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Executive summary 

Overview of Revel 
Revel is an interactive learning environment intended to help students prepare for class by reading a 
little, then doing a little. Each title within Revel consists of instructional text interspersed with videos, 
interactives, and scored tasks. The Revel title of interest to this work — Introduction to Java Programming 
by Y. Daniel Liang — leverages principles from learning science to take learners on the journey from 
reading, to visualizing and interacting with prewritten Java programs, and finally to writing their own 
programs with immediate feedback. This journey helps learners experience the path from an abstract 
problem to writing a program in Java that solves that problem. 
 
Key features include programming tasks that provide students with opportunities to practice their 
coding skills in an authentic environment and receive immediate feedback; multimedia interactives 
featuring live coding examples; and animations and videos that help learners visualize step-by-step how 
to build a program. 
 

Intended learner outcomes 
The learner outcomes associated with this product, organized by learner outcome category, are: 
 
Learner access and experience 

● Learners have access to learning as intended in product strategy. 
● Learners have a positive learning experience. 

 
Timeliness and completion 

● Learners persist through coursework. 
● Learners are actively engaged in the learning experience. 

 
Standard of achievement 

● Learners are able to demonstrate skill acquisition. 
● Learners express confidence in programming basics. 
● Learners achieve competency in subject matter. 
● Learners pass the course. 

 
Learner progression 

● Learners feel prepared for next level programming or computer science courses. 
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Research aims and research questions 
The present study was designed to address three of the above outcomes: 
 
Timeliness and completion  

● Learners persist through coursework. 
 

Standard of achievement 
● Learners are able to demonstrate skill acquisition. 
● Learners achieve competency in subject matter. 

 
The study initially sought to address outcomes related to access and experience, as well as progression. 
However, a student survey administered at the end of the semester to collect this information did not 
yield a high enough response rate.  
 
The study design features a set of main research questions (MRQs) and a set of secondary research 
questions (SRQs): 
 
Timeliness and completion 

1. To what extent do students persist on challenging programming tasks in Revel? (MRQ 1) 
2. To what extent do students complete assigned readings in Revel? (SRQ) 
3. To what extent do students complete assigned programming tasks in Revel? (SRQ) 
4. To what extent do students complete assigned readings in Revel on time? (SRQ) 
5. To what extent do students complete assigned programming tasks in Revel on time? (SRQ) 

 
Standard of achievement 

1. How do students perform on Revel programming tasks? (SRQ) 
2. Are students’ scores on programming tasks in Revel related to their aggregate scores on 

programming tests? (MRQ 2) 
3. Are students’ aggregate gain scores on programming tasks (difference in maximum earned 

points and points earned on first attempts) in Revel related to their course grade? (MRQ 3) 
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Key findings 

Main research questions 
This study investigated data from 114 students enrolled in an introductory computer science course at 
the University of North Carolina at Greensboro (UNCG) from the Spring 2018 semester to the Fall 2019 
semester, who used Introduction to Java Programming by Y. Daniel Liang. We used a multiple regression 
model that controlled for measures of prior achievement, prior experience with computer science, time 
spent on Revel reading and programming tasks, on-time completion of Revel reading tasks, and 
demographic attributes. 
 

● 87% of the students in the analytic sample came from the 2019 semesters. 
● In analyses involving course grades, we used final course grades with the contribution of scores 

on Revel assignments removed. 
 

Given the results of this study, we can make the following statements about the efficacy of Revel for 
Introduction to Java Programming by Y. Daniel Liang: 
 
Timeliness and completion 

● 90% of students persisted on more than 85% of the tasks on which they initially had an incorrect 
first attempt. 
 

Standard of achievement 
● Higher first attempt scores on Revel programming tasks are associated with higher 

programming test scores. 
○ In particular, a 10-point increase in the student’s first-attempt Revel programming task 

score is associated with nearly a 5-point increase on their programming test scores. 
● In general, students who persisted and made higher gains on Revel programming tasks from 

their first attempt score to their highest score tended to earn higher final course grades. 
○ In particular, a 10-point increase in the student’s gain score on Revel programming tasks 

is associated with nearly a 4-point increase in final course grades.  
 

Secondary research questions 
Timeliness and completion 

● Most students complete most of the assigned tasks in Revel — both programming and reading 
— but programming tasks are more likely to be completed on time.  
 

Standard of achievement 
● The average percentage of points earned on the first attempt was just 32.9%, reflecting the 

degree of challenge these tasks pose to students. However, return attempts tend to pay off in 
improved scores, as the typical student (based on the median gain score) sees their performance 
improve by 73% over repeated attempts. 
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Recommendations 
The results of the study suggest that students with higher first attempt scores on Revel programming 
tasks tend to do better on programming tests. In addition, students who persist on initially incorrect 
programming tasks in Revel until earning high scores tend to receive higher final course grades. Given 
these results, we recommend that instructors using Revel for Introduction to Java Programming: 
 

● assign programming tasks and encourage students to complete them by making them account 
for a portion of students’ grades 

● encourage students to complete their assignments before they come to class by setting exercise 
due dates and not accepting late work 

● give students unlimited attempts to complete these exercises without deducting points for minor 
typos or omissions 

● let students know the exercises are challenging and that they should keep trying even if they 
aren’t successful on their first attempt 
 

Instructors should also encourage students to: 
● complete reading and programming tasks before class — this frees up class time for discussion 
● take their time on their first attempts — the more polished the first attempt, the fewer mistakes 

they will need to correct on subsequent attempts 
● keep trying even if they aren’t successful on their first attempt (acknowledge that the 

programming exercises are challenging) 
● contact their instructor for help if they don’t see improvements in their score despite multiple 

attempts 
 

Notably, the correlational design used in this study does not allow for claims of causality. However, the 
results are consistent with the notion that using Revel can help students achieve more in the course, 
particularly to the extent that they persist on challenging programming tasks.  
 

Next steps 
Based in part on the findings of this study —  particularly the findings on persistence and relationship 
between gain scores and course grades — Pearson aims to update the default setting for this title to 
allow for unlimited attempts at programming tasks, without penalties for repeated attempts.  
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Introduction 

Background 
Revel is an interactive learning environment intended to help students prepare for class by reading a 
little, then doing a little. Each title within Revel consists of instructional text interspersed with videos, 
interactives, and tasks. The Revel title of interest to this work — Introduction to Java Programming by Y. 
Daniel Liang — leverages principles from learning science to take learners on the journey from reading, 
to visualizing and interacting with prewritten Java programs, and finally to writing their own programs 
with immediate feedback. This journey helps learners experience the path from an abstract problem to 
writing a program in Java that solves that problem. 
  
Mark Armstrong, an instructor at the University of North Carolina at Greensboro (UNCG), has used the 
Liang title to teach an introductory computer science course since 2017. This study examines how the 
students in this course learn with Revel for Introduction to Java Programming, analyzing students’ 
learning behaviors in Revel and their associations with achievement in the course. Analysis is performed 
using data from courses taught between Spring 2018 and Fall 2019. In addition, we describe how Revel 
for Introduction to Java Programming is implemented in the course using a learner-centered, active 
learning approach. 

Description of Revel 
The design of Revel is aligned with a number of learning science principles, ensuring learners get more 
out of their experience. The Revel experience is centered around the principle of “read a little, do a 
little”. Doing a little as they go encourages students to come to class prepared (in this case, to complete 
assigned reading and programming tasks before class). When students are prepared for class, this 
allows the instructor to design the in-class experience to be more learner-centered and active as 
opposed to just passive lecturing to cover content.  
 
Formative assessment that includes timely, informative feedback is an important learning science 
principle that has been incorporated into Revel’s design. Specifically, formative assessment helps 
learners monitor progress toward learning goals, identify and correct their mistakes, and think deeply 
about the correct information (Hattie & Timperley, 2007).  
 
The main types of Revel formative assessment used in the UNCG course were the end-of-section 
programming tasks and the end-of-chapter programming tasks. First and foremost, the programming 
tasks in Revel provide opportunities for students to practice their coding skills. Real competence only 
comes with extensive practice (e.g. Ericsson, Krampe, & Tesch-Römer, 1993;  Kotovsky, Hayes, & Simon, 
1985). Practice not only strengthens the learner’s memory for the information (making sure it sticks in 
long-term memory), it also weaves it into the tapestry of related knowledge more deeply, and allows the 
learner to remember information with less and less effort. Being able to call something to mind 
automatically and without effort is key as the learner takes on increasingly complex tasks (Koedinger, 
Corbett, & Perfetti, 2012).  
 
 



 
 
 
 
 
 
 

7 

In Revel for Introduction to Java Programming, students have the opportunity to practice their skills  
in authentic programming tasks. Authentic activities are complex, ill-defined tasks with real world 
relevance, often completed collaboratively (Herrington, Oliver, & Reeves, 2003). These open-ended 
coding tasks require students to create and run their own programs, making them quite challenging. 
Research shows that active engagement in authentic disciplinary practices results in enhanced learning 
outcomes (Nathan & Sawyer, 2014).  
 
