Engineering Economics

Financial Decision Making for Engineers

۲

Seventh Edition

Niall M. Fraser *Open Options Corporation*

Elizabeth M. Jewkes University of Waterloo

Mehrdad Pirnia University of Waterloo

Ketra Schmitt Concordia University

۲

Please contact https://support.pearson.com/getsupport/s/contactsupport with any queries on this content.

()

Pearson Canada Inc., 26 Prince Andrew Place, North York, Ontario M3C 2H4

Copyright © 2022, 2017 Pearson Canada Inc. All rights reserved.

Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms, and the appropriate contacts, please contact Pearson Canada's Rights and Permissions Department by visiting www.pearson.com/ca/en/contact-us/permissions.html.

Attributions of third-party content appear in the Credits section at the end of the text. Cover Image: fizkes/ Shutterstock

PEARSON and ALWAYS LEARNING are exclusive trademarks owned by Pearson Canada, Inc., or its affiliates in Canada and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third party trademarks, logos, or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson Canada products by the owners of such marks, or any relationship between the owner and Pearson Canada or its affiliates, authors, licensees, or distributors.

If you purchased this book outside the United States or Canada, you should be aware that it has been imported without the approval of the publisher or the author.

9780135728826

()

ScoutAutomatedPrintCode

Library and Archives Canada Cataloguing in Publication

- Title: Engineering economics : financial decision making for engineers / Niall M. Fraser (Open Options Corporation), Elizabeth M. Jewkes (University of Waterloo), Mehrdad Pirnia (University of Waterloo), Ketra Schmitt (Concordia University).
- Other titles: Engineering economics in Canada | Financial decision making for engineers

Names: Fraser, Niall M., author. | Jewkes, Elizabeth M., 1958– author. | Pirnia, Mehrdad, author. | Schmitt, Ketra, author.

Description: Seventh edition. | Includes index. | Revision of: Fraser, Niall M. (Niall Morris), 1952-.

Engineering economics in Canada.

Identifiers: Canadiana 20200285947 | ISBN 9780135728826 (softcover)

Subjects: LCSH: Engineering economy—Canada—Textbooks. | LCSH: Engineering economy—Canada— Decision making—Textbooks. | LCGFT: Textbooks.

Classification: LCC TA177.4 .F725 2020 | DDC 658.15-dc23

Brief Contents

۲

Preface		ix
Acknowledgments		xiv
1	Engineering Decision Making	1
2	Time Value of Money	18
3	Cash Flow Analysis	48
	Appendix 3A: Derivation of Discrete Compound Interest Factors	82
4	Comparison Methods Part 1	85
	Appendix 4A: The MARR and the Cost of Capital	121
5	Comparison Methods Part 2	124
6	Financial Accounting and Business Plans	161
	Appendix 6A: Cost Estimation	198
7	Replacement Decisions	205
8	Taxes	248
	Appendix 8A: Deriving the Capital Tax Factor	281
9	Inflation	283
	Appendix 9A: Computing a Price Index	313

10 Public Sector Decision Making	316
11 Project Management	356
12 Dealing with Uncertainty and Risk	389
Appendix 12A: Basic Concepts of Probability	428
13 Qualitative Considerations and Multiple Criteria	434
Appendix 13A: Calculating the Consistency Ratio for AHP	459
Appendix A Compound Interest Factors for Discrete Compounding, Discrete Cash Flows	465
Appendix B Answers to Selected Problems	488
Appendix C List of Symbols	492
Appendix D List of Formulas	494
Glossary Index	496 502
Credits	509

۲

Contents

Pre	face	ix
Acl	knowledgments	xiv
1	Engineering Decision Making	1
Eng	age!, Part 1A Naomi Arrives	2
1.1	Engineering Decision Making	2
1.2	What Is Engineering Economics?	3
1.3	Making Decisions	4
Eng	age!, Part 1B Naomi Settles In	5
1.4	Dealing with Abstractions	6
1.5	The Moral Question: Three True Stories	8
	Analysis of the Examples	10
Clo	se-Up 1.1 Professional Engineering Associations	10
Cas	e in Point 1.1 Loss of Life in Engineering Projects	11
1.6	Uncertainty and Sensitivity Analysis	11
1.7	How This Book Is Organized	12
Eng	age!, Part 1C A Taste of What Is to Come	13
Stu	dy Exercises	14
Min	-Case 1.1 R. v. Syncrude Canada Ltd.	16
2	Time Value of Money	18
Eng	age!, Part 2A A Steal for Steel	19
Intr	oduction	19
2.1	Interest and Interest Rates	19
Clo	se-Up 2.1 Financial Terminology	20
Clo	se-Up 2.2 Interest Periods	21
2.2	Compound and Simple Interest	22
	Compound Interest	22
	Simple Interest	23
2.3	Effective and Nominal Interest Rates	24
2.4	Continuous Compounding	26
2.5	Cash Flow Diagrams	27
Clo	se-Up 2.3 Beginning and Ending of Periods	28
2.6	Depreciation	29
Clo	se-Up 2.4 Willingness to Pay	29
	Reasons for Depreciation	30
	Value of an Asset	30
Clo	se-Up 2.5 Depreciation Methods	31
	Straight-Line Depreciation	31
	Declining-Balance Depreciation	33
Cas	e in Point 2.1 Guilty Figures	35
2.7	Equivalence	36
Sun	- nmary	37
Eng	age!, Part 2B You Just Have to Know When	37

