

Contents

Reception Unit 5: Number bonds within 5 Teacher Guide sample pages	Page 3
Days 1-5 (Online Flashcards and Maths Journal pages).	Page 6
Year 1 Unit 3: Addition within 10	
Teacher Guide sample pages	Page 12
Textbook sample pages	Page 18
Practice Book sample pages	Page 23
Year 2 Unit 2: Addition and subtraction (1)	
Teacher Guide sample pages	Page 28
Textbook sample pages	Page 32
Practice Book sample pages	Page 37
Year 3 Unit 2: Addition and subtraction (1)	
Teacher Guide sample pages	Page 42
Textbook sample pages	Page 46
Practice Book sample pages	Page 50
Year 4 Unit 3: Addition and subtraction	
Teacher Guide sample pages	Page 54
Textbook sample pages	Page 58
Practice Book sample pages	Page 62
Year 5 Unit 3: Addition and subtraction	
Teacher Guide sample pages	Page 66
Textbook sample pages	Page 70
Practice Book sample pages	Page 75
Year 6 Unit 2: Four operations (1)	
Teacher Guide sample pages	Page 80
Textbook sample pages	Page 84
Practice Book sample pages	Page 88

Teacher Guide sample pages Page 3
Year 1 Unit 3: Addition within 10
rage
Practice Book sample pagesPage 28
Textbook sample pages Page 32Teacher Guide sample pagesage 42Practice Book sample pagPage 50
Teacher Guide sample pagesPage 58
sample pagesPage 66
extbook sample pagesPage 75
Teacher Guide sample pagesPage 84
Practice Book sample pages Page 88

Reception

Unit 5

Number bonds within 5

Early Learning Goals
This unit supports the following ElGs:
\rightarrow Number ELG
Have a deep understanding of number to 10 , including the composition of each
Automatically reall numbers bonds up to 5 and some number bonds to 10 , including
double facts

WHERE THIS UNIT FITS
\rightarrow Unit 4: Change within 5
\rightarrow Unit $5:$ Number bonds within 5
\rightarrow Unit 6: Space
In this unit, children will progress from finding one more
and one less withi and one less within 5 and putting objects into two groups, to using a part-whole model to orepresent the groups and Link to Key Stage 1
Number - number and place value

- count to and arer ass asd place forvarue and and backwards,
beginning with 0 or 1 , or from any beginning with 0 or 1, or f foom any given number, count,
read and witt numbers to 100 in numerass; count in read and witit eumbers to 000
multiples of wwos, fives and ters
- identify and represesest num tens ters using objects and pictorial representations including the number line
and use the language of: equal to, more than, ess than and Ise the language
(fewer), most, least
nt
Number - addition and subtraction
- represent and use number bonds and related subtraction - epresentand use
facts within 20

This unit underpins the KS1 objectives for accurate counting
and forms the basis for an understanding and forms the basis for an understanding of addition and
subtraction facts. It also introduces the part-whole model as subtraction facts.t. It also introduces the part-who
a way of reperesenting number bonds pictorially

ASSESSING MASTERY

Children who have mastered this unit will be able to:

- use the language of wholes and parts
bonds to 5 to split a whole into two parts.

COMMON MISCONCEPTIONS	STRENGTHENING UNDERSTANDING	GOING DEEPER
When using the vocabulary whole, children may confuse the meaning with the word hole, as in 'a hole in the ground'.	Use every opportunity to talk about wholes and parts. Ask: What is the whole of the class? [All of us.] What are the parts of the class? [Each child or group of children, such as those who walk to school and those who do not or the 4 -year-olds and 5 -year-olds.]	Encourage children to explore the classroom environment to find sets of objects that can be split up into two distinct groups.
When counting the parts in a part-whole model to find the whole, children may include the whole in their count.	Encourage children to count out loud, using concrete manipulatives such as cubes or wooden blocks to represent the whole, and then move them into the separate parts. Ask: Where is the whole on this model? Where are the parts? How many parts make this whole?	Encourage children to explore how many different ways sets of up to 5 objects can be split into two parts, then three parts. Are there still 5 objects?

STRUCTURES AND REPRESENTATIONS

Part-whole model: This model helps children
visualise bonds to 5 , understanding that pairs
visualise bonds to 5 , understandings that pairs of
Multilink cubes: Multilink cubes provide a
physical representation of an amount, which
children can handle and move as they count to make a total of 5 . support can hatitindle and move as they count to support splitting a quantity into two parts.

RESOURCES
Mandatory: multilink cubes, hula hoops
Optional: ball, bowling pins, playdough, candles (in two colours), bean bags, pens, pencils, digit
cards
TEACHING TOOLS

KEY LANGUAGE

There is some key language that children will need to know as part of the learning in this unit.
\rightarrow one, two, three, four, five, $1,2,3,4,5$
\rightarrow group, parts, whole, part-whole mode
\rightarrow how many, count/counting, more than
\rightarrow same, different

Introducing the part-whole model

Learning focus

This week, children will be introduced to the vocabulary of whole and part, and practise the concept of breaking a whole into parts using
a part-whole model.

COMMON MISCONCEPTIONS

When using the vocabulary whole, children may confuse the
meaning with the word hole, as in 'a hole in the ground'. Ask:
What is the 'whole' of the class? [All of us.] What are the
parts of the class? (Each child or group of children, such as
parts of the class? 'Each child or group of children, such
those who walk to school and those who do not or the
4 -year-olds and 5 -year-olds.]
When counting the parts in a part-whole model to find the whole, children may include the whole in the count. Encourage children to count out loud, using concrete manipulatives such as cubes or wooden blocks to represent whole and parts. Ask
Where is the whole on this model? Where are the parts? How many parts
whole as well?

Small steps
\Rightarrow Previous step: One less
\rightarrow This step: Introducing the part-whole model \rightarrow Next step: Spatial awareness

KEY LANGUAGE

In lesson: one, two, three, four, five, $1,2,3,4,5$, group. whole, parts, how many, counting Other language to be used by the teacher: part-whole
model, count, same, different, more than model, count, same, different, more than
STRUCTURES AND REPRESENTATIONS
part-whole models, multilink cubes

RESOURCES

Mandatory: multilink cubes, hula hoops
Optional: balls, bowling pins, playdough, candles (in two colours), bean bags, hoop, pens, pencils, skipping ropes, digit cards

EXPLORE

Taking every opportunity throughout the school day to build and reinforce mathematical concepts give children's learning purpose and meaning in the wider context of their lives.

Activir	AREA	DESCRIPTION	RESOURCES
Bowling	Inside or outside space	Set up a bowling activity using up to 5 items. Ask children to partition the items that are left standing and those that fall over. Spark discussion about the whole and the parts.	Ball, bowling pins
Playdough birthday cakes	Messy play area	Make sets of up to 5 playdough cakes, decorating each cake with one candle, using two different colours of candle. Encourage children to draw or complete part-whole models to show the two colours.	Playdough, sets of candles in two colours
Bean bag throwing	Inside or outside space	Choose a small number of bean bags (up to 5). Ask children to attempt to throw all 5 bean bags into a hula hoop. Next, ask children to count how many land in the hoop and how many miss. Ask: How many bean bags did you start with? How many landed in the hoop? How many missed? How can you put the bean bags into two groups or parts?	Bean bags, hula hoop

Unit 5 Number bonds within 5

Year 1

Unit 3: Addition within 10

Unit 3

Addition within 10

UNIT STARTER PAGES

Use these pages to introduce the unit focus to children You can use the characters to explore different ways of working.