Learners have multiple attempts on these tasks, and receive immediate feedback on each attempt. 
Immediate feedback is strongly beneficial for learning (Azevedo & Bernard, 1995; Shute, 2008). In 
particular, when students are beginning to learn something new and potentially difficult for them, 
receiving immediate feedback can keep them on track and help them achieve more (Dihoff, Brosvic, 
Epstein, & Cook, 2004). Feedback on performance increases students’ learning and transfer, and 
supports their ability to monitor their own understanding (Butler & Winne, 1995). The learning from 
feedback on incorrect attempts shores up the learner’s understanding of the problem (Anderson, 
Reder, & Simon, 1999), and develops the motivation and confidence necessary to take on even more 
challenges in the future (Duckworth & Gross, 2014). Figure 1 depicts an example programming task 
from Revel. 
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Figure 1. Sample programming task from Revel for Introduction to Java Programming 
 
Furthermore, Revel for Introduction to Java Programming features a type of multimedia interactive with 
live code. These interactives are interspersed with the text, giving students more low-stakes 
opportunities to practice their coding skills. From these interactives, students receive feedback on the 
correctness of syntax compiling and execution, as well as tips on best coding practices for the problem. 
Another critical set of assets in this Revel title is the animations and videos. Learning science best 
practice recommends minimizing distracting content in instructional videos (Guo, Juho, & Rubin, 2014), 
and says that using videos is particularly helpful for visualizing step-by-step processes that otherwise 
wouldn’t be visible to us because of timescale, size, or non-physical nature. Revel for Introduction to Java 
Programming uses videos and animations to show how a code snippet runs at each line, giving students 
a glimpse into what is otherwise an invisible process. These videos and animations also act as worked 
examples, by breaking down a complex problem-solving activity (running code) into smaller, more 
digestible steps for the student to process. Finally, at key steps of visualizing the code, students are 
prompted with questions to check their understanding, providing even more opportunities for timely 
feedback.  
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Intended learner outcomes 
The learner outcomes associated with this product, organized by learner outcome category, are: 
 
Learner access and experience 

● Learners have access to learning as intended in product strategy. 
● Learners have a positive learning experience. 

 
Timeliness and completion 

● Learners persist through coursework. 
● Learners are actively engaged in the learning experience. 

 
Standard of achievement 

● Learners are able to demonstrate skill acquisition. 
● Learners express confidence in programming basics. 
● Learners achieve competency in subject matter. 
● Learners pass the course. 

 
Learner progression 

● Learners feel prepared for next level programming or computer science courses. 
 

The present study 
The present study was designed to address three of the above outcomes: 
 
Timeliness and completion  

● Learners persist through coursework. 
 

Standard of achievement:  
● Learners are able to demonstrate skill acquisition. 
● Learners achieve competency in subject matter. 

 
The study initially sought to address outcomes related to access and experience, as well as progression. 
However, the student survey administered at the end of the semester to collect this information did not 
yield a high enough response rate.  
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The study design features a set of main research questions (MRQs) and a set of secondary research 
questions (SRQs). The efficacy statements generated from this research are driven by the results for the 
MRQs. The SRQs are not being used to generate statements about the efficacy of Revel for Introduction 
to Java Programming, but they target aspects of the product which are of substantive interest in their 
own right. The MRQs focus on the extent to which: 
 

● students persist in their learning despite obstacles: in this study, whether they make repeated 
attempts on tasks initially scored incorrect 

● students achieve competency in programming: in this study, whether students’ initial learning 
efforts (evidenced by their first attempt performance on Revel programming tasks) are related to 
their overall competency in programming (evidenced by scores on instructor-created 
programming tests) 

● students acquire programming skills: in this study, whether improvements in programming skills 
over time (evidenced by gain scores on Revel programming tasks over repeated attempts) are 
related to their programming skill level at the end of the course (evidenced by their final course 
grades) 

 
With the main research questions indexed (MRQ 1, MRQ 2, MRQ 3) for reference throughout,  
the full set of research questions consists of the following: 
 
Timeliness and completion 

1. To what extent do students persist on challenging programming tasks in Revel? (MRQ 1) 
2. To what extent do students complete assigned readings in Revel? (SRQ) 
3. To what extent do students complete assigned programming tasks in Revel? (SRQ) 
4. To what extent do students complete assigned readings in Revel on time? (SRQ) 
5. To what extent do students complete assigned programming tasks in Revel on time? (SRQ) 

 
Standard of achievement 

1. How do students perform on Revel programming tasks? (SRQ) 
2. Are students’ scores on programming tasks in Revel related to their aggregate scores on 

programming tests? (MRQ 2) 
3. Are students’ aggregate gain scores on programming tasks (difference in maximum earned 

points and points earned on first attempts) in Revel related to their course grade? (MRQ 3) 
 

Further details about the computation of the measures and metrics are given later. Appendix B gives a 
complete summary of the research questions, inclusive of alignments to learner outcomes, the requisite 
measures, and metrics.   
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Implementation of Revel in the study 

The course of interest is a semester-length introductory course in computer science at the University of 
North Carolina at Greensboro (UNCG). The course is described as emphasizing “...problem solving, 
problem-solving techniques, and software design principles and techniques”. These goals for the course 
are taught via programming. 
  
Although any programming language could accomplish the course goals, the instructor’s reason for 
selecting Java programming was employability trends; job postings for computer scientists and 
programmers consistently listed Java as an essential requirement. Liang’s Introduction to Java 
Programming was in turn selected as the text for the course owing in part to its tight alignment to the 
curriculum. The title was first used in the Fall 2017 semester and has been used consistently ever since. 
The programming tasks in Revel (described above) contribute 10% to students’ overall course grades. 
  
The present study uses data from four semesters (Spring 2018, Fall 2018, Spring 2019, and Fall 2019). Of 
the four semesters, three were taught by one instructor (Spring 2018, Fall 2018, and Fall 2019) and one 
was taught by another (Spring 2019). The instructor for Spring 2019 largely modeled the course and 
Revel implementation to be like the other instructor, who typically teaches the course. For reasons 
described later, the majority of students (87%) who agreed to participate in the study were from the 
Spring and Fall semesters of 2019.  
 

Coverage of Revel content 
The Revel title used in the course includes 29 chapters. This being an introductory course, only the first 
nine chapters were used. Figure 2 shows the progression of the chapter assignments for the Fall 2019 
semester without loss of generality to the other three semesters of data in the present study. Chapters 
from Revel for Introduction to Java Programming are shown along the vertical axis, and the number of 
weeks since the release of the first assignment are shown along the horizontal axis. Looking within each 
chapter, the amount of time devoted to each topic (in weeks) is represented by the distance between 
the two endpoints. Moving from left to right along the horizontal axis within panels shows the sequence 
of topics and the duration of the semester those topics were covered.  
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Figure 2. Sequence and duration of coverage of Revel chapters for the Fall 2019 semester 
 
Example topics from the nine chapters used in the course include an overview of operating systems  
and programming languages in Chapter 1; mathematical functions and data types in Chapter 4; and 
two-dimensional arrays in Chapter 8. Notably, based on analysis of platform data for all courses using 
Revel for Introduction to Java Programming, the coverage of topics in the UNCG course is highly 
representative of the majority of courses that have historically used this title. Of all courses that  
used the title, 70% were found to align to the same content profile as the courses (that is, semesters)  
in the present study. We revisit this point in the Discussion, when characterizing the degree of 
generalizability of the results of the study. 

Integration of Revel into the course 
Across all four semesters, the course was structured with two in-person meetings per week,  
with the first being a lecture and the second being a structured programming laboratory.  
 
Figure 3 shows the typical schedule used by the instructors for teaching topics in the course. For any 
given topic, students are first introduced to a topic via the e-text and end-of-section programming tasks 
in Revel on the Friday prior to a formal lecture on that topic. The instructor’s lecture for that topic occurs 
early in the subsequent week (typically Monday or Tuesday). Following the lecture, students are 
assigned end-of-chapter programming tasks in Revel in preparation for the instructor-developed 
programming laboratory. The Revel projects are due the morning of the laboratory, but can be 
referenced (along with other Revel content) by students during the laboratory. The cycle starts  
again with a new topic on Friday.  
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Monday Tuesday Wednesday Thursday Friday 

    Revel reading content & 
end-of-section 
programming tasks 
released for Topic X 

 
 

● Revel reading 
content & end-
of-section 
programming 
tasks  for Topic X 
due before 
lecture 

 
● Formal lecture 

for Topic X 
content and 
end-of-section 
programming 
tasks 

 
● Revel 

end-of-chapter 
programming 
tasks released 
for Topic X 

 ● Revel end-of-
chapter 
programming 
tasks for Topic X 
due morning of 
programming 
lab 

 
● Students 

complete 
instructor- 
created 
programming 
lab assignment 

Revel reading content & 
end-of-section 
programming tasks 
released for Topic Y 

 
Figure 3. Weekly cadence for integrating Revel into the course as described by the instructor  
(the schedule shown here was for the Fall 2019 semester, but it generalizes to the other  
semesters considered in this work) 
 
It is worth noting that instruction in the course was learner-centered (Wright, 2011).  
Formal lecturing was minimized by: 
 

● devoting the first half of the lecture to discussing students’ questions about the assigned reading 
and end-of-section programming tasks in Revel 

● giving students opportunities to practice programming concepts in groups 
● performing demonstrations of programming concepts  

 
The programming labs were almost entirely student driven, save for unobtrusive, onsite monitoring  
by the instructor on a separate computer. The lab assignments were designed to model the strict 
deadlines software developers are held against in work settings. The strict deadlines are 
operationalized by deducting points for late assignments, with full credit awarded for on-time 
completion; 10 points deducted within the first five minutes after the deadline; and no points given  
at any point thereafter. During an onsite observation, three sections of students were observed to 
immediately get to work, absent any significant direction from the instructor; the class was filled  
with dialog amongst students as they worked diligently on the programming assignment. 
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The actual assignments students engaged in during the programming labs were typically completed in 
groups using paired programming, a common practice among professional software developers (Hanks, 
Fitzgerald, McCauley, Murphy, & Zander, 2011). Paired programming involved assigning two students to 
complete the programming lab together. While one student programmed during the first half of the lab, 
the other student observed and helped identify potential errors; students would simply switch positions 
for the second half of the lab.  

Implementation of Revel features in the course 
Table 1 summarizes features of implementation with respect to assessment and reading assignments. 
Stated generally, the implementation of Revel has been fairly consistent over the four semesters of use. 
It appears the only substantive difference in implementation across the four semesters was the number 
of end-of-chapter programming tasks assigned to students. In particular, the instructor teaching the 
course during the Spring 2019 semester assigned more of these kinds of assignments than the 
instructor who typically teaches the course.  
 