Review Problems	
Study Exercises	
Mini-Case 2.1 Student Credit Cards	47
3 Cash Flow Analysis	48
Engage!, Part 3A Apples and Oranges	49
Introduction	49
3.1 Timing of Cash Flows and Modelling	49
3.2 Compound Interest Factors for Discrete Compounding	50
3.3 Compound Interest Factors for Single Disbursements or Receipts	51
3.4 Compound Interest Factors for Annuities	53
Close-Up 3.1 Capital Recovery Formula	55
Close-Up 3.2 Mortgages	57
Close-Up 3.3 Linear Interpolation	58
Close-Up 3.4 Bonds	59
3.5 Conversion Factor for Arithmetic Gradient Series	60
Case in Point 3.1 The RIM Park Scandal	62
3.6 Conversion Factor for Geometric Gradient Series	63
Close-Up 3.5 Estimating Growth Rates	66
3.7 Non-Standard Annuities and Gradients	66
3.8 Present Worth Computations When $N \rightarrow \infty$	68
Summary	69
Engage!, Part 3B No Free Lunch	70
Review Problems	70
Study Exercises	73
Mini-Gase 3.1 The Canadian Oil Sands	80
Appendix 3A: Derivation of Discrete	
Compound Interest Factors	82
4 Comparison Methods Part 1	85
Engage!. Part 4A What's Best?	86
Introduction	86
Close-Up 4.1 What Happens with All Those Tax Dollars?	88
4.1 Relations Among Projects	88
4.2 Minimum Acceptable Rate of Return (MARR)	91
Case in Point 4.1 Dirk's New Venture	91
4.3 Present Worth (PW) and Annual Worth (AW)	
Comparisons	92
Close-Up 4.2 Present Cost and Annual Cost	92
Present Worth Comparisons for Independent Projects	
Present Worth Comparisons for Mutually	
Exclusive Projects	
Annual Worth Comparisons	95

۲

۲

vi Contents

Close-Up 4.3 Car Payment Calculators 96		
Close-Up 4.4 Future Worth		
4.4	Comparison of Alternatives with Unequal Lives	97
4.5	Payback Period	101
	Advantages and Disadvantages of the	
	Payback Period Method	103
Clos	e-Up 4.5 Discounted Payback Period	103
Sum	mary	104
Enga	age!, Part 4B Doing It Right	105
Revi	ew Problems	106
Stud	ly Exercises	109
Mini	-Case 4.1 Rockwell International	119
Δn	pendix $4\mathbf{A}$. The MARR and the	
	st of Capital	121
CO	st of Capital	141
5	Comparison Methods Part 2	124
Enga	age!, Part 5A What's Best? Revisited	125
Intro	oduction	125
5.1	The Internal Rate of Return	125
5.2	Internal Rate of Return Comparisons for	
0.12	Independent Projects	128
5.3	Internal Rate of Return Comparisons for Mutually Exclusive Projects	130
	Systematic Analysis of Mutually Exclusive	
	Alternatives with the IRR Method	133
Case	e in Point 5.1 The Economics of Electric Vehicles	136
5.4	Multiple IRRs	136
Clos	e-Up 5.1 The Ethics of Profits	138
5.5	External Rate of Return Methods	138
	When to Use the ERR	140
5.6	Equivalence of Rate of Return and Present/Annual	1/1
57	Lovelized Cost	145
5.7	When Changes One Mathed even the Other?	140
0.0 Class	why choose one method over the other?	140
Feas	sibility of Investments	147
Sum	mary	148
Eng	agel Part 5B. The Invisible Hand	149
Revi	ew Problems	149
Stud	v Exercises	153
Mini	-Case 5.1 The Galore Creek Project	159
6	Financial Accounting and Business	
	Plans	161
Eng	agol Part 64 Digging up Dirt	162
Inter	adjustion	160
	Elemente of Einensiel Assessation	102
0.1	Elements of Financial Accounting	162
	Measuring the Performance of a Firm	163
.	The Balance Sheet	163
Clos	e-Up 6.1 Types of Business Ownerships	167
	The Income Statement	167