STRUCTURES AND REPRESENTATIONS
Part-whole model: This model helps children understand that two or more parts combine to make a whole. It also
helps to strengthen children's understanding of number

WHERE THIS UNIT FITS
 \rightarrow Unit 2: Part-whole within 10
 \rightarrow Unit 3: Addition within 10

\rightarrow Unit 4: Subtraction within 10
This unit builds on Unit 2 : Part-whole within 10 , which introduced children to the idea that a whole can be separated into parts of various sizes. Unit 3 focuses on
addition with
nin addition within 10 .
Before they start this unit, it is expected that children:

- can use the part-whole model to partition a number to 10
can write and compare number bonds to 10
bonds within 10 .

Number line: Number lines help children learn about addition as counting on. They allow children to identify the starting point, the number counted on and the end point.
$\begin{array}{lllllllllll}\vdash & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
Ten frame: The ten frame helps to give children a sense of 10, and supports their understanding of number bonds to
10. It also plays a key role in helping children to recognise 10. It also plays a key role in helping children to recognise
the structure of other numbers, and to understand what happens when you add two numbers together.

KEY LANGUAGE

There is some key language that children will need to know as part of the learning in this unit
\rightarrow part, whole and part-whole
\rightarrow altogether, in total, total, sum
\rightarrow add, added, plus, or
\rightarrow count, count on
\rightarrow missing, missing part
\rightarrow number bonds, number pairs
\rightarrow number stories

PUPIL TEXTBOOK 1A PAGE 99

Addition problems

Learning focus

In this lesson, children will find solutions to simple word and picture problems involving additions to 10 .

NATIONAL CURRICULUM LINKS

Before you teach (II)

Are children confident with the fundamental concept that two parts join together to make a whole, and recognise it on a part-whole model
and in an addition calculation? If not, the real Ife contexts in this lesson may help children What links could you make with other curriculum areas? Could curriculum links help
ear 1 Number - addition and subtraction
Solve one-step problems that involve addition and subtraction using concrete objects and pictorial representations, and missing number problems such as $7=\square$

ASSESSING MASTERY

Children can find number stories in pictures and use addition to answer questions. Children can represent contexts using
addition calculations and explain the meanings of the parts of their calculations.

COMMON MISCONCEPTIONS

The number of objects in the pictures are not always represented in an ordered way, which may encourage children to go back to counting from 0 to find the total. Draw links from previous lessons and model that once you have found how many objects are in one group, you can
How many groups can you see?

STRENGTHENING UNDERSTANDING

he contexts explored in this lesson show that number stories and number sentences describe the real world, in a similar way to that in which words and pictures do. Strengthen understanding by encouraging children to come up with their ow ont for on of the

GOING DEEPER

Encourage children to explore this lesson in more depth by asking them to make up their own word problem, and to draw a
picture that represents it, with the matching calculation alongside.

KEY LANGUAGE

In lesson: number stories, altogether, count, in total
ther language to be used by the teacher: parts, whole, addition calculation, greater than

STRUCTURES AND REPRESENTATIONS

Part-whole model, number line

RESOURCES

Mandatory: blank part-whole models, number lines

otional classroom objects / PE equinme

In the eTextbook of this lesson, you will find interactive
Quick recap Q

Play addition bingo. Ask children to pick four numbers between 0 and 10 . Write some addition calculations that have answers between 0 and 10 . If children have the answer, they cross it off

Discover

Wats of workne Pair work

ASK

- Question (1) a): What do the 4 and the 4 mean?

Question (b): Where on the picture can you see 1 person
with 3 other people?
IN Focus The picture contains lots of hidden number
stories. Explain that you will be exploring them together
on one part of the picture (people walking dogs) and elicits a number story from children. Question (1) b) focuses on a different part and a different story (the seesaw).
PReacical IIPs Use concrete objects in the classroom to
represent the scenaria
answers
Question (1) a): There are 8 dogs altogether.
Question (1): There is 1 person on one side of the seesaw, and 3 people on the other side $1+3=4$.

Share

Wars of worknc

ASK

- Question (1) a):
his calculation?
Question (1) : What different thing does the number 4 show in this calculation?
Question (1) b): Ifyou added 1 dog and 3 dogs, would that be the same as adding 1 ball and 3 balls?
(NFocus Before question (1), two different characters suggest different methods for solving the calculation. Look at what Astrid says. Ask: Do you agree or disagree with Astrid? Counting using counters would give us the right answer, but it would also take a long time.
STrescirin Strengthen children's understanding by discussing that the 4 in question (1a) r)
number of dogs one person has (a part).
The 4 in question (b) represents the number of people altogether (the whole). Ask: Can you spot any other places the picture where one number has different meanings?

(0) Dale has 4 dogs and Liz has 4 dogs. How many dogs are there altogether What part of the picture shows $1+3$? Show this using a part-whole model.
${ }^{108}$
PUPIL Textbook 1a PAGE 108

Think together

Wars of workno Whole class teacher led (I do, We do, You do)
ASK
Question 1 : How many jam tarts can you see? How many
jam tarts are hidden? jam tarts are hidden?
Question (2: You can
Question 2: You can see the whole picture and all of the parts of the story. How many children have short hair? How
(
Nrocus In question (1), there are 3 jam tarts shown and 6 hidden in the box. Children may be tempted to start counting on from 3 on the number line, as that is the number they can see. In question 2, children develop first different methods to find the whole. For example, some children may just count all the children on the roundabout,
others may count on. Children realise that an addition
can be written down either way as the answer is the same.
concrete materials to show that this is the case.
STRENGIHEN Strengthen children's understanding by
asking them to work in pairs to complete question (3).
which prompts them to look again at the picture from the
Discover section. Ask children to tell their partners anothe number story they can see. Their partner should articu number story they can see. Their partner should
which number relates to which part of the story
DEEPEN Deepen children's understanding of question $\mathbf{(1)}$ by there are 6 tarts in the box and 3 tarts on the plate.
ASSsSMENT CHECKPONTP Assess how far children understand
that calculations have meanings based on the contexts of
the problems. Check that they grasp that changing contexts
ANSWERS
Question (1): $6+3=0$
There are 9 jam tarts altogether.
Question (2: $2+3=5$
Question (3: For example
There are 2 adults and 4 children at the picnic $2+4=6$.
There are 6 people at the picnic altogether

Practice

WATs of worknc independent thinking
NFocus Children interpret each image to create number sentences. questions (1) and 2, children could count to find the total. Questions (3)

STRENGTHEN If needed for questions (3) onwards, children could use
counters or cubes to represent the numbers, giving them the option to
count to find the total. If fhildren do this, encourage them to start counting
from the greater number rather than from 1 .
DESPEN In question ($\mathbf{3}$, challenge children to draw a picture where it is
ASsESSMENT CHEKKPOINT Check that it is not possible to count.
ASSISSMENT CHECKPOMT Check that children are counting on to find the
totals. Identify children who need to use concrete materials to access
the questions
ANswzs Answers for the Practice part of the lesson can be found in the Power Maths onine subscription

Reflect

wars of workne Group work
In focus Children work backwards to tell a story for $4+1$. They may us a'first, then, now' story to do this.
ASSESSMENT CHECKPOINT Listen for children's language in explaining their story. What do they say? Do they use the words and phrases 'plus', is
equal to,' 'altogether' and 'in total'?
of of the lesson can be found in the Power Maths online subscription.