Table 1. Summary of Revel implementation in the course 
 

 Assessment assignments Reading assignments 

Semester 
Number of 

section tasks 
Number of 

chapter tasks 

Total 
programming 

tasks 

Number of 
chapters 

Number  
of chapter sections 

Spring 2018 128 22 150 9 97 

Fall 2018 137 23 160 9 98 

Spring 2019 148 42 190 9 112 

Fall 2019 130 24 154 9 100 

 
Another important aspect of implementation was the number of attempts students were allotted to 
complete Revel programming tasks. The default setting in Revel allows up to three attempts on 
programming tasks, with each return attempt resulting in a reduction in the number of points that 
could be earned. The default setting was changed by the instructors to allow for unlimited attempts — 
without penalties for return attempts — on all assigned programming tasks in Revel. The choice to allow 
unlimited attempts was made following the first semester of usage in Fall 2017. The reason for the 
switch is that when using the default settings, the instructors noticed that students were losing points 
owing to minor errors (such as typos or omitted semicolons) that had little to do with students’ 
knowledge, skills, and abilities.  
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Method 

The research questions in the present study were addressed via descriptive and correlational methods. 
The correlational methods involved the use of statistical models to connect students’ knowledge and 
skill, with Revel performance used as a proxy measure, to summative measures of achievement 
collected outside of Revel, whilst controlling for measures of prior achievement, prior programming 
experience, time spent on reading and programming tasks, on-time completion of reading tasks, and 
demographic attributes when possible. The results from these models should not be interpreted as 
reflecting causal relationships between variables.  

Participants 
The final sample for the present work consists of N = 114 students across four semesters  
(Spring 2018, Fall 2018, Spring 2019, and Fall 2019) and two instructors. Table 2 shows the  
distribution of students across the four courses.  
 
The majority of the sample comes from the Spring and Fall semesters of 2019 (n = 99). This is because 
of differences in the procedures for recruiting students in the 2019 semesters versus the 2018 
semesters. The 99 students from the Spring and Fall semesters in 2019 were recruited in person by 
either the instructor or a member of the Pearson research team. These students were asked to 
participate in all aspects of the study (that is, to share their grades in the course, complete surveys, and 
other activities described below). The remaining 15 students were recruited via an email sent by the 
instructor. For these students, participation was limited to sharing their course grade and allowing that 
data to be joined with their data from the Revel platform.  
 
Table 2. Total number of consenting students that completed the course by semester 
 

 Students recruited via email Students recruited in person  

 Spring 2018 Fall 2018 Spring 2019 Fall 2019 Total 

Consented n 7 8 38 72 125 

n Completed course 
(analytic sample) 7 8 33 66 114 

% of total analytic sample 6.1% 7.0% 28.9% 57.9% — 

Total enrollment 
(% completed of semester 

enrollment) 

103 
(6.8%) 

96 
(8.3%) 

93 
(35.5%) 

95 
(69.4%) 387 

 
Because of rounding, percentages may not sum to one. The total enrollment was estimated  
by counting the number of distinct student identifiers within each course in Revel. 
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Table 3 shows the distribution of students’ demographic attributes. Notably, demographic data were 
only available from the 99 students from the Spring and Fall semesters in 2019. Immediately following a 
question gauging their willingness to participate in the study, these students were taken to an intake 
survey, part of which requested demographic information. No attempt was made to collect the 
analogous information from students from prior semesters. 
 
Table 3. Demographic attributes of consenting student sample  
(n = 99, Spring 2019 and Fall 2019 semesters only) 

Attribute Response Count % 

Age 18–24 92 92.9% 

25–29 5 5.1% 

30–34 2 2.0% 

Gender Male 73 73.7% 

Female 25 25.3% 

Other/Non-binary 1 1.0% 

English first language Yes 79 79.8% 

No 20 20.2% 

Full time status Not full time 27 27.3% 

Full time 72 72.7% 

High school GPA Can’t remember 14 14.1% 

2.1–2.5 3 3.0% 

2.6–3.0 12 12.1% 

3.1–3.5 26 26.3% 

3.6–4.0 44 44.4% 

Major Computer Science 85 85.9% 

Other 14 14.1% 

 
Bolded values indicate the most frequently endorsed response. 
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Data collection 
Table 4 summarizes the data sources for the measures relevant to the study1.  
Additional details are provided on each measure following the table. 
 
Table 4. Summary of data sources for relevant measures in the study 

Source of data  Description of data source and collection of data/relevant measures 

Revel usage and 
performance 

Students generate data as they interact with Revel throughout the course. The smallest 
grain size for this data is a timestamped log of their interactions with the e-text and 
programming tasks. All other tables used in the current work can be viewed as some 
level of aggregation of those interactions with Revel. 
 
Relevant measures: persistence on programming tasks; first attempt performance on 
programming tasks; gain scores (score on first attempt to highest score) on programming 
tasks; time spent on programming tasks; time spent on reading tasks; completion of  
assigned e-text and programming tasks. 

Student  
intake survey 
(Spring and  
Fall semesters  
of 2019 only) 

The intake survey can be viewed as an extension of the consent form for students who 
chose to participate in the study. The intake survey asked students to self-report 
demographic attributes (summarized above); various indicators of prior achievement; 
perceptions about computer science; and expectations for the course. 
 
Relevant measures: high school grade point average; gender; guardian educational level; 
number of computer science courses inclusive of high school.. 

Institution The instructor provided information on students’ performance in the course. All 
components contributing to students’ grades in the course were provided, with two 
versions of their course grade. One version included the Revel portion and the other 
version excluded the Revel portion. 
 
Relevant measures: programming test scores; course grade with Revel excluded.  

 
The relevant Revel data and intake survey data were sent to the instructor. The instructor returned  
the data with all identifying information removed and a new identifier untethered to Pearson data 
structures. Using the same identifier, the instructor also provided all relevant information about 
students’ performance in the course. All subsequent processing of the data (such as applying  
filters or joining data sources) was completed by the lead researcher at Pearson. 

 
1 Notably, qualitative data were collected to contextualize and/or validate the sources of data, particularly the Revel data.  
These qualitative data sources included instructor surveys, instructor interviews, and student focus groups. We also  
attempted to collect survey data from students at the end of the Spring and Fall semesters in 2019. Unfortunately,  
the combined sample size was too low (N = 33 completed surveys) for inclusion in the study. 
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Measures 

Revel usage and performance data 
 
Persistence rate on Revel programming tasks (MRQ 1) 
A review of published research on the skills associated with self-management has defined persistence 
as “applying and maintaining appropriate effort to tasks in spite of obstacles or difficulty” (Yarbro & 
Ventura, 2018, p. 8). The authors argue that evidence of persistence can come from observing a learner 
who “continues working on a project despite setbacks” (p. 8). Similarly, DiCerbo (2016) defines 
persistence as “...continuing with a task despite obstacles, difficulty, and/or failure” (p. 778). 
  
Previous studies have measured persistence using students’ attempt behavior. For example, Thomas 
and Pashley (1982) used the number of attempts students made at solving unsolvable puzzles as an 
index of persistence. Reiher & Dembo (1984) looked at the number of times students attempted 
problems. More recently, Choi and Bogucki (in press) used a similar definition of persistence in their 
study modeling student outcomes in computer-based formative tasks, like the programming tasks in 
Revel.  
 
In this study, we operationalize persistence as follows. After an incorrect initial attempt on an assigned 
Revel programming task, students were deemed to have persisted on the task if they met either of the 
following criteria: 
 

● The student made at least two return attempts but did not produce a correct answer. 
● The student received partial or full credit on the task on any attempt after the first attempt. 

 
Each student’s persistence rate was computed as the percentage of incorrect first attempts on 
programming tasks for which students were observed to have met either of the above criteria.  
 
First attempt performance on Revel programming tasks (MRQ 2, SRQ) 
Students’ performance within Revel was computed as the percentage of aggregate points earned across 
all first attempts on assigned programming tasks. The numerator was the total earned points on first 
attempts for all attempted programming tasks; no points were given for programming tasks that were 
not attempted. The denominator was the total points possible across all assigned programming tasks 
within Revel. 
 
First attempt performance is of interest because it captures learning that has occurred by the time 
students reach the programming tasks. Before attempting the end-of-section programming tasks, 
students were expected to have read the assigned section in the text, which includes the interactive 
tools that demonstrate the conceptual features of a program (such as video tutorials). In addition, 
before attempting end-of-chapter programming tasks, students were intended to have: 
 

● completed the end-of-section programming tasks 
● attended a lecture focused on discussing students’ questions about the reading  

and section programming tasks 



 
 
 
 
 
 
 

19 

Thus, students were meant to come into the tasks with a fair bit of preparation. However, given  
that they are open-ended in nature (rather than multiple-choice questions) and students had  
multiple attempts to complete them, it is also important to look at how their scores improved  
across successive attempts. 
  
Gain scores on Revel programming tasks (MRQ 3) 
Students’ gain scores within Revel were computed as the ratio of realized gain (numerator) in total 
points earned on programming tasks over possible gain (denominator) in total points as follows: 
 

 

 

(1) 

 
where for a given student i on programming task j, 𝑈!"#is maximum earned points; 𝑈$%&'(is the points 
earned on the first attempt; and 𝑈)*''%+,-is the number of points possible. Summing over programming 
tasks in the numerator yields the total number of points a student actually gained from their first 
attempt to their highest score; summing over programming tasks in the denominator yields the total 
number of points a student could have gained over their first attempt performance. Notably, summing 
over programming tasks to compute 𝑈)*''%+,- yields the total number of points across all Revel 
programming tasks assigned in the course and, accordingly, will be constant for all students in the same 
course. 
 
For example, consider a hypothetical course in which an instructor assigns programming tasks totaling 
100 points. Further consider two students: Student A who earns 25 points on their first attempt and 
Student B who earns 70 points on their first attempt. Both students would achieve the same gain score 
of 0.33 if Student A ultimately earns 50 points [0.33 = (50 - 25) / (100 - 25) = 25 / 75] and Student B earns 
80 points [0.33 = (80 - 70) / (100 - 70) = 10 / 30]. 
 
The combination of both students’ initial attempt scores and their gain scores helps to form a more 
complete picture of their learning in Revel. 
 