Close-Up 6.2 Earnings Before Interest and Income	
Tax (EBIT)	168
Estimated Values in Financial Statements	169
Financial Ratio Analysis	170
Close-Up 6.3 NAICS Codes	170
Financial Ratios	172
Close-Up 6.4 Extraordinary Items	173
6.2 Preparing a Business Plan	176
Case in Point 6.1 Dirk's Business Plan	177
Executive Summary	177
Company Description	177
Case in Point 6.2 Dirk's Business Plan: Company	
Description	178
Market Analysis/Future Outlook	178
Case in Point 6.3 Dirk's Business Plan: Market Analysis	179
Management and Organization	179
Funding Requirements	179
Case in Point 6.4 Dirk's Business Plan: Management and	
Funding Requirements	180
Sales and Marketing	180
Case in Point 6.5 Dirk's Business Plan: Sales and Marketing	180
Appendix	180
Close-Up 6.5 Outstanding Business Plan	181
Summary	181
Engage!, Part 6B Finding Treasure	181
Review Problems	182
Study Exercises	185
Mini-Case 6.1 BlackBerry	195
Appendix 6A: Cost Estimation	198
7	0.05
Keplacement Decisions	205

	1	
Enga	age!, Part 7A You Need the Facts	206
Intro	oduction	206
7.1	A Replacement Example	207
7.2	Reasons for Replacement or Retirement	210
7.3	Capital Costs and Other Costs	210
Clos	e-Up 7.1 Estimating Salvage Values and	
Scra	p Values	212
7.4	Defender and Challenger Are Identical	212
7.5	Challenger Is Different from Defender; Challenger Repeats Indefinitely	216
	Converting from Subcontracted to In-House Production	218
Case	e in Point 7.1 Nuclear Power in Ontario	218
7.6	The Irrelevance of Sunk Costs	219
7.7	When Capital or Operating Costs Are	
	Non-monotonic	221
7.8	Challenger Is Different from Defender; Challenger Does Not Repeat	223
Sum	mary	225
Enga	age!, Part 7B Decision Time	226

Contents vii

Review Problems		227	
Stud	Study Exercises		
Mini-	Mini-Case 7.1 How Green Is Your Data?		
8	Taxes	248	
Enga	age!, Part 8A It's in the Details	249	
Intro	oduction	249	
8.1	Personal Income Taxes and Corporate Income		
	Taxes Compared	250	
8.2	Corporate Tax Rates	250	
Clos	e-Up 8.1 Incentives	251	
Clos	e-Up 8.2 Small Company Tax Rules	252	
8.3	Before- and After-Tax MARR	252	
8.4	The Effect of Taxation on Cash Flows	253	
	The Effect of Taxes on First Cost	253	
	The Effect of Taxes on Savings	255	
	The Effect of Taxes on Salvage or Scrap Value	256	
8.5	Present Worth and Annual Worth Tax Calculations	256	
8.6	IRR Tax Calculations	258	
	Approximate After-Tax Rate of Return Calculations	258	
8.7	The Capital Cost Allowance System	259	
8.8	Undepreciated Capital Cost and the Half-Year Rule	263	
8.9	The Capital Tax Factor and Capital Salvage Factor	265	
8.10	Components of a Complete Tax Calculation	267	
Sum	mary	270	
Close-Up 8.3 Tax Rules in Other Countries		270	
Engage!, Part 8B The Work Report		271	
Review Problems		271	
Stud	y Exercises	275	
Mini-	Case 8.1 Tax Flight—Myth or Reality?	280	
Ap	pendix 8A: Deriving the Capital		
Tax	Factor	281	
9	Inflation	283	
Enga	age!. Part 9A The Inflated Expert	284	
Intro	oduction	284	
9.1	Measuring the Inflation Rate	284	
Clos	e-Up 9.1 Statistics Canada	285	
Clos	e-Up 9.2 Hyperinflation	287	
9.2	Economic Evaluation with Inflation	287	
	Converting Between Real and Current Dollars	287	
9.3	The Effect of Correctly Anticipated Inflation	289	
2.0	The Effect of Inflation on the MARR	289	
	The Effect of Inflation on the IRR	292	
9.4	Project Evaluation Methods with Inflation	293	
Clos	e-Up 9.3 Relative Price Changes	295	
Sum	mary	299	
Enga	age!, Part 9B Exploiting Volatility	299	
Revie	ew Problems	299	
Study Exercises		302	