After the lesson (11)

- Are children fluent enough with their number bonds to 10 that they are using them in a variety of contexts, including contexts they have made up?
- Have any children shown an awareness of counting back, as well further in the next unit

Reflect

PUPIL PRACTICE B00K 1A PAGE

Addition problems

(1) a) Dale has 4 dogs and Liz has 4 dogs. How many dogs are there altogether?
b) What part of the picture shows I +3 ?

Show this using a part-whole model.

Share

There are 8 dogs altogether.
b)

$1+3=4$
There are 4 people on the see-saw.

Think together

(1) There are 6 jam tarts in the box.

There are 3 jam tarts on the plate.
How many jam tarts are there altogether?

2 Look at the children on the roundabout.

There are 2 children with long hair.
There are 3 children with short hair.
There are 5 children altogether.
Find two ways to show this fact.

(3) Look at the park in Discover.

What other number stories can you see? Ask a partner.
How many number stories can you find?
I will try to find a number story that no one else has seen.

Chathics

Addition problems

(1) How many altogether?

$8+2=$

$4+3=$ \square

$1+5=\square$
(2) What are the total scores?
a)

b) 00

(3) Look at the darts. What are the total scores?
a)

\square
c)

b)

d)

(4) How many altogether?

(5) Draw a story picture for $5+5$.

Reflect

Tell a partner a story for $4+\mathrm{I}$.

Year 2

Unit 2: Addition and subtraction (1)

Add and subtract two multiples of 10

Learning focus

In this lesson, children use known facts with 1 s to determine other facts with corresponding multiples
of 10 . of 10 .

NATIONAL CURRICULUM LINKS

Number - addition and subtraction

Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 .

ASSESSING MASTERY

Children can use number bonds within 10 to determine related facts with muttiples of 10 , rather than calculating
these facts as a result of using addition or subtraction in an inefficient way. Children can identify why each helps with
the related calculation. the related calculation.

COMMON MISCONCEPTIONS

Children may not see the purpose of using known facts and may find alternative ways to calculate the answer. Ask:
What fact did you use to help with this calculation?
STRENGTHENING UNDERSTANDING
Ask children to make the numbers using concrete manipulatives alongside the abstract calculations. They should
explain the parts that they have made and describe how the known fact relates to the unknown fact (for example,
2 ones +3 ones $=5$ ones so 2 tems +3 tens $=5$ tens).

GOING DEEPER

Encourage children to describe more than one fact that they could use to help them find the solution to a new problem
This will highlight their flexibility and fluency of number facts.
KEY LANGUAGE
n lesson: facts, number sentence, signs, digits, ones (1 s), tens (10 s)
other language to be used by the teacher: number bonds, addition, subtraction, link, relate

STRUCTURES AND REPRESENTATIONS

Part-whole model, bar model

RESOURCES

Mandatory: base 10 equipment
ptional: blank number sentence scaffoldin the eTextbook of this lesson, you will find interactive links to a selection of teaching tools.

Discover

Wats of workno Pair work
ASK

- What do you know about $2+3$?

解
wrocus The numbers in question (1) allow children to make simple links between the number of pencils Milo an Mr Abbot each have
PRACICAL ITPS Encourage children to make links by askin them to draw both sets of pencils or make both sets of
answers
Question (1): Milo has 5 pencils.
Question (1) b): Mr Abbot has 50 pencils

Share

Wars of workne
 Whole class teacher led

Wask

- Question (1) b): What is the same and what is different about the number of pencils Milo and Mr Abbot each have? Question (1) b): How many parts do Milo and Mr Abbot
whocus When tacking question (b), children should be able to make links betweent the number of pencils tha be able to make links between the number of pencils that number of 1 s that Milo has is the same as the number of 10 s that Mr Abbot has.

Quick recap Ω
 Ask children to count on to 100 in 10 s. Then ask them

 to count down from 100 in 10 s. Look together for a the 10 s on a 100 square.
Think together

Wats of worknce Whole class teacher led (I do, We do,
ASK
Question (1): How does $4+3=7$ help you to know that
$40+30=70$?
Question (2) How does the part-whole model help you with

- Question 2:How does

Question (3: Whose strategy is more efficient, Astrid's
Wrocus Question (1) is similar to the Discover question, While question 2 removes the pictorial representation
and includes only the model. Encourage children to
verbalise how the known fact helps them with the unknow
fact. Question 3 builds on work from the previous lesson as well as requiring children to use a known fact to help with the calculations.
STRENGTHEN Making the known and unknown facts using base 10 equipment will strengthen children's understandin of how the facts are linked. Encourage them to explain 5 tens +1 ten $=6$ tens).
DEBPEN Give children a part-whole model for 50,20 and 30. Ask them to write the fact family that matches the part-whole model. Can they find all the additions nd subtractions?
ASSSSSMEN CHEKKPonT Children should be able to explain the links between the calculations in questions $\mathbf{1}$ to $\mathbf{3}$. sown facts or if they are simply calculating each answer.
Answers
Question (1) a): $4+3=7$
There are $\mathbf{7}$ pencils.
There are $\mathbf{7}$ apples.
4 ones +3 ones $=\mathbf{7}$ ones
4 tens +3 tens $=\mathbf{7}$ tens
Question (1) b): 4
$40+30=70$
Question (2): $2+6=8$

- $20+60=80$

Question (3): $50+10=60$
$0+50=60$ $60-50=10$ $0=60-50$

Practice

Wars of worknc independent thinking
wrocus All the Practice questions require children to make links to known facts in order to calculate unknown facts. In question $\mathbf{1}$ the know
and unknown facts are displayed alongside each other, but this support and unknown facts are displayed alongside each other, but this support is gradually withdrawn throughout the later questions, to test children's
STRENGHEN If children are finding the concept difficult, they should they are required to complete. Encourage them to describe the parts and the wholes they are making and to explain what is the same and what is different about the known and unknown facts,
DEEPEN Question 4 challenges children to make links between number nds to 10 and how to add and subtract two multiples of 10 . They should use the part-whole models in parta) to complete the number sentences

Swevcharoonc Assess whether childre can sutify how the hoom fact helps them calculate the unknowns. Ask them to explain the link
answers Answers for the Practice part of the lesson can be found in the Power Maths online subscription

Reflect

Add and subtract two multiples of 10 of 10 - com

PUPIL PRACTICE BOok 2 A PAGE 6

IN focus The Reflect part of the lesson allows children to show what they have learnt in this and previous lessons. Encourage them to include number facts involving 10 s numbers. This will show whether they fully understand how to derive facts about multiples of 10 from calculations
with 1 s .
ASSESSMENT CHECKPoINT Assess whether children can explain how they been given.
Answers Answers for the Reflect part of the lesson can be found in the Power Maths online subscriptio

After the lesson (II

What were the most common misconceptions that arose during the lesson?
the lesson?
How will you address these misconceptions before the next lesson?

Reflect

PUPIL PRACTICE BOOK 2A PAGE 67

Add and subtract two multiples of 10

Discover

(1) a) How many pencils does Milo have?
b) How many pencils does Mr Abbot have?

Share

a)

$2+3=5$
Milo has 5 pencils.
b)

Think together

(I) a) Complete the following.

$$
4 \text { tens }=\square \text { pencils }
$$

b) Complete the following.

$$
\begin{aligned}
& 4+3=\square \\
& 40+30=\square
\end{aligned}
$$

(2) Use the part-whole model to complete the number sentences.
$2+6=$ \square

(3) Here is a number bond.

$5+I=6$

Complete the number sentences.

$$
\begin{aligned}
& 50+10=\square \\
& 10+\square=60 \\
& 60-50=\square \\
& 10=\square-50
\end{aligned}
$$

I will use the number sentence $5+\mathrm{I}=6$ to get the answers.