Completion rates for assigned reading content and programming tasks (MRQ 2, MRQ 3, SRQ) 
Reading completion rate. A student was deemed to have completed assigned reading content if they 
were observed to have loaded and unloaded the content at least once for any length of time at any 
point throughout the course. Each student’s reading completion rate was simply the percentage of all 
assigned readings they loaded and unloaded.  
 
Programming task completion rate. Students had to attempt an assigned programming task at least once 
in order to be credited with completing it, regardless of the correctness of their attempt. Each student’s 
programming task completion rate was computed as the percentage of assigned programming tasks 
they attempted. 
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On-time reading completion rate. The definition for reading completion rates, above, applies to students’ 
on-time completion for assigned reading content, with the exception that students were required to 
have loaded and unloaded the content within the assignment release and due dates. 
 
On-time programming task completion rate. The definition for programming task completion rates, above, 
applies to students’ on-time completion for assigned programming tasks, with the exception that 
students were required to have attempted the programming task within the assignment release and 
due dates. 
 
Time spent on programming and reading tasks (MRQ 2, MRQ 3) 
The potential for educational technology to impact students’ outcomes depends on the amount of time 
they spend interacting with it, at least in part. Said differently, we cannot reasonably expect the effects 
targeted in our main research questions to be impacted by Revel if students spend too little time 
interacting with programming and reading tasks.  
 
In the form of a factor score (described shortly), we include the time students spent on programming  
and reading tasks as a covariate in our analyses for addressing MRQ 2 and MRQ 3, which allows us to 
increase our power to detect effects associated with the main research questions. In what follows, we 
provide an overview of the model from which the time factors were extracted. Computational details 
are available in Appendix D. 
 
The present study modeled students’ time spent on assigned reading and programming tasks 
(separately) using a normal model applied to students’ log transformed time spent on tasks. The 
foundations of this approach are tied to modeling task-level response times on educational 
assessments (van der Linden, 2006) but it has more recently been used in the context of educational 
technology platforms (e.g., Rushkin, Chuang, & Tingley, 2019). The model assumes a normal density for 
the log time spent on tasks (denoted by RT for consistency with prior research)2: 

 

 

 
 

(2) 

where 𝛽.is the time intensity parameter for task j; 𝜃%is the factor score3 for the student i; and 𝛼.is  
the discrimination parameter for task j. The model was estimated via Markov Chain Monte Carlo 
(MCMC) as implemented in JAGS (Plummer, 2013); further details and the corresponding JAGS  
code are available in Appendix D. 
 
 
 
  

 
2 Readers familiar with traditional item response theory (IRT) models may see parallels in the lognormal response  
model for response times, with the time factor (θ) being akin to the ability parameter; the time intensity (β) being  
akin to the difficulty or location parameter; and task discrimination parameter (ɑ) retaining the same label. 
 
3 The factor score produced by the model is most commonly characterized as a “speed” or “slowness” parameter.  
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The relevant parameter for this work is the time factor score, 𝜃. Relative to more heuristic  
methods (such as total time, average time, or median time), the primary advantage of the model  
in the above equation is the accumulation of all evidence available from the time students spend  
on assigned tasks, which serves as a more reliable measure of students’ tendencies. In addition,  
the model controls for the time intensity (𝛽.) associated with each task. 
  
The model takes the full set of log-transformed values of time spent as input to concurrently estimate 
the time intensity for each task and a factor score (𝜃) for each student. The data for programming and 
reading consisted of J = 864 and J = 112 tasks, respectively. For the purposes of modeling, the 
distribution of students’ time spent on programming and reading were rescaled to a T-score 
distribution (that is, M = 50, SD = 10). Importantly, owing to the scaling in the model, lower scores 
correspond to taking more time; higher scores correspond to taking less time.  
 
Prior research in the context of educational assessments suggests a non-linear relationship between 
the time students spend on assessment tasks and performance (e.g., Beck, 2005). To adequately control 
for this relationship, the models for addressing MRQ 2 and MRQ 3 will include a linear and quadratic 
effect for students’ time on assessment tasks. To our knowledge, no research has investigated the 
nature of the relationship between the time students spend reading and performance. Accordingly,  
the effect for students’ time spent reading is included as a means to separate it from their time on 
programming tasks.  
 
Student intake survey 
The full student intake survey administered at the beginning of each semester is available in Appendix 
C. For the purposes of the study, the student intake survey was a source of crucial control variables, 
particularly measures of prior achievement, prior experience with course content, and demographic 
information. The most important controls include high school grade point average (prior achievement), 
and guardian education level as a proxy for socioeconomic status. Although these measures are self-
reported, Kuncel, Credé, and Thomas (2005) found a correlation of 0.82 between actual and self-
reported SAT scores in their meta-analysis, which suggests that self-reported prior achievement scores 
are a reliable indicator of actual scores.  
 
Institution data 
The institution sent the grade information for all consenting students. In addition to final course grades, 
students’ attendance, performance in Revel, grades on laboratory assignments, and grades on written 
and programming tests were provided. Two versions of the final course grades were provided, one with 
the Revel portion included and one without. The version with the Revel portion removed was used for 
modeling in an effort to control endogeneity between students’ Revel performance and course grades. 
Figure 4 shows the distributions for the two outcome variables investigated in MRQ 2 and MRQ 3. 
 
 
 
  

 
4 Students typically encounter more than one end-of-section programming task at the end of sections of reading. To reduce the 
number of parameters, the time spent across end-of-section programming tasks within a section was aggregated up to the 
corresponding section. 



 
 
 
 
 
 
 

22 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Distributions of outcome variables for MRQ 2 and MRQ 3 
 
Students generally performed quite well on the instructor-created programming tests  
and in the course overall, with median scores of 86% and 84%, respectively.  

Analysis method 
The present research pursued descriptive and graphical approaches to address: 

● the main research question on persistence rates (MRQ 1) 
● all secondary research questions that could be addressed 

 
The interests of MRQ 2 and MRQ 3 were associations between performance in Revel and external 
measures of student achievement. To address MRQ 2 and MRQ 3, linear regression models were fitted 
to the data using R 3.6.3 (R Core Team, 2020)5. This approach makes it possible to investigate the 
relationships of interest while accounting for potentially confounding variables.  
 
Controlling for potential confounding variables 
An important advantage of regression models is the ability to include variables which are not of 
substantive interest but, if left unaccounted for, may be unknown, alternative explanations for the 
effects of interest. In the context of educational research — particularly research targeting student 
outcomes, such as achievement — potential confounds that are critical to control for include prior 
achievement and knowledge; direct or proxy indicators of socioeconomic factors; and demographic 
attributes (What Works Clearinghouse, 2016). 
 
Other variables should also be included as appropriate given features of the data (different semesters, 
for example). Table 5 summarizes each of the control variables used in the present study. 
 

 
5 Due to the non-normality in the outcomes, a sandwich estimator was applied to the estimates for the pooled regression models to 
investigate the impact of heteroskedasticity. Estimates of standard errors were very similar to those assuming homoskedasticity and 
patterns of statistical significance did not change. Accordingly, we report the results that assume homoskedasticity. 
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Table 5. Summary of variables used to control statistical confounds  
 

Confound type Variable Data source N % missing 

Prior achievement High school grade point average (GPA) Intake survey 99 13.2% 

Prior knowledge 
Count of computer science courses 
completed, including high school 

Intake survey 99 13.2% 

Socioeconomic 
factors 

Guardian education level Intake survey 99 13.2% 

Demographic Gender Intake survey 99 13.2% 

Study design Indicator for the four semesters N/A 114 0% 

 
N/A = not applicable. 
 
Treatment of missing data 
Missing data were handled via multiple imputation (MI) as implemented in the MICE R package.  
This approach allowed all 114 cases to be retained in the analytic sample. 
  
The use of MI rests on the assumption that the missing data are missing completely at random  
(MCAR) or missing at random (MAR). For the present study, no attempt was made to collect intake 
survey data from students who completed the course in 2018, and accordingly intake survey data were 
missing by design for these students. Planned missing data designs (such as the present study) yield 
missing data that are MAR or MCAR (Enders, 2010) and accordingly support the use of MI. 
  
In the context of the present study, MI was used to create 50 imputed datasets to address the two 
correlational research questions (MRQ 2 and MRQ 3), which included four variables from the intake 
survey to control for statistical confounds. The four variables from the intake survey included high 
school grade point average (HS GPA); the number of computer science courses completed inclusive  
of high school; guardian education level; and gender.  
 
For HS GPA, missing records were combined with students who reported that they could not remember 
their HS GPA, yielding a more general “Unknown” group6; this produced a complete variable and no 
imputation was necessary.  
 
  

 
6 This approach is akin to missing dummy imputation. 
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The remaining three variables from the intake survey — all of which are categorical — were imputed. 
These variables were imputed as single variables with multiple factor levels (as opposed to a set of 
dummy variables). This approach ensured that imputed datasets did not include impossible 
combinations (for example, a student who has never completed a computer science course cannot  
also have completed “2 or more” computer science courses). Using the other analysis variables, the 
MICE package imputes values using a regression model appropriate to the scale of each imputed 
variable (such as binary variables imputed via logistic regression, or polytomous logistic regression  
for variables with > 2 factors).  
 