Mini-Case 9.1 Economic Comparison of High-Pressure and Conventional Pipelines: Associated Engineering	312
Appendix 9A: Computing a Price Index	313
10 Public Sector Decision Making	316
Engage!, Part 10A New Challenges Down Under	317
Introduction	317
Case in Point 10.1 Private Ownership, Public Goods	319
10.1 Market Failure	320
Market Failure Defined	320
Remedies for Market Failure	321
10.2 Decision Making in the Public Sector	323
The Point of View Used for Project Evaluation	324
Close-Up 10.1 Public-Private Partnerships	324
Close-Up 10.2 Government Cost-Benefit Analysis Guides	325
10.3 Identifying and Measuring the Costs and Benefits of Public Projects	326
Identifying and Measuring the Costs of Public	
Projects	326
Identifying and Measuring the Benefits	
of Public Projects	326
10.4 Benefit–Cost Ratios	330
10.5 The MARR in the Public Sector	335
Summary	336
Engage!, Part 10B Look at It Broadly	337
Review Problems	337
Study Exercises	342
Mini-Case 10.1 Carbon Neutrality vs. Food Security in the North	355
11 Project Management	356
Engage!, Part 11A Filling a Vacuum	357
Introduction	357
11.1 Project Management Life Cycle	357
Initiation	358
Planning	359
Execution	360
Monitoring and Controlling	360
Closure	360
11.2 Work Breakdown Structure	361
11.3 Gantt Charts	363
Close-Up 11.1 Henry Gantt	363
11.4 Network Representation of the Schedule: CPM and PERT	364
Case in Point 11.1 Waterloo Light Rail Transit	367
Project Scheduling and the Critical Path Method	368
Project Crashing and Time–Cost Tradeoffs	371
Summary	376
Engage!, Part 11B A Crash Course	376
Review Problems	376
Study Exercises	380
Mini-Case 11.1 No Longer LEEDing	387

A01_FRAS8826_07_SE_FM.indd 7

01/10/20 12:01 PM

viii Contents

12 Dealing with Uncertainty and Risk 3	89
---	----

Engage!, Part 12A Trees from Another Planet	390
Introduction	390
12.1 Sensitivity Graphs	391
Case in Point 12.1 Oil Spills	394
12.2 Break-Even Analysis	395
Break-Even Analysis for a Single Project	395
Break-Even Analysis for Multiple Projects	397
12.3 Structuring Decisions with Decision Trees	401
Summary	406
Engage!, Part 12B Chances Are Good	407
Review Problems	407
Study Exercises	412
Mini-Case 12.1 China Steel Australia Limited	426
Appendix 12A: Basic Concepts of	
Probability	428
13 Qualitative Considerations and	
Multiple Criteria	434
Engage!, Part 13A Don't Box Them In	435
13.1 Qualitative Considerations	435
Close-Up 13.1 B Certification	437
13.2 Efficiency	437
•	

13.3 Decision Matrixes	439
13.4 The Analytic Hierarchy Process	442
13.5 The Consistency Ratio for AHP	447
Summary	447
Engage!, Part 13B: Moving On	448
Review Problems	448
Study Exercises	451
Mini-Case 13.1 Northwind Stoneware	458
Appendix 13A: Calculating the Consistency Ratio for AHP	459

Appendix A Compound Interest Factors for Discrete Compounding, Discrete	
Cash Flows	465
Appendix B Answers to Selected Problems	488
Appendix C List of Symbols	492
Appendix D List of Formulas	494
Glossary	496
Index	502
Credits	509

Preface

Ourses on engineering economics are found in engineering curricula in Canada and throughout the world. The subject matter generally deals with deciding among alternative engineering projects with respect to expected costs and benefits. This area of study is so fundamental to engineering knowledge that the Canadian Engineering Accreditation Board requires all accredited professional engineering programs provide in depth studies in engineering economics. Many engineers have perceived that a course in engineering economics can be as useful in their practice as some of their more technical courses.

There are several important stages involved in making a good decision. The viability stage identifies whether a solution to a problem is technically feasible. Appropriately, this is one of the many roles assigned to the engineer, who has the specialized training required to make such technical judgments. Another stage entails deciding which of several technically feasible alternatives is likely to be best. Deciding among alternatives often does not necessitate the technical competence needed to determine which alternatives are feasible, but it is equally essential in making the final choice. Engineers have found that choosing among competing alternatives can sometimes be more difficult than deciding what possibilities actually exist.

The role of engineers in Canadian society has changed over time. In the past, engineers tended to have a fairly narrow focus, concentrating on the technical aspects of a problem and on strictly computational aspects of engineering economics. As a result, many engineering economics texts focused mainly on the mathematics of the subject. Today, engineers are more likely to be involved in many stages of an engineering project, to be starting their own businesses, or to have varying levels of equity within an enterprise. Thus, they need to be acquainted with strategic methodology and policy issues.