I will use base 10 equipment to help.

Add and subtract two multiples of IO

(1) Complete the part-whole models and number sentences.
a)

b)
道

(2) Find the missing numbers.
a)

b)

3 Use the diagrams to complete the number sentences.
a)

$q-3=\square$

b)

c)

(4) a) Complete the part-whole models.

b) Complete the following.

$30+\square=60$
double $\square=60$

Reflect

Write down some number facts related to $3+5=8$.
\square

Year 3

Unit 2: Addition and subtraction (1)

Add IOs across 100

Learning focus

In this lesson, children will develop their
understanding of adding 10 s to a 3 -digit number,
including examples which require exchange of 10 tens
for 1 hundred.
Before you teach (11)

- Can children answer questions such as: What
- Can children answer questions such as: What
number is 17 tens?
Can children count in 10 s, for example, from 65 - Can children
up to 165?

NATIONAL CURRICULUM LINKS

Number - addition and subtraction

Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction.
Add and subtract numbers mentally, including: a 3 -digit number and 1 s , a 3 -digit number and 10 s , a 3 -digit number
and 100s.

ASSESSING MASTERY

Children can add multiples of 10 and recognise when they need to exchange 10 tens for 1 hundred.

COMMON MISCONCEPTIONS

Children may struggle with the flexible partitioning of the 10 s required to cross the 100. Ask
How many different ways can you partition 80 using 10 s?
Crossing the 100 s can cause children to struggle with exchange. They may often forget to include the exchanged digit or, for example, misconstrue 13 tens as 103 . Ask.
What number is 13 tens?
What number is 13 tens?

STRENGTHENING UNDERSTANDING

Children should explore the concept of exchange using place value equipment. It may also help to represent the additions on a number line, and justify why the addition crosses into the next 100 .

GOING DEEPER

Now that children will be able to add a multiple of 10 to any 3-digit number, challenge children to explore such conjectures as: When you add 90 to a number, you always need to exchange 10 tens; When you add 50 , you sometimes
do not need to exchange.

KEY LANGUAGE
In lesson: addition, tens (10 s), number line, exchange, calculations, 3 -digit number
Other language to be used by the teacher: hundreds (100s), ones (1s)

STRUCTURES AND REPRESENTATIONS

Number lines, place value grids

RESOURCES

Optional: $0-9$ digit cardIn the e extbook of this lesson, you will find
interactive links to a selection of teaching tools.

Discover

Wats of worknc Pair work
ASK

- Questions (1) a) and b): What is the same and what is
different about the calculations? Which calculation requires more steps of thinking? How could you represe the additions?
NFocus The important point is for children to notice that they can employ the method of adding 10 s in question (1) a) but also recognise that they will need to adapt their thinking for the calculation in question (1) b PRAGCICAL ITPS Represent the age of the beech tree using place value equipment. Locate its age on a number line. Then represent the numbers to be added using equipmen and jumps on a number line.
answers
Question (1) a): $184+10=194$
Question (1) b): $184+20=204$
The horse chestnut tree is 204 years old.

Share

Wars of workns

- Question (1) b): How do you know that the age of the horse chestnut tree will be greater than 200? Are you exchanging 10 ones or 10 tens?
Question (1) b): Could you represent the calculation as $184+10+10$? What would this look like?
Nrocus The idea of exchange is key to this lesson. Here we see that one of the calculations crosses into the next 100 , and children should discuss and explore how this is represented by the place value grids. Although children should gain developmental fluency, the concept of exchange will support later development of more formal Written methods. Children should see that this is similar to
the previous lessons where they were adding ones across the previous lessons where they were adding ones acro

10. The main focus of this lesson is using base 10 and counters to show the exchange, however you may want to back this up with a number line.

Think together

Wars of workno whole class teacher led (I do, We do,
You do
Questions (1) Which row represents the age of the beech tree? How do you know? Which columns are going to change? How do you know?
Questions (2: Which columns are going to change?
How do you know? Will How do you know?
in Focus The focus here is for children to make connections between the total number of 10 and how you can use this to decide whether an exchange will be necessary. They should be able to count in 10 se beyond a 100 the concept even more deeply you may want to explore this on a number line.
STRENOHEEN Provide children with base 10 equipment and a place value grid to support them in finding the answers. They could also draw jumps of 10 on a number line to support their counting.
DERPEN In question 3 , encourage children to explain how they know the answer for each question and to make the decisions without performing the calculations. Can they
summarise which digits always/sometimes/never change? ASSESMENT CHECkPoINT Use questions (1) and (2) to check that children can add multiples of 10 to a 3 -digit number here the calculation requires an exchange.

ANSW:BS

uestion (1): $184+50=234$
The oak tree is 234 years old.
Question (2): $263+70=333$
Question (3): Mia will need to do an exchange for c) and d. Question (3): : $458+20=478$
Question (3) b): $458+30=488$
Question (3): : $458+60=518$
Question (3) : : $458+80=538$

Practice

Wars of worknc Independent thinking
INFocus The focus of this section is for children to consolidate the learning on adding multiples of 10 , crossing the 100 . In question (\mathbf{O}, the perform these calculations where the base 10 equipment is represented for them. In question (2, they work more abstractly and are encouraged to spot connections between questions and answers
STRENOHEN Provide children with a place value grid and base 10
equipment to represent the questions and support them in finding
answers.
DEPREN In question © , encourage children to explain why Danny has chosen this method. Give them similar questions and ask them to adapt
Danny's method to solve them. How many different ways can they find to Danny's method to solve them. How many different ways can they find
answer Danny's question? 1 one method always the most efficient?
THNK Diffresiniv in question (4, children are exposed to a common THNK Difrgeniv In question 4, children are exposed to a common been made.
ASSESSMENT CHEKCPOINT Use questions 1 and 2 to assess whether children can add 10 s to a 3 -digit number where the calculation requires an exchange. Use question 3 to assess whether children can identify missing numbers in questions. Use question (4) to check that children can identify the mistake that has been made and why it is incorrect.
ANswers
Power Mathswers for the Practice part of the lesson can be found in the

Reflect

Wars of working Independent thinking
\mathbb{N} focus The sentence stem prompts children to really think about the relationship between the additions and the concept of place value.
Encourage children to show examples of when exchange is necessary and
ASSESSMENT CHECKPOINTT This section will show if children engage decision making processes, rather than simply performing rote calculations. answers Answers for the Reflect part of the lesson can be found in the Power Maths online subscription.

After the lesson (11)

Can children decide when exchange is necessary?
Can children justify their answers to themselves and to others by invoking number bonds?
dren choose a representation to illustrate their mental
methods?

PUPIL PRACTICE BOor 3 A PAGE 68

Add IOs across 100

Discover

(1)
a) The birch tree is 10 years older than the beech tree. How old is the birch tree?
b) The horse chestnut tree is 20 years older than the beech tree. How old is the horse chestnut tree?

Share

a) 8 tens +1 ten $=9$ tens

$184+10=$?
I can add the 10 s.

$$
184+10=194
$$

The birch tree is 194 years old.
b)

$$
184+20=?
$$

I added the 10 s .
8 tens +2 tens $=10$ tens
There are 10 tens. I know that is not $\mathrm{I}, 104$.

$184+20=204$
The horse chestnut tree is 204 years old.