Summary of the regression models for MRQ 2 and MRQ 3 
Figure 5 diagrams a generalized version of the regression models used to address the correlational 
research questions for this study. The boxes in the diagram collectively show the full set of variables 
used to address the research questions. The independent variables are shown as three boxes to the left 
of the diagram, which are in turn enclosed within a larger box representing the full set of independent 
variables in the model. The box on the right shows the student achievement outcomes. The only 
directed relationships (shown as straight single-headed arrows) into the student achievement  
outcomes come from the set of independent variables and the error term, ε.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Generalized diagram of regression models used to address correlational research questions 
 
Adjustment for multiple comparisons  
Since two achievement-related outcomes were investigated in the present study (programming test 
performance and course grades), the Bonferroni correction was applied to adjust the familywise  
Type I error rate; the resulting Type I error rate was adjusted to ɑ = .025.  
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Results 

[MRQ 1] Do students persist on challenging programming tasks in Revel until obtaining  
a correct solution? 
Figure 6 shows the distribution of students’ persistence rates (N = 114) on incorrect first attempts on 
programming tasks. The mass of the distribution is located near the upper boundary (which is 1), 
indicating that students in the sample were quite persistent on programming tasks. The median 
persistence rate was 0.96, indicating that 50% of the students in the sample were deemed to have 
persisted on 96% of the tasks where they initially made an incorrect first attempt. As an indication  
of the high degree of persistence, 90% of students persisted on 86.8% of the tasks on which they  
initially made an incorrect first attempt. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Distribution of persistence rates on incorrect first attempts  

Task completion 
In this section, we address the four secondary research questions related to students’ task completion.  

● Do students complete assigned readings in Revel? 
● Do students complete assigned programming tasks in Revel? 
● Do students complete assigned readings in Revel on time? 
● Do students complete assigned programming tasks in Revel on time? 
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Figure 7 shows the distributions of task completion rates (shown along the horizontal axis) with the task 
types (Revel programming task, Revel reading task) distinguished by panels. The distributions for task 
completion rates at any point in the course are represented in blue; the distributions for tasks 
completed within the assignment window are represented in green.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Distributions of programming and reading task completion proportions 
 
For assigned programming tasks (left panel), the distribution for “on-time completion” showed  
a very slight shift in the negative direction (median = .834) relative to the distribution for completion  
at any point in the course (median = .851). The distributions were otherwise very similar with  
dominant modes near the upper boundary of 1.  
 
The high completion rates for programming tasks likely reflect their contribution to students’ grades  
in the course. To complement this perspective, reading tasks in Revel do not directly contribute to 
students’ grades. The resulting on-time completion rates for reading tasks in Revel had an asymmetric 
bimodal distribution with the highest peak centered over 0.25–0.30; the shortest peak was 
approximately centered at 0.80.  
 
Taken together, these results suggest that most students do complete most assigned tasks in Revel — 
both programming and reading — but programming tasks are more likely to be completed on time. 
 

How do students perform on assigned Revel programming tasks? 
Figure 8 shows the distribution of students’ performance on Revel programming tasks. The average 
percentage of points earned on the first attempt was just 32.9% (median = 32.8%), reflecting the degree 
of challenge these tasks pose to students. One of the course instructors indicated that most errors on 
early attempts are simple typos or accidental omissions (such as brackets, parentheses, or end-of-line 
semicolons), which motivated them to allow unlimited attempts on programming tasks.  
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Figure 8. Distribution of first attempt  
performance on Revel programming tasks 
Values along the horizontal axis can be interpreted  
as the percentage of points earned using only the first 
attempt on Revel programming tasks.  
 
Based on the distribution of students’ persistence 
rates (see above), students are keen on improving 
upon incorrect first attempts (the median 
persistence rate was 0.96). As seen in Figure 9 — 
which shows the distribution of students’ gain scores 
— return attempts tend to pay off in improved 
scores, as evidenced by a dominant mode centered 
over 75 (that is, a 75% gain of possible points earned, 
relative to first attempts). 
 
 
 

 
Figure 9. Distribution of gain scores on Revel 
programming tasks 
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[MRQ 2] Are students’ scores in Revel related to aggregate performance on programming tests? 
As described previously, a linear regression model was developed to investigate the relationship 
between students’ knowledge and skills in programming, using their first attempt performance in  
Revel as a proxy, and their performance on summative programming tests created by the instructor. 
Covariates were included to control for prior achievement and knowledge of programming, gender,  
and instructor for the course. 
  
Table 6 shows the estimates (after pooling over the 50 imputations) of the regression coefficients along 
with standard errors, confidence intervals, and p-values for each independent variable in the model. 
Taken together, the full set of independent variables explained 37.4% of the variance in students’ 
programming test scores.  
 
To simplify interpretation, all continuous variables were grand mean centered. With the continuous 
variables grand mean centered, the expected programming test score is 79.87 for a student who fits the 
following profile: 
 

● was a student in the Fall semester of 2019 (all other semesters = 0) 
● is male (female = 0) 
● had a high school GPA between 2.0 and 3.0 
● has never taken a computer science course 
● has a guardian with a high school education/GED or who did not graduate high school 
● is exactly average on all Revel-based variables in the model 
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Table 6. Pooled regression results for addressing MRQ 2 — the relationship between  
students’ performance in Revel and their performance on summative programming tests 

 b SEb 2.5% 97.5% p-value 

Intercept & Revel-based effects 

Intercept 79.87 6.91 66.14 93.59 < .001 

First attempt performanceMRQ 0.49 0.17 0.15 0.82 .005 

Programming tasks — time spent (linear) -0.81 0.22 -1.25 -0.37 < .001 

Programming tasks — time spent (quadratic) -0.02 0.01 -0.05 0.01 .166 

Reading — time spent 0.18 0.21 -0.23 0.60 .384 

On-time reading completion 0.16 0.11 -0.06 0.38 .146 

Covariates: prior achievement, prior experience, demographic 

Female -7.25 4.04 -15.29 0.79 .077 

High school GPA: Unknown GPA 2.15 6.44 -10.62 14.93 .739 

High school GPA: 3.1–3.5 4.30 5.83 -7.28 15.87 .463 

High school GPA: 3.6–4.0 1.90 5.06 -8.14 11.95 .708 

One computer science course -0.16 4.31 -8.72 8.40 .970 

2+ computer science courses 7.57 4.90 -2.17 17.31 .126 

Spring 2018 -16.94 10.01 -36.84 2.95 .094 

Fall 2018 -8.09 8.34 -24.66 8.48 .335 

Spring 2019 -13.72 5.68 -25.00 -2.45 .018 

Guardian ed. level: Some college 1.31 4.31 -7.26 9.87 .762 

Guardian ed. level: Bachelor’s or higher 12.78 4.27 4.29 21.27 .004 

Variance explained Estimate 2.5% 97.5%   

Multiple R2 0.37 0.23 0.51   

Residual variance 223.50     

 
Owing to the use of multiple imputation, all cases were retained, yielding an analytic sample size of N = 114 
students. Bolded values indicate a statistically significant result. MRQ = effect associated with main research 
question. The significance results are identical after applying the adjustment for multiple comparisons. 
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Relationship between first attempt performance in Revel and programming test scores 
The relationship between students’ first attempt performance in Revel and performance on 
programming tests was of primary interest in the regression model. The results indicate that  
students with higher scores in Revel tend to achieve higher scores on programming tests. More 
specifically, students’ scores on programming tests tend to increase by 0.49 (±0.17) points for  
every one-point increase in performance on programming tasks in Revel, on average, holding 
everything else in the model constant. 
  
Consider the student who is completely average on all independent variables (described above).  
This student is expected to achieve a programming test score of 79.87. A one point increase in the 
student’s Revel performance is associated with an increase from 79.87 to (79.87 + 0.49) = 80.36 on  
their programming test performance. A 10-point increase in the student’s Revel performance is 
associated with an increase from 79.87 to [79.87 + (0.49 ✕ 10 = 4.9)] = 84.77 on their programming  
test performance. 

[MRQ 3] Is the aggregate gain from first to maximum attempts on Revel programming  
tasks positively related to students’ course grades? 
The statistical model used to address the impact of gain scores on students’ overall performance in  
the course (when Revel performance was removed) was very similar to the model used for MCQ 2  
(see above). The model included the same set of independent variables, with the exception that  
Revel-based gain scores became the focal independent variable instead of students’ first attempt 
performance on Revel programming tasks. 
 
All continuous variables were grand mean centered, rendering the estimated intercept of 78.92 to 
correspond to a student with the following profile: 
 

● was a student in the Fall semester of 2019 (all other semesters = 0) 
● is male (female = 0) 
● had a high school GPA between 2.0 and 3.0 
● has never taken a computer science course  
● has a guardian with a high school education/GED or who did not graduate high school  
● is exactly average on all Revel-based variables in the model 

 
Table 7 shows all estimated effects in the regression model, inclusive of standard errors, 95% 
confidence intervals, and p-value. Taken together, the full set of independent variables explained  
44.1% of the variance in students’ overall course grades (with the Revel component removed).  
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Table 7. Pooled regression results for addressing MRQ 3 — the relationship between  
Revel gain scores and students’ course grades with the Revel portion removed 
 

 b SEb 2.5% 97.5% p-value 

Intercept & Revel-based effects 

Intercept 78.92 5.18 68.63 89.21 < .001 

Gain scoreMRQ 0.37 0.07 0.23 0.51 < .001 

Programming tasks — time spent (linear) -0.07 0.16 -0.38 0.24 .662 

Programming tasks — time spent (quadratic) -0.01 0.01 -0.03 0.01 .448 

Reading — time spent 0.04 0.16 -0.28 0.36 .816 

On-time reading completion 0.06 0.09 -0.12 0.23 .514 

Covariates: prior achievement, prior experience, demographic 

Female -2.50 3.07 -8.60 3.60 .418 

High school GPA: Unknown GPA 2.00 4.91 -7.74 11.74 .684 

High school GPA: 3.1–3.5 2.74 4.40 -6.00 11.48 .535 

High school GPA: 3.6–4.0 -0.60 3.91 -8.37 7.17 .878 

One computer science course -0.28 3.30 -6.85 6.28 .932 

2+ computer science courses 3.67 3.74 -3.76 11.11 .329 

Spring 2018 -6.63 7.62 -21.77 8.51 .387 

Fall 2018 1.08 5.84 -10.51 12.68 .853 

Spring 2019 -4.88 4.50 -13.82 4.05 .281 

Guardian ed. level: Some college 1.09 3.27 -5.42 7.59 .740 

Guardian ed. level: Bachelor’s or higher 7.56 3.25 1.10 14.01 .022 

Variance explained Estimate 2.5% 97.5%   

Multiple R2 0.44 0.30 0.57   

Residual variance 131.66     

 
Owing to the use of multiple imputation, all cases were retained, yielding an analytic sample size of N = 114 
students. Bolded values indicate a statistically significant result. MRQ = effect associated with main research 
question. The significance results are identical after applying the adjustment for multiple comparisons. 
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Relationship between gain scores on Revel programming tasks and course grades (Revel removed) 
The relationship between students’ Revel-based gain scores and course grades was of primary interest 
in the regression model to address MRQ 3. The results indicate that students who demonstrate more 
improvement in their knowledge and skills in programming, as gauged by higher gain scores, tend to 
receive higher course grades. A one-point increase in gain scores was associated with a 0.37 (±0.07) 
increase in course grades, on average, holding everything else in the model constant. A 10-point 
increase in a student’s Revel performance is associated with an increase from 78.92 to [78.92 +  
(0.37 ✕ 10 = 3.7)] = 82.62 in course grades. 
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Efficacy statements 

Given the results of this study, we can make the following statements about the efficacy of Revel for 
Introduction to Java Programming by Y. Daniel Liang: 
 
Timeliness and completion 

• 90% of students persisted on more than 85% of the tasks on which they initially  
had an incorrect first attempt.  