This text is designed for teaching a course on engineering economics, and intended to match engineering practiced in Canada today. It recognizes the role of the engineer as a decision maker who has to make and defend sensible recommendations. Such choices must not only take into account a correct assessment of costs and benefits, they must also reflect an understanding of the environment in which the decisions are made.

This text has had six previous editions. We have striven in every edition to meet and/or exceed the changing needs of our users. This has necessitated

 \bigcirc

accommodating an increasingly global perspective in business. Updates have also included changes in the expectations for engineering training, such as project management and case-based learning, as required by the Canadian Engineering Accreditation Board, and responding to the fervent interest many engineering students now have in starting new innovative companies. Our adaptability and willingness to incorporate user input is probably one of the many reasons *Engineering Economics* has been the text of choice for Canadian educators for over twenty years.

As the world shifts to a greater reliance on digital media, it is appropriate that this text evolves as well. This seventh edition is the first fully digital version of *Engineering Economics*. Instructors and students will find that, although the medium has changed, the content is fully consistent with prior editions.

Canadian engineers have a unique set of circumstances that warrant a text with a specific Canadian focus. Canadian firms make decisions according to norms and standards that reflect Canadian views on social responsibility, environmental concerns, and cultural diversity. This perspective is reflected in the content and tone of much of the material in this text. Furthermore, Canadian tax regulations are complicated and directly affect engineering economic analysis. These regulations and their effect on decision making are covered in detail in Chapter 8.

This text also relates to students' everyday lives. In addition to examples and problems with an engineering focus, there are a number of scenarios involving decisions that many students might face, such as renting an apartment, getting a job, or buying a car. Other references in the text are adapted from familiar sources, such as Canadian newspapers and websites, and well-known Canadian companies.

Content and Organization

Since the mathematics of finance has not changed dramatically over the past number of years, there is a natural order to the presentation of course material. Nevertheless, a modern view of the role of the engineer flavours this entire resource and provides a balanced exposure to the subject.

Chapter 1 frames the problem of engineering decision making as one involving many issues. Manipulating the cash flows associated with an engineering project is an important process for which useful mathematical tools exist.

x Preface

These tools form the bulk of the remaining chapters. However, throughout the text, students are continually reminded that the eventual decision depends not only on the cash flows, but also relies on less easily quantifiable considerations related to business policy, social responsibility, and ethics.

Chapters 2 and 3 present tools for manipulating monetary values over time. Chapter 2 also explains the idea of depreciation. Chapters 4 and 5 show how students can use their knowledge of manipulating cash flows to make comparisons among alternative engineering projects.

Chapter 6 provides an understanding of the environment in which the decisions are made by focusing on two aspects of business. The first half of the chapter discusses financial accounting and the role of financial statements. The second half provides information about the uses of a business plan and how to write one.

Chapter 7 deals with the analysis of replacement decisions. Chapters 8 and 9 are concerned with taxes and inflation, which affect decisions based on cash flows. Chapter 10 provides an introduction to public sector decision making.

Chapter 11 presents the fundamentals of project management. It is intended to impart an appreciation of the phases that all engineering projects pass through, and to meet the requirements of the CEAB.

Most engineering projects involve estimating future cash flows as well as other project characteristics. Since estimates can be made in error and the future is unknown, it is important for engineers to take uncertainty and risk into account as completely as possible. Chapter 12 addresses several approaches for dealing with uncertainty and risk in economic evaluations.

After a 12-year hiatus, we are re-introducing our chapter reviewing formal decision-making methods for qualitative considerations and multiple criteria. This final chapter underscores the fact that engineering economics is not just about making the economically best decision, it is about integrating economics with other considerations, such as environmental impact, health and safety, and broader social concerns. Chapter 13 provides some mechanisms for formally assessing decisions where there are several incommensurable criteria to consider.

New to This Edition

In addition to updating material and correcting errors, we have made the following important changes in the seventh edition:

- We have added learning goals to each chapter. The learning goals are also mapped to the end-of-chapter questions. This helps educators to assess students on specific learning goals of interest.
- We have updated several of our Case in Point features. Each Case in Point addresses a circumstance appropriate

to the chapter material and raises difficult and sometimes unanswerable questions. They provide an opportunity for the individual student to challenge their own thinking. They also are ideal material for initiating lively class discussions intended to enhance the students' understanding of the core topics as well as broaden their perspectives generally.