Think together

（1）The oak tree is 50 years older than the beech tree．
How old is the oak tree？

H	T	O
	眀明明明明	日ロ日日
	䀠明明	

$184+50=$

（2）Work out $263+70$ ．

$263+70=$ \square

I＇m going to try and work this out in my head．

Mia has made the number 458.

For which of the following calculations will Mia need to do an exchange？
a） $458+20$
c） $458+60$
b）
$458+30$
d） $458+80$

I can tell if it＇s possible to do an exchange just by looking and thinking about the calculation．
\qquad

Add IOs across 100

（1）Work out the additions．
a） $275+60=\square$

H	T	0
		ตยอยอ
	䀠閏䀠瞋	

b） $494+60=\square$

H	T	0
	眶聞聞聞聞	өөย

c） $568+60=\square$

H	T	0
	瞷聞闑	${ }^{\text {gigesa }}$
	瞷聞閴	

2）Make the number 382 from place value counters．

H	T	0
$1100 \text { (100) } 100$	$\begin{aligned} & 10 \text { (10) } 10 \\ & 10 \text { 10 } 10 \end{aligned}$	$\text { (1) } 1$

Add these numbers to 382.
a）Add 10

d）Add 40
b）Add 20
e）Add 80

c）Add 30

I notice something about my answers． I wonder why this is．
a） $454+70=$
 $474+50=$

b） $593+60=$ \qquad $563+90=$

（4）What mistake has Isla made？

(5) Complete the missing numbers.
a) $234+90=$ \square
b) $371+50=$ \square
c) \square $=40+569$
d) $20+\square=319$
e) 50 more than 762 is \square
f) $150=$ \square $+90$
(6) Danny is working out $861+90$ in his head.
a) Work out $861+90$ using Danny's method. \square
b) Tell a partner a different way to work out $861+90$.

Reflect

When I add a 3-digit number and 10 s, I know I will need to exchange 10 tens for I hundred if ... \qquad

Year 4

Unit 3: Addition and subtraction

-

O \qquad

Add and subtract Is, 10 s, $100 \mathrm{~s}, \mathrm{I}, 000$ s

Learning focus

in this lesson, children will use their knowledge of
place value to add and subtract $1,10,100$ and 1,000
to and from 4 -digit numbers.

Before you teach (II)
Would base 10 equipment help some children with their understanding of place value in whis theirson? this lesson?
Which children in this lesson?

NATIONAL CURRICULUM LINKS

Year 4 Number - addition and subtraction
Add and subtract numbers with up to four digits using the formal written methods of columnar addition and subtraction where appropriate
Year 4 Number - number and place value
Solve number and practical problems that involve addition and subtraction with increasingly large positive numbers.

ASSESSING MASTERY

Children can quickly make mental calculations when adding and subtracting $1 s, 10 s, 100$ s and 1,000 s. Children can explain their method, demonstrating a deep understanding of place value, and can solve related problems in a range of contexts.

COMMON MISCONCEPTIONS

Children may have place value misconceptions, i.e. they may think $3,423+100=4,423$. Ask
Can you put the numbers into a place value grid to help?

STRENGTHENING UNDERSTANDING

Give children the opportunity to practise adding $1,10,100,1,000$ to a range of numbers with a place value grid to help. Repeat until children can calculate place value additions and subtractions mentally.

GOING DEEPER

Give children a variety of missing number place value problems which will require them to think more deeply about the relationship between digits and what information they can use to find the missing numbers. For example, 3,487 $+2,000=$? relationship between digits and what information
$1,298-70=?, 6,815+?=6,819,2,731-?=2,131$.

KEY LANGUAGE

In lesson: more, fact, add, addition, subtract, subtraction
other language to be used by the teacher: place value, thousands ($1,000 \mathrm{~s}$), hundreds (100 s), tens (10 s), ones (1 s), add, subtract, reduce, increase
STRUCTURES AND REPRESENTATIONS

Place value grid

RESOURCES

Mandatory: place value counters, base 10 equipment
8 In the eTextbook of this lesson, you will find

Quick recap Ω

Play 'Say the next number. Write or say a 3-dig number and ask children to call out or write the next number, focusing on using a counting strategy. Repeat with more 3 -digit numbers. Play the game again, but this time ask children to say the previous number

Discover

Wars of WorkNo Pair work
ASK

- Question (1) a): What is the same about $3,30,300$ and 3,000? What is different?
Question (1) b): Can you explain your answer?
NFocus Ask children what is similar and what is differen about $+3,+30,+300$ and $+3,000$. Doing this will help them to think about the relationship and connections between these numbers.
PRACIICAL ITPS For this activity, some children may benefit from representing the numbers in the place value grids with concrete objects - use base 10 equipment for this.

answers

Question (1) b): $4,256+3=4,259$
$4,256+30=4,286$
$4,256+300=4,556$
$4,256+3,000=7,256$

Share

Wars of Workino Whole class teacher led

ASK

- Question (1) : How many 1,000s are there? How many

Question (1) b): Can you explain what has happened in Question (1) b): Can you explain what has happened in
each of the answers? Which digits change? Which digits each of the ans
stay the same?
wrocus The place value grids support children with the understanding of place value Count the counters in the grids aloud as a whole class - doing this will help children understand the numbers at a deeper level, and will also help them to make comparisons between numbers.

PUPIL Textbook 4A PAGE

Think together

Wats of worknce Whole class teacher led (I do, We do,
You do

- Question (1) Which digit is changing in each calculation -
the 1s, 10 , 10 os or 1.000s? the $15,105,100$ s or 1,0005 ?
Question (1) Why do you need 0 s in numbers like 1,001?
Question (2) How can you work out calculations with
隹
in the second examplo, you may need to highlight that need to include 0 as a placeeholder, i.e. $7,646-40=7,606$ Some children may not understand how to write this and so may give 766 as their answer.
Strencinen For each question, provide base 10 equipment o visually represent the place value of the digits in the
numbers for children who need it.
Asking children to explain their working will
rengthen learning.
Detren Give children some calculations with mistakes, for example $4,576-30=4,276$. Ask: Can you find the mistakes? Can you explain what the mistakes are.?
ASSISSMEN CHECKFONT Use question 2 to assess whethe hildren can work mentally, or whether they still rely o
place value equipment.

ANSWERS

(uestion (1) a): 7,646-4=7,642
Question (1) b): 7,646-40=7,606
Question (1) c): 7,646-400=7,246
Question (1) d): 7,646-4,000 = 3,646
Question (2) a): $8,888-500=8,388$
Question (2)): $8,888-\mathbf{5}=8,883$
Question (2): 3,888 = 8,888-5,000
Question (2 d): :8,838 = 8,888-50
Question (3) a): 6,869 points
Question (3): There are many solutions for this question, as long as the star and the bubble lead to a score increase of 10. Examples include: $a-10$ star, then a +20 bubble, a -20 star then a +30 bubble, and so on

Practice

Wars of worknc Independent thinking
in Focus Make sure children understand the contexts in question what
Nocus Make sure children understand the contexts in question
STRENOHEN Question 6 will strengthen learning by encouraging children to think about place value relationships across a variety of numbers. The task may seem difficult at first, but reassure children that if they think hard they can reach a solution. Build children's confidence by explaining that
there are multiple answers for each question.
DEEPRN Deepen learning by providing two-step questions with missing
, for example, $4,264+?-200=4,564$
THNK Diffresilv Question $\mathbf{5}$ challenges children to relate addition and subtraction. Listen carefully to children's reasoning for this question.
ASSESSMENT CHECFPONT Question (4 will allow you to assess which children
are able to apply their knowledge in context. Children should demonstrate problem-solving skills to work with what they know and complete the steps needed to find the solution.
ANSWES Answers for the Practice part of the lesson can be found in the

Reflect

Wars of Working Pair work

in focus This section will give children the opportunity to explain thei
understanding of the lesson Encourage them to use a place value grid and place value counters as part of their answer.
ASSESSMENT CHECKPOINT Can children explain the method correctly Do they use the correct vocabulary?
answers Answers for the Reflect part of the lesson can be found in the Power Maths online subscription.