 
Standard of achievement 

• Higher first attempt scores on Revel programming tasks are associated with  
higher programming test scores.  

o In particular, a 10-point increase in the student’s first-attempt Revel programming task  
score is associated with nearly a 5-point increase on their programming test scores.  

• In general, students who persisted and made higher gains on Revel programming tasks from 
their first attempt score to their highest score tended to earn higher final course grades.  

o In particular, a 10-point increase in the student’s gain score on Revel programming  
tasks is associated with nearly a 4-point increase in final course grades. 
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Discussion 

This study sought to show the relationship between students’ knowledge and skill in programming — 
using their performance on Revel programming tasks as a proxy — and achievement outcomes in an 
introductory computer science course. In pursuit of this aim, we combined data from a survey, course 
grades, and the Revel platform. Descriptive statistics were used to characterize students’ usage and 
performance. Regression models were used to address the relationships of interest, whilst controlling 
for various usage metrics for Revel, prior achievement, prior knowledge, and demographic attributes.  
 

[MRQ 1] Persistence on Revel programming tasks 
Persistence rates on Revel programming tasks were very high in the present study. With a range 
between 0 and 1, the mass of the distribution was close to 1, with a median persistence rate of 0.96. 
This means that 50% of the students persisted on 96% of the programming tasks in which their first 
attempts were incorrect. 
  
Perhaps indicative of students’ motivation, the observed persistence rates are incredibly high, bearing 
in mind that the Revel programming tasks are challenging (the average student earns only 32.9% of the 
possible points on their first attempt) and demand constructed responses (that is, students are not just 
selecting from a set of multiple choice options). 
 
Persistence on challenging tasks is an essential behavior to gain proficiency in programming, but 
persistence alone does not guarantee gains in proficiency. For any given programming task, an 
indication of proficiency is only evidenced when a student produces a correct response, particularly 
given the performance-based nature of the programming tasks in Revel. In this way, a student’s 
persistence sets the baseline for what they can gain in proficiency with return attempts.  
 

[MRQ 2] Revel performance and programming test scores 
First attempt performance on Revel programming tasks, which we use as a proxy measure for students’ 
knowledge and skills in programming, exhibited a significant positive relationship with performance on 
external, instructor-developed programming tests. That is, students who did well on Revel programming 
tasks on their first attempt also tended to do well on the programming tests written by the course 
instructors. This effect held after controlling for prior achievement (via high school GPA), prior 
programming experience (count of previous courses in computer science), gender, guardian  
education level, and variation across semesters.  
 
Notably, the evidence available from a linear regression model is correlational and does not support 
statements of causality. The mechanism for the existence of the relationship cannot be known based on 
the evidence in the present study. However, given that performance was defined by students’ first 
attempts on Revel programming tasks, possible explanations for this are that: 
 

● Revel provides exposure to programming in Java 
● Revel provides scaffolded opportunities to practice reading and writing programs  

in Java and receive immediate feedback 
● students already have strong Java programming ability 
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While prior achievement (high school GPA) and programming experience (count of previous  
computer science courses) were controlled for in the model, the measures used in the study were  
not intended to fully capture the domain of programming ability specifically. As a result, the impact  
of prior achievement and knowledge is unlikely to have been completely removed in the model in  
order for us to examine the net relationship between first attempt performance in Revel and 
programming test scores. However, it is challenging to learn how to program, absent exposure  
to and practice with programming.  
 

[MRQ 3] Revel gain scores and overall course grades 
Gain scores on Revel programming tasks were significantly and positively associated with higher grades 
in the course. This means that students who worked towards higher (lower) gain scores also tended to 
achieve higher (lower) course grades. This effect held after controlling for prior achievement (via high 
school GPA), prior experience (count of previous courses in computer science), guardian education 
level, gender, and variation across semesters. Moreover, the contribution of Revel to students’ grades  
in the course was removed, effectively removing the built-in weight of Revel.  
 
Again, results from a linear regression model should not be interpreted as evidence of causality. The 
relationship between gain scores and course grades, however, should not be dismissed. In order to 
demonstrate performance gains over initial attempts, a student must have return attempts (that is, 
persistence) and keep trying until eventually obtaining a correct solution. While some return attempts 
may involve simple corrections (such as omissions of semicolons to end a line of code), the degree of 
challenge in the programming tasks (the average student only earns 32.9% of the possible points) 
suggests some corrections are likely to require more effort from the student. Gains in performance for 
complex corrections require more than persistence; such corrections require some degree of mental 
struggle to make the transition from non-proficient to proficient. 
 

Limitations of the study 
The highest level of evidence for the present study is correlational in nature and does not support 
causal interpretations. Since claims of causality were not the goal of the present research, this is less of 
a limitation and more of a caution to the reader. Care was taken to estimate the effects of interest, 
partialling out potential confounds. However, the collection of potential confounds controlled for in the 
current study are themselves measured imperfectly; subject to missing data; and likely a non-
exhaustive accounting of potential confounds. 
 
The participation rate among students in the study was rather low at 32.3%. It is possible that students 
who participated are systematically different from students who chose not to participate. However, 
since the data for non-participating students was inaccessible, the extent of the similarity to the 
participating sample is unknown, both in terms of measured and unmeasured variables. 
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Generalizability of the findings 
The results obtained for the present study are based on data collected from a sample of students from 
one institution with content delivered by two instructors. It would be unreasonable to expect the non-
probability sample used in the present study to be representative of all users with respect to both 
measured attributes (for example, instructor-created exams, survey responses, response rate, 
participation rate) and unmeasured attributes (for example, regional culture, school culture). 
  
Having said that, it is worth noting that the courses used in the present work are quite representative  
in terms of content coverage and assignments from Liang’s Introduction to Java Programming.  
 
A series of analyses were conducted to gauge the degree of similarity between the sample of courses in 
the present study and other courses that have used the same Revel title (see Appendix E for further 
details). The courses in the present study covered the first nine chapters (out of the 29 in the title). This 
coverage of introductory content is highly consistent with 70% of all courses (N = 321)7 that have used 
the title. Among the 224 introductory-level courses, the courses in the present study were also quite 
typical in terms of the counts of reading (chapters and subchapters) and programming tasks (such as 
end-of-section programming tasks, end-of-chapter programming tasks, and total programming tasks). 
  
Of the 224 introductory-level courses that have used the title, 113 (50.4%) allowed unlimited attempts 
on programming tasks — as was the case for the sample of courses in this study. The remaining 111 
introductory-level courses (49.6%) restricted the number of attempts and imposed point deductions 
with each return attempt (the default setting in Revel at the time of the present study). 
 
Despite the consistency of the courses used in this work with other courses that have used the title, 
Revel was tightly woven into the course in a way that scaffolds students from reading to programming 
and emphasizes active, student-centered learning. Accordingly, different results may also be expected 
to the extent that characteristics of the course and the integration of Revel differ from the courses used 
in this work. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
7 The total number of courses is an estimate following the removal of courses that were likely used for the purposes of testing, 
demonstration, or sampling the title. In addition, we only consider courses with start and end dates in 2018 and 2019, to be 
 consistent with the sample of courses in the present work. 
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Conclusion 
Revel for Introduction to Java Programming is designed to scaffold learners’ journeys from reading about 
programming to writing their own programs in Java. Moreover, immediate feedback on their programs 
is designed to help learners persist, especially when coupled with the allowance for unlimited attempts. 
The courses used in the present study also motivated students’ usage of Revel by making it a part of 
students’ overall grade, and tightly integrated Revel for Introduction to Java Programming into the 
learner-centered structure of the course. Coupling these contextual features of the courses with the 
design features of Revel for Introduction to Java Programming, the results of the present study suggest: 
 

● students are likely to complete almost all assigned Revel tasks, although programming tasks are 
more likely to be completed on time than reading tasks 

● students with higher first attempt scores on Revel programming tasks tend to do better on 
programming tests 

● the programming tasks in Revel for Introduction to Java Programming are indeed challenging, and 
yet students tend to persist with them after an incorrect first attempt 

● students’ persistence tends to pay off in the form of higher scores on the programming tasks 
and, in turn, these gains are associated with higher course grades 
 

Notably, the correlational design used in this study does not allow for claims of causality.  
However, the results are consistent with the notion that using Revel can help students achieve  
more in the course, particularly to the extent that they persist on challenging programming tasks. 
 
