C Wave behavior

Торіс	C.3 Wave phenomena
Lesson	Water waves
Level	SL and HL
Duration	1 hour
Lesson context	The wave model has already been established, including transfer of energy, characteristics of waves,
	distinguishing features of transverse and longitudinal waves, and examples such as the EM spectrum and
	sound. This is the first lesson on wave phenomena. Although the textbook for this section provides a
	definition of Snell's law, this will be revisited more extensively in the next lesson. Likewise, a quantitative
	treatment of single-slit diffraction will follow in the later HL-only lessons.
Students should	that waves traveling in two and three dimensions can be described through the concepts of wavefronts
understand	and rays
	 wave behavior at boundaries in terms of reflection, refraction and transmission
	 wave diffraction around a body and through an aperture
	 wavefront-ray diagrams showing refraction and diffraction.
Potential misconceptions	The idea of light traveling at a constant speed might make it difficult for students to appreciate how refraction
	emerges from light taking the path of shortest time.
Plan for how students will	 Read pages 309–315, which include sketches of wavefronts and rays for incident, reflected, and
acquire knowledge,	transmitted waves.
understanding and skills	 Attempt Exercise questions 1–2 on page 313 and Exercise question 3 on page 315.
Activities	 Practice questions 7, 18, 19, and 20 on pages 330–335
Links to IB concepts	Diagrams can be simplified representations of reality (in this case wavefronts in place of many wavelets) and
(e.g. NOS, TOK)	yet still be useful in describing observed phenomena (like diffraction, reflection and refraction).
Key questions to check for	Linking Question: What evidence is there that particles possess wave-like properties such as wavelength?
understanding	(NOS)
Additional resources for	Students investigate how the speed of water waves varies with depth, perhaps using a ripple tank or by
support/extension	creating a disturbance in a plastic tray. Encourage video analysis.

Торіс	C.3 Wave phenomena
Lesson	Light, refractive index and Snell's law
Level	SL and HL
Duration	2 hours
Lesson context	Students will by now have a qualitative understanding of reflection and refraction from their study of water
	waves. In this lesson, the priority shifts to gaining a quantitative understanding.
Students should	Snell's law, critical angle and total internal reflection
understand	• Snell's law as given by $\frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2}$ where <i>n</i> is the refractive index and θ is the angle between the
	normal and the ray.
Potential misconceptions	Students might struggle to define the various presentations of Snell's law equation.
	They will need to consider refractive indices, speeds and angles.
	Some students might find it helpful to recall that 'sine' of an angle is a ratio of lengths.
Plan for how students will	• Read pages 316–318.
acquire knowledge,	 Attempt Exercise questions 4–8 on page 317 and Exercise question 9 on page 319.
understanding and skills	
Activities	 Lab skills PDF: Measuring the refractive index of a glass block
	Simulation: Bending light
	 Practice questions: 2, 4, 5, 6, and 14 on pages 327–332
Links to IB concepts	There are global applications resulting from total internal reflection: it can be found in reflective road safety
(e.g. NOS, TOK)	and prismatic optical devices, optical fiber communications, medicine and decorative lighting.
Key questions to check for	Guiding Question: What is the explanation for observations of wave behaviors at a boundary between
understanding	different media?
Additional resources for	It can be fun to commence this lesson by picking an 'invisible' test tube out of glycerol, perhaps even
support/extension	referencing Wells' The Invisible Man.
	Students investigate how the refractive index varies for different wavelengths of light and, accordingly, how
	dispersion occurs. They might also find it interesting to find out how the eye perceives brightness and color.