After the lesson (1)

How will you support children who found the learning difficult in this lesson?
What intervention sessions would be useful?
Which children mastered the lesson?
Could you make a display to support children in the subsequent lessons?

PUPIL PRACTICE BOoK 4A PAGE 59

Refiect

\qquad

PUPIL PRACTICE BOOK 4A PAGE 60

Add and subtract Is, 10 s, $100 \mathrm{~s}, \mathrm{I}, 000$ s

Discover

Score: 4,256
Time left: 7 seconds
a) Make Reena's score of 4,256 with place value counters.
b) Show how Reena's score will change if she catches another bubble.

Share

b)

$4,256+3=4,259$

Th	H	T	0
)-:)	-()	-®ロ®(0100
		(1) -	

$4,256+30=4,286$

Th	H	T	0
Oee)	-()	-®®®๐	0000
	©®®		

$4,256+300=4,556$

Th	H	T	-
-ee	©()	-○○○○	$\bigcirc 000$
(e)e			

Think together

Ellie's score is 7,646.

Th	H	T	0
	©	-(-®)	10

How would each star change Ellie's score?
a)

$7,646-4=$

b)

Th	H	T	0
$\because(\square) \square$	$\div($	QQQQ	000

$7,646-40=$

Th	H	T	0
$\infty(\infty$ ∞	0002	(1)(B)(b)	0

$$
7,646-400=
$$

d)

Th	H	T	O

(2) Lewis has scored 8,888 . Show how his score would change each time.
a) $8,888-500=$ \square
c) \square $=8,888-5,000$
b) 8,888 \square $=8,883$
a) Max has scored 3,869 points. He hits a $+5,000$ bubble, then $a-2,000$ star.

What will his score be now?

I wonder what happens if I do this calculation in a different order.

I will combine the bubble and the star first, to work out how Max's score changes.

b) Jamilla has 4,545 points.

She hits a star, then a bubble. Now she has 4,555 points.

What star and bubble could she have hit? Find five possible answers.

Add and subtract Is, 10 s, $100 \mathrm{~s}, 1,000$ s

(1) Complete these calculations.

$4,137+2=$
b)

$4,137+20=$ \square
2) Work out the missing numbers.

a) $6,666+2=$
 $6,666+20=\square$
$2,000+6,666=\square$
b) $6,666-200=\square$

$$
6,666=\square-200
$$

$$
6,666-\square=6,664
$$

(3) Complete these calculations.
a) $3,154+500=$e) \square $+1,000=2,134$
b) $500+4,351=$
f) \square $+4,000=4,521$
c) $9,786-4,000=$ \square
g) $4,014-10=$ \square
d) \qquad h) 5,001 - \qquad
(4) a) How much does the car cost now?

b) What is the change in price?

(5) $3,333+4,000=7,333$

Explain how to use this fact to solve 7,333-3,333=

\qquad
\qquad
\qquad
\qquad

100	200	300	400	500	600	700	800	900
$3,334+\square-\square=3,43$								
$3,334-\square+\square=3,434$								
$3,934-\square-\square=3,434$								
$3,434-\square+\square=3,434$								

b) Find another way to complete them.

Reflect

$5,167+\square=9,167$
Show how to work out the missing number.

-																			
-																			
-																			
-																			
-																			

Year 5

Unit 3: Addition and subtraction

Add whole numbers with more than 4 digits (1)

Learning focus

in this lesson, children will use the formal written method to add whole numbers with more than four digits, recognising the importance of place value.

Before you teach (II)

- Do children know how to add 2 -and 3 -digit numbers? - Do children know how to make an exchange when using column addition?

NATIONAL CURRICULUM LINKS

Year 5 Number - addition and subtraction
Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)

ASSESSING MASTERY

Children can use the formal written method of column addition to add whole numbers with more than four digits.

COMMON MISCONCEPTIONS

Children may not know which place value column to start with when adding two whole numbers together, using column addition. Ask:
Why do you
Why do you always start by adding the column that has the smallest place value in this method?
hildren may not understand the concept of exchanging between columns. Ask
How might a place value grid and counters help you to see what is happening?

STRENGTHENING UNDERSTANDING

Children should first practise adding whole numbers with two or three digits before moving on to whole numbers with more than four digits. Encourage them to clearly describe the place value of each column, and make sure they understand the

GOING DEEPER
Give children a total and ask how many different ways they can make the total, for example, $+=8,876$. This could also be Give children a total and ask how many different ways they can make the total, for example, $-+=-=$, represented on a part-whole model to help children see the link between adding and subtracting.

KEY LANGUAGE

In lesson: add, total, digit, column, place value
Other language to be used by the teacher: exchange, ones (1s), tens (10s), hundreds (100s), thousands (1,0005), en thousands (10,000 s)
STRUCTURES AND REPRESENTATIONS

Place value grid, column addition

RESOURCES

Mandatory: place value countersIn the eTextbook of this lesson, you will find
interactive links to a selection of teaching tools.

Quick recap Q

Recall addition of numbers within 1,000 or 10,000 . Give children quick examples to remind them of the column addition method. Include examples where they have to exchange.

Discover

Wars of workne Pair work
ASK

- Question (1) a): How many views are there on Tuesday? How many views are there on Wednesday? What does 'total mean? How could you add these amounts together? Question (1) b): What method could you use to find whic
two days make this tota? NFocus Question (1) re IN Focus Question © a) requires children to identify two numbers and find the total. This calculation requ
children to make one exchange when using column addition. Question (1) b) gives children a total and as them to work out which two numbers make this total. PRACICAL ITPS Make sure children understand that the boy is watching videos and can see the number of views for each children to point out the number of views.
answirs
Question (1) a): The total number of video views for Tuesday and Wednesday is 39,328 .
Question (1): Wednesday and Friday have the total views

Share

Wats of Workno whole class teacher led
Wars 0
ASK
ASk Question (1): What method can you use to add the two - Question (1) a): What
numbers together?

- Question (1) a): Which place value column do you need to start with? Do you need to make an exchange?
Question (b): What method could you use to work out
which two numbers make that total I sthere a quicker way N Focus For question (1) a) take the opertunity to Niscouss how the word 'total' leads us to carry out an addition for this question and make sure children know which place value column we begin with when adding. Check that children are able to identify and say the larger numbers place value of each digit when carrying out the calculation, for example, ask: What is 3 ones add 5 ones? What is 5 tens add 7 tens? Demonstrate why this is important when children are required to carry out one exchange, of 10 ten for 1 hundred.
Discuss the use of the trial and improvement method in question (b), emphasising the need to not miss any calculations out. Draw out that this will be time-consuming with such big numbers and encourage children to think
flexibly about using a different strategy For example Flo flexibly about using a different strategy. For example, Flo's method of adding just the 1 s of each number instead to see
which gives a total ending with 2 which gives a total ending with 2 .

