Areas
SYN	THESIS AND KEY CONCEPTS	224	Focus on Science Conservation Corridors254Managing Populations of Individual Species2558.7 U.S. Policies for Conserving Biodiversity256National Parks and Wilderness Areas256Legislation to Protect Species258Conservation on Private Land2598.8 International Policies for Conserving Biodiversity260Endangered Species Trade and Harvest260Economic Incentives for Conservation261
			Seeing Solutions Keeping Things Connected 263 SYNTHESIS AND KEY CONCEPTS 264

A W	orld of Change	268
9.1	Long-Term Climate Patterns The Pleistocene—The Last 2 Million Years Holocene—The Last 10,000 Years	270 270 272
9.2	Measuring Global Temperature Measuring Recent Climate Change Causes of Natural Climate Variation	274 274 275
9.3	Causes of Global Warming The Greenhouse Effect Human Impacts Sources of Greenhouse Gas Emissions	278 278 279 282
9.4	Consequences of Global Warming Drier and Wetter Melting Glaciers and Ice Sheets Rising Sea Level Changing Populations and Ecosystems	283 283 283 285 286
9.5	Forecasting Global Warming Computer Simulation of Global Warming Forecasting Scenarios Forecast Consequences	287 287 287 289
9.6	Mitigating Global Warming Defining the Challenge Efficiency and Conservation Fossil Fuel Use Renewable Energy Nuclear Energy Biostorage	290 290 291 292 292 293 293
9.7 Foci	Adapting to Global Warming Committed Warming, Inevitable Change as on Science Adapting to Rising Seas	294 294 296
9.8	Mitigation and Adaptation Policies What Is the Cost? Policy Alternatives Agreeing on the Facts	297 297 297 298
	International Global Change Policy	299

Seeing Solutions A State of Change

to the Power Pad

SYNTHESIS AND KEY CONCEPTS

Agents of Change Human Power Brings Energy

Air
Qualit

266

301

302 304

	Quality	306
The k	Killer Smog	308
10.1	Air Quality and Air Pollution Gases and Particles Sources of Air Pollution	310 310 311
10.2	Pollution in the Stratosphere Aerosols and Climate Stratospheric Ozone Destruction	312 314 314 315
Focus	s on Science Laboratory Science Predicts Global Effects	316
10.3	Pollution in the Troposphere Acid Deposition Heavy Metals Smog Air Quality Index	317 317 318 320 321
10.4	Indoor Air Pollution Combustion By-Products	322 322
Seeir	ng Solutions Taking the Fire out of Cooking	324
	Building Materials Radon Pesticides Biological Contaminants	325 325 326 326
10.5	Air Pollution Policy and Law U.S. Air Pollution Policy International Air Pollution Policy Co-Benefits	327 327 328 329

