©

Pearson

Let's talk
Computing

Paul Clowrey and Sabiha
Munshi




From ICT to
Computing

e Changes in opinion
e Changes in policy

e Finding the balance



Rebooting the curriculum

e Teaching ICT in 2010, the Key Stage 3 and Key Stage 4 curriculum was built
around practical information technology and project management skills,
including:

spreadsheets
databases
professional business documents (office)
basic control systems
e Following an English government-led investigation in 2012:
ICT curriculum as it stood was scrapped
replaced with a computer science-based curriculum
formalised in 2013 as the new UK National Curriculum Computing
programmes of study

e Teaching computing in 2022, courses still being developed and teachers
embracing the new opportunities of a very flexible curriculum




Computing
Key Stages 1-4

e (oncepts
e [heory
e Digital skills




Computing across the curriculum

Key Stage 1 Key Stage 3
e An introduction to algorithms e Experimenting with programming languages
e How they become become programs e Understanding the infrastructure of computer
e The prevalence of computers across the network technology
world. e (reative projects using digital artifacts

e Using computers responsibly

Key Stage 2
e Being able to create simple programs Key Stage 4
e Use technology in a variety of ways e Develop effective computer science, digital
e Theimportance of internet safety. media, and information technology-based

products for a range of audiences.
e Understanding the many issues linked to our
ever-increasing online lives.



Why teach computing?

e 'Live skills
e (Opportunities
e Real world links



Why teach Computing?

e Computingis a'live’ subject
e The content changes as the world changes
e Linked directly to our homes, schools, places of work and social interaction

e An opportunity for classroom innovation for anyone interested in:
Embracing the new
Online learning platforms
How our society is changing, for better or worse
Linking with schools and learners around the world
Programming real industry standard computing languages



AU

Building a Computing
curriculum

|[deas for structure, topics and
opportunities



Building a Computing curriculum

e Primary and lower secondary is where the most benefit can be gained

e Computing lessons should be designed to fit your curriculum and your students.
o \With a weekly lesson, topics of 6-10 weeks are ideal

e Computing includes computer science and information technology skills

e ook for those innovation opportunities

e Keep pulling it back to students' own experiences and their hopes for the future.



Complementing school
objectives

Building skills for life



How does Computing complement school
objectives?

e Developing the ‘whole child’, Computing helps build:

Self confidence - seeing instant outcomes

Social skills - how the Internet makes us citizens of the Earth
Skills for further education

Skills for employment

Research, revision and project management

Problem solving and independent thinking

Acceptable behavior

11



Key Computing

terminology

What is the key terminology
in computing and how can
we explain these to
students?

12



What is the key computing terminology in computing
and how can we explain these to students?

Algorithm Simply a set of step-by-step instructions to carry out a function. This can be as verbal, pictorial or
simple everyday steps. Students are encouraged to create this as ‘unplugged’ (or non-device activities) to help
them write programs on Scratch or other.

Programming language

A computer programming language using specific terms and syntax that humans use to write computer
instructions. This has to be precise and a good way to think of this is ‘will the computer understand what I'm
inputting? In the 4-11 age bracket, it is mainly block programming such as Scratch, however 11-14 and beyond
may use programming language such as python.

Variable

A variable is something that can be changed and in computer programming. We use variables to store
information that can be used later in our program. For example, when designing a game, we may have a
variable that adds a point each time the player scores.

13



Debug

This is the process of looking for and removing errors from a computer program. An example may be where an extra
step has been added, which means that the program isn't functioning as it should. A recommendation for all students
is to ‘role play’ the program or work with another student who can help them spot the error.

Take away the fear of failure in students by ensuring that they understand that in ‘real life,” programmers are constantly
debugging and that sometimes even they need others to spot the errors to help them debug.

Iteration
This is sometimes called repetition and is the process of repeating a task over and over again.
- Count controlled iteration is when a loop is carried out for a set amount of times

- Condition controlled iteration is when the loop could be carried out indefinitely as
we do not know how many times it will be repeated

14



Selection

Selection adds the ability to allow more complex interaction from the user with the program. It allows for the user to
enter (input) and the program will then be able to decide how to respond (output), depending on the input given.

Selection also allows programs to become more complex in design, and taking it a step further, we can have nested
selection which is where there is ‘selection within selection. 0100101101010

IF it is sunny THEN 0101010001111
OUTPUT “wear a sun hat” 0000101010
ELSE

OUTPUT “put on your sunglasses”

Binary

A computer only understands machine code known as binary. A computer is built up of switches - they can be on
(represented by a 1) and off (represented by a 0). Every time you do anything on a computer, it is converted into
machine code for the computer to execute.

It is useful to explain to students that any command that is entered into the computer, has to be converted into binary
for the computer to be able to understand it. However, It is carried out so quickly, that we (as the user) do not notice
it. 15



Computational
thinking

What is computational thinking?

What are the core constructs in
computational thinking?

How can we develop computational
thinking with students?

16



What is computational thinking?

The curriculum places computational thinking and creativity at the heart of computing, but what
exactly is it?

Is it ‘thinking like a computer?’

No. A computer does not have a brain or thought processes so we cannot ‘think’ like a computer. It is
an inanimate object that only executes the functions (output) that we, as humans input into it.

Is it thinking about ‘problems’ in a way that allows a computer to solve them?

Computational thinking is something that people do, not computers. It includes logical thinking, the
ability to recognise patterns, think in algorithms, decompose a problem and abstract a problem.

Simply put, computational thinkers are like problem solvers!

17



decomposition

logical reasoning

pattern recognition

abstraction

algorithmic design

18



How do we develop computational thinking
skills in students?

Why is this so important?

Research by Richard Sheldrake (2018) showed that exposure to and building confidence in computational
and critical thinking skills can often be a predictor in students following careers in STEM fields.

Some ideas of how to make computational thinking fun are:

1. Abstraction Make treasure maps (or maze grids) in small groups and ask the students to mark where the

treasure is with an X. Swap the map with another group and ask them to plan the quickest/ fastest/ danger-
free route to the treasure!

1. Algorithm design Creating recipes is always such fun in school. Students will not even realise that they are
using algorithms in the sequence of step by step instructions and add a trick up your sleeve by missing out
steps so that students then need to debug. For example, making a banana smoothie but with the milk missing
from the algorithm. Or the teacher role playing making a sandwich but with the algorithm stating that you

need to spread butter, but without mentioning using a butter knife to spread it. This is where logical
thinking will develop too!

1. Decomposition Break up a complex problem into simpler parts before solving each part individually. A fun
way of understanding decomposition is breaking down a dance sequence, creating a game, or when creating a
character based on an algorithm with multiple steps.

19



when

4. Pattern recognition
Students could do this when using Scratch to draw shapes.
Can students work out which shape is drawn from each of these?

Challenge: Can students write the program for an octagon, decagon or heptagon? Can they explain using
their logical reasoning as to why and how they know?

clicked when clicked when clicked when clicked

pen down pen down pen down pen down

pen up pen up pen up pen up

20



Successful Computing
lessons

. What can successful computing
lessons involve?




What can successful computing lessons

iNnvolve?

a curriculum that includes all 3 areas of
computing
Digital Literacy
Computer Science
Information Technology

a mixture of both ‘screen’ and ‘unplugged’
activities

a learning environment that allows
computational thinking constructs to be
explored and reflected upon

Cross curricular and thematic learning links

Add complexity with adequate ‘challenge’
opportunities and address misconceptions

importance of ‘role play’ in computing

22



23



@

Pearson