Think together

Wars of workno Whole class teacher led (I do, We do,
ASk
Ass Question (1) How many views are there on Thursday? How many views are there on Friday? What method can you use
to add theses amounts together? to add these amounts together?
Question 2: Do you need to make any exchanges for these
additions? How should we approach question additions? How should we approach question (2)?
Question (3: How do you set numbers out in columns whe they have a different number of digits?
NFocus In question 1 and question $\mathbf{2}$, children practise
column addition with differing numbers of exchange. In olumn addition with differing numbers of exchange. In questions (2) and d), children see that they will need to he digits correctly. In question $\mathbf{3}$, children may choose to add two numbers that do not have the same number of digits. Make sure they lay out the column addition correctly. When working out which two numbers have made a given total, encourage children to look at the last digitit in
number instead of carrying out the full calculation. STRENGHEN Support understanding in question 3 by representing calculations using counters on a place value grid. DEEPN For question (3) ask children to work out the total
for other combinations of numbers. Encourage them to add numbers that have a different number of digits.
ASSSSSMENT CHECRPONTI Can children use the formal written method to add whole numbers with four or more digits pay attention to laying it out neatly and accurately and dentifying the importance of the place value of each colum

Answers

Question (1): $22,571+18,417=40,988$
The total number of views is 40,988 .
Question (2 a): $26,915+30,241=57,156$
Question (2) b): $37,418+4,157=41,575$
Question (2) : $1,564+18,417=19,981$
Question (2) d): $28,019+4,096=32,115$
Question (3: Children should work out any two from the following:
,171 $+61,426=95,597$
$34,171+5,458=39,629$
$34,171+1,023=35,19$
$1,426+5,458=66,884$
$61,426+1,023=62,449$
$5,458+1,023=6,481$

Practice

Wars of worknc Independent thinking
infocus Questions $\mathbf{1}$ to $\mathbf{3}$ consolidate understanding of adding two whole numbers using column addition where the information is Question (A asks counters on a place value grid, in a column and abstractly. addition calculations while linking to subbraction
Question (6) introduce a for a different number of digits
STRENOTHEN Encourage children to use counters on a place value grid to support understanding and, when the calculation is not given in a colum
layout, encourage them to write it in columns.
DEEPEN Explore question (4) in more depth by giving other missing number problems. Question $\mathbf{3}$ can be explored further by saying numbers Oll, rathe than using a witter method THNK Diffreseniv In question (5) numbers are given in words and children need to write these as numerals in order to work out the to Some chidren may
column addition.
ASSESSMENT CHECKFONTT Children are confident in using column addition to add whole numbers with four or more digits.
ANSWEB Answers for the Practice part of the lesson can be found in the Power Maths online subscription.

Reflect

Wars of WORKING Pair work
IN focus This Reflect activity checks understanding of adding two whole numbers with four or more digits. Encourage children to explain how the children who are able to do this without any support.
ASSESSMENT CHECKPOINTI Assess if children can correctly explain how to fin the total of two whole numbers, emphasising the importance of the place vare of column and identifying the need to make exchanges.
Answers Answers for the Reflect part of the lesson can be found in the Power Maths online subscription

After the lesson (1)

Can children show how to use column addition to add whol numbers with four or more digits?
Do children understand the importance of a neat and accurate layout for this method?
children needed to use counters on a place value grid
for support?

\qquad

Add whole numbers with more than 4 digits (1)

Discover

a) What is the total number of video views for Tuesday and Wednesday?
b) Which two days have a total number of views of 37,592 ?

Share

a) Add the number of video views for Tuesday and Wednesday.

I used counters to help me. I set out the work in columns and added them together. I started with the column of least place value.

TTh	Th	H	T	0
\bigcirc		\bigcirc		\bigcirc
\bigcirc	0	-		$\bigcirc \bigcirc \bigcirc$

Th Th H				T	0
	2	0	1	5	3
+	1	9	1	7	5
	3	9	3	2	8

The total number of video views for
Tuesday and Wednesday is $39,328$.
b)

Mon
Tues

Weds

T				Th	H
T	O				
	I	q	I	7	5
+	I	8	4	I	7
	3	7	5	q	2
	I			I	

I used trial and improvement to find the correct two days.
I took my time and was careful not to miss any.
The last digit of Wednesday is 5 .
The last digit of Friday is 7 .
$5+7=12$
Wednesday and Friday have a total number of views of 37,592.

Think together

(1) What is the total number of views for Thursday and Friday?

Work out the following.
a)

	TTh	Th	H	T	O
	2	6	q	I	5
+	3	0	2	4	I

b) $37,418+4,157=$ \square
c)

d) $28,019+4,096=$ \square

Here are the total views for four other videos

Views: 34,17I

Views: 5,458

Views: 6I,426

Views: I,023

Work out the total views for any two of the videos.
Then see if a partner can work out which two videos you added together.

Add whole numbers with more than

 4 digits (1)(1) Work out the following additions.

a) | TTh | Th | H | T | O |
| :--- | :--- | :---: | :---: | :---: |
| 000 | 00000 | 0000 | 00000 | 00000 |
| | 0 | | | 0000 |
| | | 00000 | 00 | |

		TTh	Th	H	T	O	
		3	6	4	5	9	
	+		2	9	2	0	

b)

d)

c)

e)

(2) Kate works out $53,175+4,362$.
a) What mistake has Kate made?

b) What is the correct answer to the addition?

(3) Solve the following calculations.
a) $17,270+24,195$
b) $45,907+33,284$

Work out the missing digits.
a)

		TTh	Th	H	T	O	
		3			I	0	
	+	2	6	I			
			I	6	4	8	

b)

		TTh	Th	H	T	O	
		7	3	8	2		
	+			3	9	5	
		7	8			0	

(5) What is.
a) five more than four hundred thousand? \square
b) fifty more than four hundred thousand? \square
c) five thousand more than four hundred thousand? \square
d) five thousand more than forty thousand? \square

Isla plays a computer game.
On the first level she gets 26,500 points.
On the second level she gets 2,300 more points than the first level. How many points does she score in total?

Reflect

Explain to a partner how to work out $42,380+29,526$. Explain the steps that they should use.

Year 6

Unit 2: Four operations (1)

Problem solving - addition and subtraction

Learning focus

In this lesson, children will develop their
understanding of the columnar written methods
of addition and subtraction where exchanges are
sometimes necessary.

Before you teach (II)

How confident are children with written
methods of addition and subtraction? methods of addition and subtraction?
Will you need to spend more teaching time ne method than on the others? one method than on the others? will you offer children to support each operation?

National curiculu inks

Year 6 Number - addition, subtraction, multiplication and division
Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

ASSESSING MASTERY

Children can fluently and efficiently use columnar written methods to solve addition and subtraction problems, including those that involve exchanges. They can explain why and how these methods work and can represent them clearly.

COMMON MISCONCEPTIONS

Children may confuse the place value headings above the columns. Ask:
Can you show me the place value headings above each column?
Does each number fit its column heading? Expla

STRENGTHENING UNDERSTANDING

Before the lesson, give children concrete opportunities to experience and revise addition and subtraction, such as building numbers with place value counters or base 10 equipment and adding or subtracting by adding or taking away resources, or using money in context through role playing or visiting a shop.

GOING DEEPER

Encourage children to create their own missing number calculations (for example $456,232+\ldots=563,213$) and use them
to challenge a partner.