Agents of Change Resisting a Waste Incinerator

in Baltimore 330

SYNTHESIS AND KEY CONCEPTS 332

	1 Water	334	Agriculture and the Ecology of Food	374
A Dis	appearing Resource	336	Farming for the Future: Contrasting	
11.1	Water World	338	Approaches	376
	The Hydrologic Cycle and Earth's Water Budget	338	12.1 Origins and History of Agriculture	378
	The Geography of the Hydrologic Cycle	340	Why Did Agriculture Begin?	378
	Watersheds	340	How Did Agriculture Begin?	379
	Providing Essential Ecosystem Services Where Is Earth's Fresh Water?	342 343	And Then What? Agricultural History	381
			12.2 Agroecosystems	382
11.2	Groundwater	344	Energetics of Agroecosystems	382
	Characteristics of Groundwater Human Uses and Impacts	344 345	Cycling of Nitrogen and Phosphorus Dynamic Homeostasis	383 386
11.3	Water Distribution	346	12.3 The Growth of Crop Plants	387
11.3	Too Much Water	346	Plant Growth and Reproduction	387
	Too Little Water	348	What Grows Where and Why?	388
	Subsidence and Intrusion	350	The Role of Other Organisms	389
11.4	Water Quality	352	12.4 Managing Soil Resources	390
	Water Pollution	352	Soil Origins and Structure	390
	Effects of Water Pollution on Ecosystems	354	Soil Fertility	391
Focus	s on Science Measuring an Ocean of Plastic	356	Soil Conservation	392
11 5	Water Management and Conservation	357	12.5 Water and Agriculture	393
11.5	Regulating the Flow	357	Water in Soil	393
Seein	g Solutions The Chesapeake Bay	007	Irrigation	394
Jeen	Foundation—50 Years of a Private-Public		Conserving Water in Agroecosystems	395
	Partnership	360	12.6 Livestock in Agroecosystems	396
	Managing and Conserving Water Used		Trophic Level Efficiency Environmental Impacts	396 397
	in Agriculture	361	·	
	Water Reuse	362	12.7 Managing Genetic Resources	399
	Desalination Getting the Price Right	363 363	Genetic Diversity and the Stability of Agroecosystems	399
			Genetically Modified Organisms	401
11.6	Wastewater Treatment	364	12.8 Managing Competitors and Pests	403
	Municipal Wastewater Treatment On-Site Wastewater Treatment	364 365	Chemical Pest Control	403
44.7			Biological Pest Control	405
11.7	Water and You	366 366	Agroecosystem Management of Pests	406
	Municipal Water Use Water Efficiency and Conservation	366	12.9 The Ecology of Eating	407
11.8	Water Conservation Policy and Law	368	The Food Footprint	407
11.0	Water Use in the United States	368	Ecological Eating	409
	Water Quality in the United States	369	Seeing Solutions Urban Farming	411
	International Water Law	369	12.10 Food for the Future	412
Agen	ts of Change Water Conservation		Sustainable Agriculture	412
	Competition	370	Feeding a Hungry World	413
SYNT	HESIS AND KEY CONCEPTS	372	Agents of Change STOGROW: A Student-Run	Y SER
			Campus Farm at St. Olaf College	416
			SYNTHESIS AND KEY CONCEPTS	418

xvi

1	Forest Resources
he 1	ragedy of Forest Loss in Haiti
3.1	The Values of Forests
	Ecosystem Services
	Wood Products

13.1	The Values of Forests	424
	Ecosystem Services	424
	Wood Products	425
	Non-Wood Forest Products	428
13.2	Forest Growth	429
	The Life History of a Tree	429
	The Life History of a Forest Stand	430
	The Life History of a Forested Landscape	431
Focu	s on Science CO ₂ and the Growth of Forest	
	Stands	432
13.3	Deforestation	433

13.3	Deforestation	433
	Historical Change	433
	Causes of Deforestation	434
	How Can Deforestation Be Halted?	436
Seeir	g Solutions Restoring Forests and	
	Community Well-Being in Haiti	437
13.4	Forest Degradation	438
	Forest Health in Peril	438
13.5	Defining Sustainable Forest Management	440
	Allocation	440
	Harvest	441
	Rationing	442
	Investment	442
	Criteria for Sustainable Forest Management	443