Implications of findings for product implementation and further research 
Given the results of the present study, we recommend that instructors using Revel for  
Introduction to Java Programming: 
 

● assign programming tasks and encourage students to complete them by making them account 
for a portion of students’ grades 

● encourage students to complete their assignments before they come to class by setting exercise 
due dates and not accepting late work 

● give students unlimited attempts to complete these exercises without deducting points for minor 
typos or omissions 

● let students know the exercises are challenging and that they should keep trying even if they 
aren’t successful on their first attempt 
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Instructors should also encourage students to: 
 

● complete reading and programming tasks before class — this frees up class time for discussion 
● take their time on their first attempts — the more polished the first attempt, the fewer mistakes 

they will need to correct on subsequent attempts 
● keep trying even if they aren’t successful on their first attempt (acknowledge that the 

programming exercises are challenging) 
● contact their instructor for help if they don’t see improvements in their score despite multiple 

attempts 
 

Notably, the findings from this study informed an improvement to Revel for Introduction to Java 
Programming. Originally, Revel’s default settings were to allow students three attempts at each 
programming task, with the points awarded diminishing with each unsuccessful attempt. Influenced in 
part by the study’s findings about challenge and persistence, this will be changed to allow unlimited 
attempts without point deduction for incorrect attempts. 
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Appendix A. Data cleaning process  

Table A.1 traces the steps taken to arrive at the analytic sample. The exclusionary criteria included:  
● the removal of students who could not (owing to age) or did not consent to participation  

in the study 
● absence of data in at least one data source used in the study 

 
The approach used for handling missing data allows for missing covariates and outcome  
variables, and accordingly, no data were excluded because of missing values.  
 
Table A.1. Data filtering steps for obtaining the analytic sample 
 

Step N 

Sample if all students consented, as estimated by count of distinct student identifiers in Revel 387 

Sample after excluding students younger than 18 or who did not consent to participation  
in the study 

126 

Sample after excluding students who could not be found in all data sources containing a course 
and student identifier (i.e., Revel platform data, institutional data)8  

125 

Sample after excluding students who withdrew from the course 114 

 

 
8 The intake survey was not included as part of this initial join since students in 2018 were never given the  
opportunity to complete it. After obtaining the list of common students across all Revel platform data and  
institutional data, we then joined that list to the intake survey data, yielding 110 students.  
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Appendix B.  
Alignment table and summary of research questions 

Table B.1. Alignment between learner outcomes and main research questions 
 
Outcome 
category Outcome 

Research 
question Measures/metrics 

Type of  
efficacy statement 

Timeliness and 
completion 

Learners 
persist through 
coursework 

To what extent 
do students 
persist on 
challenging 
programming 
tasks in Revel? 

% of incorrect first attempts in which the 
student either (a) eventually obtained 
partial or maximum credit or (b) made at 
least two return attempts without 
producing the correct answer 
(aggregated over programming  
tasks for each student). 

Descriptive 

Standard of 
achievement 

Learners 
achieve 
competency in 
subject matter 

Are students’ 
scores on 
programming 
tasks in Revel 
related to their 
aggregate 
scores on 
programming 
tests? 

% of points earned on first attempts for 
Revel programming tasks. The 
denominator is the total points possible 
across all assigned Revel programming 
tasks. 
 
Summative programming test scores 
from the instructors’ records for the 
course. 

Correlational 

Standard of 
achievement  

Learners are 
able to 
demonstrate 
skill acquisition 
  

Are students’ 
aggregate gain 
scores on 
programming 
tasks (difference 
in maximum 
earned points 
and points 
earned on first 
attempts) in 
Revel related to 
their course 
grade? 

 
where for a given student i on 
programming task j, 𝑈!"#is maximum 
earned points; 𝑈$%&'(is the points earned 
on the first attempt; and 𝑈)*''%+,-is the 
number of points possible. 
 
Course grades from the instructors’ 
records, computed with the Revel 
contribution removed. 

Correlational 
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Table B.2. Alignment between learner outcomes and secondary research questions 
 
Outcome 
category Outcome Research question Measures/metrics Type of result 

Timeliness 
and 
completion 

Learners persist 
through coursework 

To what extent do 
students complete 
assigned readings in 
Revel? 

% of assigned 
reading completed 
by students 

Descriptive 

To what extent do 
students complete 
assigned programming 
tasks in Revel? 

% of assigned 
programming tasks 
completed by 
students 
  

Descriptive 

Learners persist 
through coursework 

To what extent do 
students complete 
assigned readings in 
Revel on time? 

% of readings 
completed on or 
before the assigned 
due date 
  

Descriptive 

To what extent do 
students complete 
assigned programming 
tasks in Revel on time? 

% of programming 
tasks completed on 
or before the 
assigned due date 

Descriptive 

Standard of 
achievement  

Learners are able to 
demonstrate skill 
acquisition 

How do students 
perform on Revel 
programming tasks? 

% of points earned 
on programming 
tasks using only the 
first attempt 

Descriptive 
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Appendix C. Intake survey 

Thank you for using REVEL! Our goal at Pearson is to help more learners learn more. We do 
that through our products, and you gave us that opportunity by using REVEL. Feedback 
from our customers is the engine that drives us forward in pursuit of that goal. With that, 
we at Pearson would greatly appreciate about 5 minutes of your time to tell us about 
yourself as a student. Any identifying information will be kept confidential and will be used 
exclusively for research purposes. 
 
1. Please tell us a little about yourself.  
 

First Name:  

Last Name:   

Email address (the one you 
used to register for REVEL):  

 

Age:  ☐ 18–24 
☐ 25–29 
☐ 30–34 
☐ 35–39 
☐ 40–44 
☐ 45–49 
☐ 50–54 
☐ 55–59 
☐ 60–64 
☐ 65+ 

Gender: ☐ Female  ☐ Male  ☐ Other/Non-binary 

Type of student: 
(Select all that apply) 

☐ First generation  
☐ Returning  
☐ Non-degree obtaining, personal interest 
☐ Non-degree obtaining, professional advancement  
☐ Transfer  
☐ High school  
☐ Full time  
☐ Part time  
☐ Merit-based scholarship 
☐ Need-based scholarship  
☐ Student loan 
☐ Work sponsored 
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Prior achievement: 
(Leave blank if not applicable) 

High school GPA: 
 
 
☐ 0–1.5  
☐ 1.6–2.0  
☐ 2.1–2.5 
☐ 2.6–3.0 
☐ 3.1–3.5 
☐ 3.6–4.0 
☐ I do not remember 
 
ACT (if applicable): ____________  
SAT (if applicable): ____________ 
 

Major(s): 
(Say ‘Undeclared’ if you haven’t 
chosen a major) 

 

Number of computer 
science courses, including 
high school (select one): 

☐ 0  
☐ 1  
☐ 2 
☐ 3+ 

Highest education level of 
primary guardian:  

☐ Did not finish high school  
☐ High school diploma or GED 
☐ Some college 
☐ Associate’s degree  
☐ Bachelor’s degree 
☐ Master’s degree  
☐ Doctoral or professional degree  
☐ Other, please specify:  

English is my first language ☐ Yes  ☐ No 

If not, what age did you 
start learning to read 
English? 
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2. Please rate how strongly you agree or disagree with the following statements. 
 

 Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neither 
disagree 

nor agree 

Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

I am comfortable with 
topics in computer 
science. 

1 2 3 4 5 6 7 

I am comfortable with 
using technology. 

1 2 3 4 5 6 7 

I expect to do well  
in this class. 

1 2 3 4 5 6 7 

I think what we are 
studying in this class  
is interesting. 

1 2 3 4 5 6 7 

I want to learn as much 
as possible in this class. 

1 2 3 4 5 6 7 

I can apply what we are 
learning in this class to 
real life. 

1 2 3 4 5 6 7 

It is important for  
me to do well 
compared to other 
students in this class. 

1 2 3 4 5 6 7 

 
Thank you for completing this survey! 
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Appendix D. Estimating scores on time factor  
via the lognormal model for response times 

Problems with aggregation methods of raw response times 
At the event level (a single window of time in which the student loads and unloads the 
task), the amount of time a student spends on any one task is not particularly reliable. 
There are a wide range of reasons that contribute to suboptimal reliability, some of which 
are student driven (for example, the student became distracted after opening a task) while 
others are the result of factors outside of the student’s control (for example, a weak 
internet connection).  
 
To reduce the impact of poor reliability for any one event, students’ response times (RTs) 
are frequently aggregated in some way. Common aggregations include total time or some 
first order point estimate (such as mean or median) for each student’s RT distribution.  
 
Unfortunately, total time on task accumulates unreliable measures (often leading to 
distributions that are highly skewed in the positive direction), which in turn biases average 
RT on programming tasks, typically in the positive direction. While the median is less 
subject to extreme values, it oversimplifies a student’s tendency of response behavior  
via a point estimate that ignores much of the evidence in available data.  
 

Fitting the lognormal model for response times 
The data for fitting the model included an N×J matrix of log response times. For the present 
study, students’ response times were first aggregated over all tasks (and attempts for 
assessment tasks) for each assigned assessment and reading before computing the log 
response times, yielding J = 86 assessments and J = 112 tasks, respectively. The following 
model was in turn applied separately for assessment and reading tasks.  
The model was fit to the data via Markov Chain Monte Carlo with Gibbs sampling as 
implemented in JAGS (Plummer, 2003). The likelihood for the data was specified as follows:  
 

 
𝑅𝑇)%. = 𝛼+𝛽. − 𝜃%-, 
𝑅𝑇%. = 𝑁(𝑅𝑇)%. , 𝜏) 

 
(D1) 

where𝛼, 𝛽., and 𝜃% retain the same meaning as described above. Owing to the large 
number of tasks with a small sample, the discrimination parameter was fixed to 𝛼 = 1for all 
J tasks. The additional parameter appearing in Equation D1 is dispersion, 𝜏, which is on a 
precision scale in JAGS rather than the more familiar variance (which in turn is the inverse 
of precision, 1/𝜏).  
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The following prior distributions (using the precision metric) were assumed for all unknown 
model parameters (𝛽., 𝜃%, 𝜏): 

 

𝛽!~ 𝑁(0, .01), for j in 1:J 
𝜃𝑖~ 𝑁(0, .01), for i in 1:I 

𝜏~ 𝐺(.01, .01) 
 

(D2) 

The model is not identified in that the probability distributions are the same via the 
transformations 𝛽. − 𝜖 and 𝜃% − 𝜖 (Rushkin, et al., 2019; van der Linden, 2006). The 
approach recommended in the methodological literature is to restrict the set of 𝜃%values to 
sum to zero (see van der Linden, 2006 for further details): 

 

 

(D3) 

which was achieved by first drawing values of 𝜃%from a prior distribution and then grand 
mean centering those values against the mean of the drawn values, (𝜃% − 𝜃6). 
 