KEY LANGUAGE

In lesson: addition, total, subtraction, method, column, calculate, calculation
Other language to be used by the teacher: difference, exchange

STRUCTURES AND REPRESENTATIONS

Column addition, column subtraction, bar model

RESOURCES

Optional: place value counters, printed place value grids, base 10 equipmentIn the eTextbook of this lesson, you will find
interactive links to a selection of teaching tools

Discover

Wats of workne Pair work

ASK
 Question (1) a): How will you

 actually completed the race?Question (1) a): What would be ther accurate way of calculating this difference? Explain Question (1) b): What calculation if is needed here? What Question 1 b): What calculation is needed here? ?
you notice about the numbers in the ones column? in rocus Question (1) a) offers children an opportunity calculate the difference between two numbers. Encourage them to discuss and decide what would be the most efficient and accurate method for solving this problen Question (1) b) involves an addition that requires an exchange from the ones to the tens. Encourage children to columns, and ensure they know how to represent and cary out the exchange.
PRACICAL TPS:: Children could be encouraged to build the numbers in the picture with place value counters or base 10 equipment to help scaffold their concrete understanding of addition. Discuss with children how they clear, moving towards organising them in columns according to place value.

answers

Question (1) a): 2,145 runners completed the race.
Question (1) b): $32,145+4,307=36,452$ is the correct answe. They started with 36,452 bottles of water.

Share

Wars of working Whole class teacher led
ASK

- Question (1): Do any of the representations match how you would have solved the subtraction?
Question (1) a): Which method is more efficient? Explain Question (b): What calculation is needed here?
NFocus It will be important to use the multiple NFocus It will be important to use the multiple
representations and methods shown in question representations and methods shown in question (1) a)
scaffold children's revision of subtraction and to assess their current confidence and understanding. Children should be encouraged to use each of the methods and representations to help secure the links in their mathematical understanding.

Think together

Wars of worknc
Wars dof
ASK
Question (1) What operation is needed to solve this question? How do you know
Question (2) Do all parts of this question require the same Question (2 b) and c): Where
needed to solve this question?
aed 0 Whisquestion?
Question 3: What will you do first? How does the bar
model help you?
model help you:
NFocus Question $\mathbf{9}$ helps children with their conceptua understanding of addititon which requires an exchange.
They may benefit from having concrete resources available to them while they solve the question. Encourage them to make the calculation with place value counters while solving the abstract calculation and discuss what is the same and different about the representations. Question $\mathbf{2}$ offers the opportunity to solve subtraction and addition calculations information from the Discover section of the lesson. STRENOTHEN If children are struggling to decide what peration to use for each part of question $\mathbf{2}$,
Can you make the problem using resources?
Does the question suggesty you will take away from what you Does the question suggest you will take av
have or add to it? Explain how you know.
DEEPEN Question 3 is a multi-step problem. If children are quick to solve it encourage them to create a similar challenge for a partner. Ask:
Can you create one which is simple and one which is tricky? How are they the same and how are they different? ASSESMEN CHECKPONT Can children recognise differen children recognise addition and subtraction calculations in the context of word problems? Do children understand how the columnar methods for addition and subtraction work, ind can they use these methods with fluency?

ANswers

Question (1): The marathon runners raised $£ 43,937$.
Question (2) a): 1,222 runners finished the marathon
Question (2) b): 1,061 more runners started the Mud Mayhem race than started the marathon
Question (2) : : 3,367 runners finished both races.
Question (3) a): The value of A is 700 . The value of A is 500 .
The value of $B 500$

Practice

Wats of worknc independent thinking
addition and subtract (1) 2 and (3) children read and understand addation and subtraction in the context of word problems. Question (2)

Qustion (3) is a multi-step word problen
Sreswiris If children are strugging to decide how to solve the word problems in question $\mathbf{1}$, ask:

- Can you explain what is happening in the story of the question
- Is something being added or is it being taken away? How do you know?

DEIPRN Question $\mathbf{5}$ deepens children's fluency and problem solving when
calculating with adddition and subtraction. The calculating with addation and subtraction. The equestion swilden with whis.
requires some untangling'. The bar model will support hildren with the THINK Diffremiv Question (4) offers children the opportunity to think differently as they must interpret the numbers given on the number line in the context of the question, to reason about the value of the third number. They are required to find the sum of all numbers so they must remember to complete this final step of the problem
ASSESSMENT CHECRPONT Can children use a formal written method with fluency and link their understanding to pictorial representations? Do they
draw out what they know and what they need to find to solve problems? ANSWES Answers for the Practice part of the lesson can be found in the Power Maths online subscription.

Reflect

Wars of working Independent thinking and pair work
IN focus This question will offer children the opportunity to explore meta cognitive strategies for their own learning. Which question did they find most challenging and why? Can they make suggestions to help them fee more confident with this sort of question in future?
ASSESSMENT CHECKPOINTI Assess children's confidence in identifying and carrying out the calculation needed for a given problem. Do they know which to help them? Children should be able to show fluency with these types of calculation by demonstrating their ability to put the calculation into an appropriate context.
ANswers Answers for the Reflect part of the lesson can be found in the Power Maths online subscription.

After the lesson (II)

with the columnar methods for both addition and subtraction?

- What support will you offer to children who are still struggling with one or both of the methods?

解on develop children's use of mathematical
vocabulary?

PUPIL PRACTCEE BOOK 6A PAGE 39

Reflect

(1) a) How many runners completed the race?
b) How many bottles of water did they start with?

Problem solving - addition and subtraction

Discover

Share

a) We need to do the subtraction $2,679-534$.

2,145 runners completed the race.
b)

I made sure my columns lined up.

	TTh	Th	H	T	0
	3	2	I	4	5
+		4	3	0	7
	3	6	4	5	2
				1	

They started with 36,452 bottles of water.

Think together

I The runners at the Mud Mayhem race raised $£ 40,365$ for charity. The runners at a sponsored marathon raised $£ 3,572$ more than that.

How much money did the marathon runners raise?

	TTh	Th	H	T	0
	4	0	3	6	5
+		3	5	7	2

2 I,6I8 runners started a marathon, but 396 of them did not finish.
a) How many runners finished the marathon?
b) How many more runners started the Mud Mayhem race than started the marathon?
c) What is the total number of runners who finished the two races?

(3)

The sum of these two cards is 1,200 .
A is 200 more than B.
Max is trying to find the value of the cards.

I think you can add 200 first.

I'm going to subtract 200 first.

Problem solving - addition and subtraction

(1) A pilot flew $2,438 \mathrm{~km}$ on Monday and then $1,330 \mathrm{~km}$ on Tuesday.
a) How much further did she fly on Monday than on Tuesday?

b) On Wednesday, the pilot flew 227 km less than on Monday. How far did she fly on Monday, Tuesday and Wednesday in total?

2 Here are two cars.
a) What is the total cost of the two cars?

b) What is the difference in the price of the cars?

(3)

On Tuesday, Jen drives 150 km more than she did on Monday.
On Wednesday Jen drives 150 km more than she did on Tuesday.
On Monday she drives 127 km .
The bar model represents the situation

How far does Jen drive in total Monday to Wednesday?

These numbers are on a number line. B lies half-way between A and C. What is the sum of A, B and C ?

(5) Amelia scored 29,750 fewer points than Bella. Bella scored 15,200 points, then 21,500 points

How many points did they score altogether?

We partnered with White Rose Maths to power up Power Maths!

Power Maths is our popular whole-class mastery programme for Reception to Year 6. Updated in response to teacher feedback, and to match the new White Rose Maths schemes of learning, this new edition combines updated interactive teaching and learning tools, as well as high-quality print resources, ongoing PD, and assessment - to empower teachers to make maths an adventure for all children.

Find out more about our new Power Maths White Rose Maths editions at pearsoninternational-schools.com/PowerMathsWRM

Reflect

Which question in this lesson did you find the most challenging? What did you find challenging about it?