- Similarly, we have updated several of our Mini-Case features. These end-of-chapter case studies are similar to the Case in Point features, but are deeper views of significant Canadian issues.
- A new section on calculation of levelized cost has been added to Chapter 5. This method has become very popular in recent years, especially in studying the feasibility of energy resource planning projects.
- Chapter 13, "Qualitative Considerations and Multiple Criteria," has been restored to the text. This topic has become more critical as a tool for engineers in recent years as engineers have taken on more responsibility for managing decisions in the public interest.
- We have expanded the use of colour to help communicate ideas.
- A selection of graphs in the text are now interactive, so that students can explore key relationships more fully by testing out changes in parameters.
- Minor changes to all other chapters have been made to update and improve the overall flow and presentation of the material.
- We have created a robust MyLab Engineering to accompany the text. For a full description of the MyLab, please see the Supplements section, below.
- Some educators have reported that students have trouble seeing and appreciating the relevance of the content covered in the Engineering Economics course. We have added a completely new set of experiential learning simulations that provide a novel way to integrate material across chapters and to help students engage more deeply with the course content. Each simulation engages the student in an activity that mimics the decision making that the student could undertake as an active engineer. The student interacts with their employer and fellow employees, or external parties, and is guided through a learning process that brings to life the academic material studied.

Special Features

We have created special features for this text in order to facilitate the learning of the material and an understanding of its applications:

• Engage! boxes near the beginning and end of each chapter recount the fictional experiences of a young

 (\bullet)

engineer at a Canadian company. These vignettes reflect and support the chapter material. The first box in each chapter usually portrays one of the characters trying to deal with a practical problem. The second box demonstrates how the character has solved the problem by applying material discussed in the chapter above. All these vignettes are linked to form a narrative that runs throughout the text. The main character is Naomi, a recent engineering graduate. In the first chapter, she starts her job in the engineering department at Canadian Widgets and is given a decision problem by her supervisor. Over the course of the text, Naomi learns about engineering economics on the job. There are several other supporting characters, who relate to one another in various ways, exposing students to practical, ethical, and social issues as well as mathematical problems.

Engage!, Part 1A Naomi Arrives

mi's first day on the job wasn't really her first day on the job. Ever since receiving the accep

(

- is earlier, she had been reading and rereading all her notes about the company. Somehow she had arrangee alk past the plant entrance going on errands that never would have taken her that route in the past. So today I the first time she had walked through that tidy brick entrance to the main offices of Canadian Widgets —sh want it in this time are not wanted introduction of the intervence of the number of the second and integrams - and had done it the same way in her imagization a hundred time be before. Clement Shang, the engineering manager who had interviewed Naoni for the job, was waiting for her at the reception desk. His warms smile and easy manner helped break the ice. He suggested that they could go through the plant on the way to her desk. Sha agreed enthusiastically. 'I hope yoo remember the engineering economic the plant on the way to her dess. Sine agreed entrusiastically, "I hope you remember the engineering economic: you learnt in schold." As side. Nami idd, but rather than sound like a know-it-all, she replied, "I think so, and I still have my old testbook I suppose you're liting me I'm going to use it." "Yes. That's where we'll stard you out, anyhow. It's a good way for you to learn how things work around here We've got some projects lined up for you already, and they involve some pretty big decisions for Canadian Widgets We'll keep you boys"
- Case in Point boxes present material relevant to the appropriate chapter. The issues raised can be difficult, curious, and possibly disquieting. There may be no obvious "right" answer or "correct" application of principles. Students are invited to challenge rigidity, and encouraged to exercise flexibility in their problem-solving approaches. The questions posed are intended to be thought provoking, with the hope of inspiring lively classroom discussions and perhaps reflective contemplation. Ideally, the boxes will enrich the students' understanding of the core topics and broaden their general perspectives.

one man died. Three people died building the Confederation Bridge. However, no matter how careful people are, most engineering projects are dangerous, and people will likely perish.

1) What is an acceptable death rate for an engi-

2) How can an engineer know whether to approve a project that is sure to cause deaths that would

a) How can an engineer decide how much money

to spend on improving safety in an engineering

Discussion Questions

project?

eering project?

CASE IN POINT 1.1 Loss of Life in Engineering Projects

Whenever an engineering project is undertaken, In building the CN Tower, for example, only there are always safety risks. Injuries and accidents are often unavoidable. Although sometimes large projects are completed without loss of life, there is always the chance that the decision of proceeding with an engineering project will result in one or more deaths.

Engineering project win result in one or more datas. For example, a rule-or-thumb for building sky-scrapers once was that one could expect to lose one life per floor of the building: This was borne out with the John Hancock Building in Chicago as late as 1970: it has 100 floors and 109 lives were lost building it. Similarly, for the construction of aque-duct tunnels to New York City in the 1930's, the rule was to expect one life lost per mile of tunnel In modern times, the safety record for engi

neering projects has improved considerably

• Close-Up boxes in the chapters present additional material about concepts that are important but not essential to the chapter.

CLOSE-UP 2.1 Financial Terminology

 $(\blacklozenge$

Annual Percentage Rate of Charge: An effective interest rate for the entire year that a borrower will pay to banks or financial institutions for a loan or on credit card debt. Disbursement: Money paid out or spent.