SYNTHESIS AND KEY CONCEPTS

Nonrenewable
Energy and
Electricity

420	Electricity	446
422	The History of an Oil Field	448
424	14.1 Energy Production	450
424	Energy Sources	450
425	The Economics of Energy Resources	452
428	14.2 Coal	453
429	Sources and Production	453
429	Coal and the Environment	455
430	14.3 Oil and Natural Gas	457
431	Sources	457
	Oil Production	459
432	Natural Gas Production	460
433	Oil, Natural Gas, and the Environment	461
433	Focus on Science Let It Snow	463
434		
	14.4 Nuclear Power	161
436	14.4 Nuclear Power Sources and Production	464 464
	Sources and Production	464
436	Sources and Production Nuclear Power and the Environment	464
436	Sources and Production Nuclear Power and the Environment 14.5 Electric Power—Generation, Distribution,	464 466
436 437 438 438	Sources and Production Nuclear Power and the Environment 14.5 Electric Power—Generation, Distribution, and Use	464 466 468
436 437 438 438 440	Sources and Production Nuclear Power and the Environment 14.5 Electric Power—Generation, Distribution, and Use Generating Electricity	464 466 468 468
436 437 438 438	Sources and Production Nuclear Power and the Environment 14.5 Electric Power—Generation, Distribution, and Use Generating Electricity Batteries and Fuel Cells	464 466 468 468 469
436 437 438 438 440 440	Sources and Production Nuclear Power and the Environment 14.5 Electric Power—Generation, Distribution, and Use Generating Electricity Batteries and Fuel Cells Transmission of Electricity	464 466 468 468 469 469
436 437 438 438 440 440 441	Sources and Production Nuclear Power and the Environment 14.5 Electric Power—Generation, Distribution, and Use Generating Electricity Batteries and Fuel Cells Transmission of Electricity Seeing Solutions A Smart Grid	464 466 468 468 469 469 470
436 437 438 438 440 440 441 442	Sources and Production Nuclear Power and the Environment 14.5 Electric Power—Generation, Distribution, and Use Generating Electricity Batteries and Fuel Cells Transmission of Electricity Seeing Solutions A Smart Grid Environmental Impacts	464 466 468 469 469 470 471

C1

11

Appendices Appendix A: Graph Appendix Appendix B: Metric System A4 Bibliography B1 Glossary G1

Credits

Index

19

The Environment and You

19.2 And You? Continue to Learn and Improve Your Understanding Reduce Your Shoe Size Give What You Can Think and Act for the Future

19.3 Be an Agent of Change Articulate a Vision Based on Your Values and Be Willing to Act on It Cultivate Diversity Focus on Outcomes Be Humble and Adaptable Be Confident, Committed, and Hopeful

Agents of Change	Closing the Loop with Plastics
SYNTHESIS AND KE	Y CONCEPTS

New Frontiers

Resurrecting Species	162
Counting Species	239
Revving Up Severe Weather?	283
The Highs and Lows of Sharing Water	351
Patenting Life	402
Spying on Forests	436
Cleaning Up Coal	456
A Future for Fusion?	465
Glowing Green	482
Running on Sunshine	503
Building a Truly Sustainable Landfill	559
Proving a Chemical Disrupts Endocrine Function	595

Where You Live

What resources does your national forest provide?

	What important environmental issues are facing you?	52
614	What do the numbers tell you?	137
	How does the U.S. ecological footprint compare with	
616	that of other nations?	146
616	How do different bird species coexist where you live?	158
618	What is your climate like?	192
619	What endangered species live near you?	249
620	Is your climate changing?	277
	Where is the coal plant located nearest to you?	318
622	What is your AQI?	321
	Where does your water come from?	352
622	How much water do you use?	367
624	What's growing in your neighborhood?	388
625	How can you reduce the food footprint of your campus?	409
625	What can you eat for \$4 a day?	414
626	What is your national forest worth?	428
	Where does your electricity come from?	470
626	What are your state's renewable portfolio standards?	506
627	How do you get around on campus?	539
628	How does your campus compare to an urban ecosystem?	547
628	Is there a landfill near you?	558
629	Are you living with hazardous waste?	560
630	What can you do to reduce your waste footprint?	566
030	Is there a superfund site located near you?	572
632	How healthy is your state's population?	582

You Decide

Should "big game" hunting be banned in African	
wildlife preserves?	4
Should Nigeria enforce a one-child policy to curtail its	
population growth?	144
Should trade in elephant ivory be banned within countries?	26
Should we attempt to slow global warming by using	
engineering techniques?	293
Should e-cigarettes be regulated like smoking tobacco?	323
When do water issues transcend homeowners' rights?	349
Should you have to consider the global consequences of	
your food-buying decisions?	399
Do you believe that converting natural forest to plantations	
could actually be a conservation strategy?	44
Would you protest the use of hydraulic fracturing in	
your community?	462
Would you support the installation of new hydropower	
projects on rivers in the southern Andes of Chile?	496
How would you respond if confronted with the	
gentrification paradox?	530
Should you bury or burn your garbage?	558
Zika vs. Pesticides: Would you support the use of pesticides	
to fight mosquitoes carrying the 7ika virus?	590

7