Торіс	C.3 Wave phenomena
Lesson	Single-slit diffraction and modulation
Level	HL ONLY
Duration	3 hours
Lesson context	This lesson is HL-only, but it is included at this stage because it can be advantageous for mixed or HL-only sets
	to appreciate diffraction from single slits before contemplating two or more slits.
	Modulation of double-slit patterns can be anticipated here ahead of their study.
Students should	• single-slit diffraction including intensity patterns as given by $\theta = \frac{\lambda}{2}$ where <i>b</i> is the slit width
understand	Single site and deformed and intensity patterns as given by $b = \frac{b}{b}$
	that the single-slit pattern modulates the double slit interference pattern.
Potential misconceptions	Just as students might absentmindedly use the terms 'wavefront' and 'ray' interchangeably, similar issues
	might emerge with 'diffraction' and' interference'.
Plan for how students will	• Read pages 319–321 and 323, which include the impact of slit width on the intensity of the pattern for
acquire knowledge,	monochromatic light and rectangular slits.
understanding and skills	Attempt Exercise questions 10 and 11 on page 321.
Activities	Lab skills PDF: Interference of light using a single hair
	 Practice questions 12 and 16 on pages 331 and 334
Links to IB concepts	The models for single-slit diffraction and double-slit interference can be combined to explain the pattern that
(e.g. NOS, TOK)	is actually observed.
Key questions to check for	Linking Question: What are the similarities and differences between single-slit diffraction and diffraction to
understanding	study atomic structures (E.1)?
Additional resources for	Students explore the factor by which the equation for the angle is adjusted for circular apertures (and the
support/extension	applications of this). Resolution and the Rayleigh criterion would be interesting areas for extended inquiry.

Торіс	C.3 Wave phenomena
Lesson	Double-slit interference
Level	SL and HL
Duration	2 hours
Lesson context	The background to this lesson will depend on whether students are SL (in which case they will be aware of the paths taken by rays) or HL (where they will have seen path differences in practice when deriving the single-slit diffraction equation. Students might benefit from some reflection on the nature of progressive waves before embarking on stationary waves.
Students should	 superposition of waves and wave pulses
understand	that double-source interference requires coherent sources
	• the condition for constructive interference as given by path difference $= n\lambda$
	• the condition for destructive interference as given by path difference $=\left(n+\frac{1}{2}\right)\lambda$ • Young's double-slit interference as given by $s = \frac{\lambda D}{d}$ where <i>s</i> is the separation of fringes, <i>d</i> is the separation of the slits, and <i>D</i> is the distance from the slits to the screen.
Potential misconceptions	Students might find it difficult to understand the ideas of a vector sum and of particle displacement.
	Remind students of the wave model.
Plan for how students will	Read pages 322–325, which include the interference and diffraction patterns produced at normal
acquire knowledge,	incidence.
understanding and skills	Attempt Exercises questions 12 and 13 on page 323.
Activities	Simulation: Ripple tank – wave interference
	 Practice questions 1, 3, 8, 9, 10, 11 and 15 on pages 326–332
Links to IB concepts	A simulation can be used to show how fringes are formed.
(eg. NOS, TOK)	This use of technology helps with the communication of ideas.

Key questions to check for	Guiding Question: What happens when two waves meet at a point in space?
understanding	Linking Question: What can an understanding of the results of Young's double-slit experiment reveal about
	the nature of light (C.2)?
Additional resources for	Teachers are likely to be familiar with the concept of thin film interference.
support/extension	Students research how iridescence is formed, perhaps even relating it to a particular species.

Торіс	C.3 Wave phenomena
Lesson	Multiple-slit and diffraction grating interference
Level	HL ONLY
Duration	3 hours
Lesson context	HL-only, and a natural follow-up from the double-slit concept that has just been concluded.
Students should	• interference patterns from multiple slits and diffraction gratings as given by $n\lambda = d\sin\theta$.
understand	
Potential misconceptions	Red light is diffracted through larger angles than violet light. However, it experiences less speed reduction
	during refraction. Students might struggle to separate the concepts of wavelength and speed.
Plan for how students will	Read pages 323–325, which include patterns for both white light and monochromatic wavelengths.
acquire knowledge,	
understanding and skills	
Activities	 Practice question 13 on page 322 and Practice question 17 on pages 334–335.
Links to IB concepts	Now that the topic is concluded, students should refer to the Wave behavior theme discussion on page 265.
(e.g. NOS, TOK)	
Key questions to check for	Guiding Question: How is the behavior of waves passing through apertures represented?
understanding	
Additional resources for	One application of diffraction gratings is in spectroscopy, which itself can be used to find out about the types
support/extension	of atoms from which light is emitted. There are many tests in physics in which the measured quantities tell us
	something about the material involved.