Fixed term investment: An investment mechanism in which the investor is paid his/her initial investment, plus a specific amount of interest after a fixed period. The investor cannot withdraw his or her money before the fixed period without facing penalties. GIC: A Guaranteed Investment Certificate is a specific fixed-term investment, usually issued by a Canadian bank or trust company Receipt: Money received or earned.

 At the end of each chapter, a Canadian Mini-Case, complete with discussion questions, relates interesting stories about how familiar Canadian companies have used engineering economic principles in practice.

MINI-CA	ASE 4.1
Rockwell Inte	rnational
1 a n d d o i h 1 2 3 3 4 4 1 1 2 2 3 3	He Light Vehicle Division of Rockwell International makes seat-slide assemblies for the tutomotive industry. It has two major classifications for investment opportunities: developing w products to be manufactured and sold, and developing new machines to improve pro- uction. The overall approach to assessing whether an investment should be made depends n the nature of the project. a evaluating a new product, it considers the following: . Marketing strategy: Does it fit the business plan for the company? Margins: The product should generate appropriate profits. Cab flaw: Positive cash flow is expected within a limited time period. Quality issues: For issues of quality, justification is based on cost avoidance rather than positive cash flow. Cost avoidance: Saving should pay back an investment within one year.
D	iscussion
A ti p is e a a a e t t	Il companies consider more than just the economics of a decision. Most take into account te other issues—often called <i>intangibles</i> —by using managerial judgment in an informal rocess. Others, like Rockwell International, explicitly consider a selection of intangible sues. The trend today is to carefully consider several intangible issues, either implicitly or splicitly. Human resource issues are particularly important since employee enthusiasm and commitment have significant repercussions. Environmental impacts of a decision can flect the image of the company. Health and safety is another intangible with significant flects. However, the economics of the recommendation is usually (but not always) the single not important factor in a decision. Also, economics is the factor that is usually the easiest o measure.
Q	uestions
1	 Why do you think Rockwell International has different issues to consider depending on

- whether an investment is a new product or a new machine? For each of the issues mentioned, describe how it would be measured. How would you
 determine if it is worth investing in a new product or new machine with respect to that
- 3. There are two kinds of errors that can be made. The first is that an investment is made when it should not be, and the second is that an investment is not made when it should be. Describe examples of both kinds of errors for both products and machines (four examples in tota) if the issues listed for Rockwell International are strictly followed. What are some sensible ways to prevent such errors?

Additional Pedagogical Features

- Each chapter begins with a list of learning goals. Learning goals state what a learner will know or be able to do successfully after the lesson is completed.
- Key terms are boldfaced where they are defined in the body of the text. For easy reference, all these terms are defined in a glossary at the end of the text.

xii Preface

- Additional material is presented in **chapter appendices** at the ends of Chapters 3, 4, 6, 8, 9, 12, and 13.
- Numerous worked-out **Examples** are given throughout the chapters. Although the decisions have often been simplified for clarity, most of them are based on real situations encountered in the authors' consulting experiences.
- Worked-out Review Problems near the end of each chapter provide more complex examples that integrate the chapter material.
- A concise prose **Summary** is given for each chapter.
- Each chapter has 30 to 50 **Study Exercises** of various levels of difficulty covering all of the material presented. Like the worked-out Examples, many of the problems have been adapted from real situations. The problems are also mapped to the learning goals particular to each chapter.
- A spreadsheet icon, like the one shown here, indicates where examples or problems involve spreadsheets, which are available in MyLab.
 - Tables of Interest Factors are provided in Appendix A.
 - Answers to Selected Problems are provided in Appendix B.
 - A **List of Symbols** used in the text is provided in Appendix C.
 - A List of Formulas is provided in Appendix D.

Course Designs

This text is ideal for a one-term course, but with supplemental material it can also be appropriately used for a two-term course. It is intended to meet the needs of students in all engineering programs, including, but not limited to, aeronautical, chemical, computer, electrical, industrial, mechanical, mining, and systems engineering. Certain programs emphasizing public projects may wish to supplement Chapter 10, "Public Sector Decision Making," with additional material.

A course based on this text can be taught in the first, second, third, or fourth year of an engineering program. The text is also suitable for college technology programs. No more than high school mathematics is required for a course based on this text. The probability theory required to understand and apply the tools of uncertainty and risk analysis is provided in Chapter 12. Prior knowledge of calculus or linear algebra is not necessary.

This text is also suitable for self-study by a practitioner or individuals interested in the economic aspects of decision making. It is easy to read and self-contained, with many clear examples. It can serve as a permanent resource for practising engineers or anyone involved in decision making.