Three chains were initialized with dispersed starting values and ran for 2,000 iterations 
with no thinning. Although all model parameters rapidly converged, the first 1,000 
iterations were discarded and treated as burn-in iterations, leaving 3,000 = (1,000 iterations 
×3 chains) draws from the posterior distribution. Posterior means were computed 
(separately for assessment and reading) for use as students’ time factor score. 
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JAGS code 
model {  
#- Data likelihood. 
for(i in 1:N){ 
 for(j in 1:J){ 
  RT_hat[i,j] <- alpha*(beta[j] - theta[i]) 
  RT[i,j] ~ dnorm(RT_hat[i,j], prec) 
 } # close loop over tasks. 
} #- close loop over students. 
 
 #- Fix alpha to 1 for all tasks. 
 #- Can be tested more easily with larger samples. 
 alpha <- 1 
  
 #- Priors for task time parameters. 
 for(j in 1:J){ 
  beta[j] ~ dnorm(0, .01) 
 } 
  
 #- Priors for person time parameter. 
 for(i in 1:N){ 
  theta1[i] ~ dnorm(0, .01) 
  theta[i] <- theta1[i] - mean(theta1[]) 
 } 
  
 #- Prior for precision. 
 prec ~ dgamma(.01, .01) 
 std_res <- sqrt(1/prec) 
}
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Appendix E. Analyses to assess generalizability  
of Revel-based metrics 

This section presents a series of results intended to characterize the degree of 
generalizability of the sample data to the total population of courses that have used Revel 
for Introduction to Java Programming by Y. Daniel Liang. More specifically, this section 
addresses the following questions: 
 

1. To what extent is the coverage of content from Revel for Introduction to Java 
Programming in the present study similar to that of other courses that have used the 
same title? 

2. In terms of Revel-based metrics of implementation, how similar are the courses in 
the present study to other courses that have used Revel for Introduction to Java 
Programming? 
 

Data preparation 
The data for the analysis of generalizability were obtained from Pearson databases in the 
Spring 2020 semester, following the completion of data collection for the present study. To 
be consistent with the courses in the current study, we only retained courses with start and 
end dates in 2018 and 2019. The following filters were additionally applied to arrive at set 
of course identifiers that were likely associated with real courses: 
  

● remove “courses” with titles including words indicative of use for testing purposes 
(such as partial or exact matches to “demo”, “trial”, “test”, or “sample”) 

● remove courses shorter than five weeks or longer than 36 weeks, based on the start 
and end dates provided by the instructor/user 

● remove courses with only one student (all student identifiers associated with the 
course had to be found across all tables containing a course and student identifier 
before obtaining a count of distinct students) 

● remove courses that could not be found across tables containing a course identifier 
 

The analytic sample consisted of 321 courses, inclusive of the four courses in  
the present work.  

Content coverage profiles 
The initial data used to identify profiles for content coverage consisted of one row for each 
course (N = 321) and one column for each chapter (J = 29) in Liang’s Introduction to Java 
Programming. Each value in the data indicated whether the chapter was assigned in the 
course (1 = assigned, 0 = not assigned). The analytical goal was to identify profiles of 
courses that were qualitatively distinct with respect to content coverage, at least as 
measured by the assignment of chapters from the title. Latent class models (LCA; Collins & 
Lanza, 2010) were pursued to this end, in addition to obtaining an estimate of the 
percentage of courses consistent with each profile. 
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One of the most challenging tasks in applications of LCA is deciding on the number of 
latent classes to extract. Before fitting any models, descriptive and graphical approaches 
were pursued to gain some insight into the number of latent classes that could be 
extracted. Figure E.1 shows the percentage of courses (shown along the horizontal axis) 
that used each of the 29 chapters (shown along the vertical axis) in Liang’s Introduction to 
Java Programming.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure E.1. Percentage of courses that assigned each chapter in Liang’s  
Introduction to Java Programming 
 
The results indicate that the first seven chapters and Chapter 9 were the most likely to  
be assigned by instructors. Chapter 8 and Chapters 10 through 12 were also assigned in 
nearly half of all courses. With some exceptions, chapters from the second half of the title 
are rather unlikely to be assigned. To reduce the potential for estimation issues, chapters 
used by fewer than 5% of all courses were excluded from subsequent analyses. 
 
Figure E.2 shows a heatmap of the bivariate proportions of chapter assignments across 
courses. Chapters from the title are shown along both axes with chapter numbers 
increasing moving up along the vertical axis and moving to the right along the horizontal 
axis. The gradient in the figure corresponds to the proportion of courses, with values 
becoming more gray as the proportion tends towards zero and more green as the 
proportion tends towards one.  
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The key interest for this figure is the patterns of joint assignment of chapters rather than 
the particular values of the proportions. More specifically, the patterns of greatest interest 
are distinct clusters of joint chapter assignment. These clusters are seen as bright spots in 
the heatmap, and provide rudimentary insight into the number of profiles that could be 
extracted with the use of LCA.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E.2. Bivariate proportions of chapter assignments across  
courses that have used Liang’s Introduction to Java Programming 
 
As evidenced by the bright spot in the bottom left portion of the heatmap, there is one 
dominant cluster reflecting assignment of the first seven to nine chapters. While an 
additional cluster was observed for Chapters 9–13, there is no way to determine if this 
cluster reflects a distinct set of courses from those that assign Chapters 1–7. Although 
relatively less bright, a third cluster was also observed for Chapters 18–27. Taken together, 
these results suggest up to three latent classes, with one dominant class reflecting usage of 
the first seven to nine chapters.  
 
The next step was to fit a series of latent class models, with one additional class extracted 
with each successive model. The models were fit to the data from 100 random starting 
values to reduce the risk of selecting a model at a local maximum (Collins & Lanza, 2010).  
In following this process, the only model to achieve convergence was a model with two 
latent classes.  
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The parametric bootstrapped likelihood ratio test (Nylund, Asparouhov, & Muthén, 2007) 
was in turn conducted with 100 replications to more rigorously test whether the second 
class was needed. The result was statistically significant (p < .001), suggesting that the two-
class model fits the data better than a one-class model. Given this, we report on the two-
class model, with each latent class representing a content profile. 
 
Figure E.3 shows the profile of content coverage for the two latent classes, with the 
conditional probability of a chapter being assigned shown along the vertical axis and 
chapter numbers shown along the horizontal axis. Each line represents one of the two 
content profiles, with Profile 1 (n = 224, 69.8%) represented by the blue line and Profile 2 (n 
= 97, 30.2%) represented by the red line.  
 
The largest distinction between the two content profiles was observed for Chapters 1–8, 
with the conditional probabilities being high for courses in Profile 1 and low for courses in 
Profile 2. The conditional probabilities for Chapters 9–27 fell precipitously for Profile 1 and 
generally became modestly higher for Profile 2. These results suggest that there is a 
dominant profile of introductory-level courses (Profile 1) and a second profile of more 
advanced courses (Profile 2).  

 
 
 
Figure E.3. Latent class 
profiles of assigned 
content for courses that 
have used Liang’s 
Introduction to Java 
Programming 
 
Profile 1 is consistent  
with using the title for 
introductory courses.  
Profile 2 is consistent with 
more advanced courses.  
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Implementation of assignments 
The results from the two-class model described above served as the starting point for 
addressing the degree of similarity between the sample of courses in the present study 
and other courses that have used the title. All of the courses in the present study were 
classified into Profile 1, and accordingly were in the majority of courses (n = 224, 69.8%) 
with respect to content coverage. To ensure comparability, the other 220 courses were 
leveraged to construct reference distributions for each aspect of implementation. The 
aspects of implementation considered included: 
 

● count of end-of-section programming tasks assigned 
● count of end-of-chapter programming tasks assigned 
● count of total programming tasks assigned (that is, end-of-section + end-of-chapter 

programming tasks) 
● count of chapters assigned 
● count of chapter sections assigned 
● length of the course in weeks 

 
The similarity of the courses in the present study to the reference courses was assessed by 
locating the median value on each of these features within the corresponding reference 
distribution. Figure E.4 shows these results, with implementation features represented by 
each panel; reference lines are shown for the courses in the present study (blue dashed 
line) and reference courses (red dashed line).  
 

 
 
Figure E.4. Distributions of 
implementation features  
for introductory courses  
 
The blue dashed reference line 
in each panel represents the 
median for the set of courses 
used in the present study. The 
red dashed reference line in 
each panel represents the 
median for the reference  
set of courses.  
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Generally stated, the courses in the present study appear very similar to other 
introductory-level courses that have used the title. For all assigned features (counts of 
programming tasks and readings from the e-text), the median values for the courses in the 
current study were situated near the center of the corresponding reference distributions. 
  
The largest difference was observed for the length of the course. The peak of the 
distribution for course length was located around 16 weeks, which is consistent with 
courses that are one semester long. The courses used in the present study were also one 
semester (16 weeks) in length. The aberration was the result of entering an end date in the 
Revel platform that was beyond the end date of the course. 
  
An additional aspect of the implementation of Revel is the number of allowable attempts at 
programming tasks. The default setting at the time of the present study allows for three 
attempts, with penalties assigned for return attempts. The courses in the present study 
allowed unlimited attempts on the programming tasks without penalties for return 
attempts. As seen in Figure E.5, introductory-level courses (n = 224) are evenly divided in 
the implementation of attempts, with 111 (49.6%) courses using the default setting and 113 
(50.4%) courses allowing unlimited attempts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure E.5. Distribution of attempt implementation among introductory-level  
courses that have used Liang’s Introduction to Java Programming 