Supplements MyLab Engineering

MyLab Engineering is a teaching and learning platform that empowers instructors to reach every student. By combining trusted author content with course-specific digital tools such as experiential simulations, and interactive assignments, MyLab Engineering personalizes the learning experience and improves results for each student.

A Powerful Homework and Test Manager. A powerful homework and test manager lets instructors create, import, and manage online homework assignments, quizzes, and tests that are automatically graded. Instructors can choose from a wide range of assignment options, including time limits, proctoring, and maximum number of attempts allowed. The new MyLab Engineering means less time grading and more time teaching.

Study Plan. The Study Plan gives personalized recommendations for each student, based on their ability to master the learning objectives in the course. This allows students to focus their study time by pinpointing the precise areas they need to review, and allows them to use customized practice and learning aids to help students stay on track.

MyLab Engineering also contains the following items for students and instructors:

For Students

۲

- *Spreadsheet Savvy* contains features which indicate elements of Excel related to the chapter material. It shows how Excel can be used to support the computations necessary to implement the concepts covered. From the basics of computing interest rates or the present worth of a series of cash flows to a full-blown analysis of major projects, spreadsheets help engineers compute results, evaluate alternatives, document outcomes, and make recommendations to colleagues and other stake holders.
- *Excel spreadsheets* for selected Spreadsheet Savvy discussions, examples, and problems
- New Ametros Learning Simulations: Engineering Economics. The Engineering Economics simulation series provides students with a risk-free experiential setting to practise and apply theory while developing the skills they need to be successful in the workplace. Students are required to practice their critical thinking, problem-solving and decision-making skills in a series of four AI powered simulations.

This new Engineering Economics set of simulations can be added to your course at no cost to you or your

students. Contact your Pearson sales rep if you are interested in implementing the Ametros simulation for your course.

- *Interactive Graphs* enhance the student learning experience. Students can manipulate the coordinates and parameters of these graphs and watch the impact of these changes in real time, thereby deepening their conceptual understanding of the material covered. These interactive graphs can be assigned by instructors through our MyLab Multimedia Library.
- Extended Cases
- Interest Tables:
 - Compound Interest Factors for Continuous Compounding, Discrete Cash Flows
 - Compound Interest Factors for Continuous Compounding, Continuous Compounding Periods
- Glossary Flashcards

 $(\mathbf{\Phi})$

For Instructors

()

Instructor's Solutions Manual. The Solutions Manual contains full solutions to all the problems in the text, teaching notes for the Mini-Cases, and Excel spreadsheets for selected examples and problems. This manual was created by the text authors.

Digital Test Bank. Pearson's digital test banks allow instructors to filter and select questions to create quizzes, tests, or homework. Instructors can revise questions or add their own, and choose print or online options. These questions are also available in Microsoft Word format.

PowerPoint © **Slides.** PowerPoint slides have been created for each chapter and can be used to help present material in the classroom.

Image Library. We have compiled all of the figures and tables from the text in electronic format.

Acknowledgments

۲

The authors wish to acknowledge the contributions of a number of individuals who assisted in the development of this text. First and foremost are the hundreds of engineering students at the University of Waterloo who have provided us with feedback on passages they found hard to understand, typographical errors, and examples they thought could be improved. There are too many individuals to name in person, but we are very thankful to each of them for their patience and diligence.

Other individuals who have contributed substantially to previous editions of the text include Irwin Bernhardt, May Tajima, Peter Chapman, David Fuller, J.B. Moore, Tim Nye, Ron Pelot, Victor Waese, Yuri Yevdokimov, and Peggy Fraser.

As always, the tolerance, support, and encouragement of family, friends, and colleagues is immensely appreciated. Your patience throughout this process has been invaluable. We owe you an ongoing debt of gratitude.

Finally, we want to express our appreciation to the team at Pearson Canada for their professionalism and support during the writing of this text. Content manager Kamilah Reid-Burrell expertly helped us get the project started. Our portfolio manager, Cathleen Sullivan, and our Senior marketing Executive, Kimberly Teska, were able and wise voices when they were needed. Our content developers, Kathryn O'Handley and Gurpreet Sohal, were capable and diligent support for the author team. If anything in this text is written clearly, it is probably because of the fine work of copy editor Julie vanTol. Sarah Gallagher, and the rest of the production team can similarly take credit for the fine resource you are using. We would also like to thank the team at Ametros, particularly Nora Delf, for their help in developing the new simulations for this edition.

To all of the above, thank you again for your help. To those we may have forgotten to thank, our appreciation is just as great, even if our memories fail us. Without doubt, some errors remain in this text despite the best efforts of everyone involved. Please help us improve the next edition by notifying us of any errors. Thank you.

Niall M. Fraser Elizabeth M. Jewkes Mehrdad Pirnia Ketra Schmitt

 $(\mathbf{\Phi})$