Online access to your ActiveBook

Thank you for buying this Edexcel International GCSE (9-1) Information and Communication Technology (ICT) Student Book. It comes with three years’ access* to ActiveBook – an online, digital version of your textbook. You can personalise your ActiveBook with notes, highlights and links to your wider reading. It is perfect for supporting your coursework and revision activities.

*For new purchases only. If this access code has already been revealed, it may no longer be valid. If you have bought this textbook second hand, the code may already have been used by the first owner of the book.

How to access your ActiveBook

1. Scratch off the panel with a coin to reveal your unique access code. Do not use a knife or other sharp object as it may damage the code.
2. Go to www.pearsonactivelearn.com
3. If you already have an ActiveLearn Digital Services account (ActiveTeach or ActiveLearn), log in and click ‘I have a new access code’ in the top right of the screen.
 • Type in the code above and select ‘Activate’.
4. If you do not have an ActiveLearn Digital Services account, click ‘Register’. It is free to do this.
 • Type in the code above and select ‘Activate’.
 • Simply follow the instructions on screen to register.

Important information

• The access code can only be used once.
• Please activate your access code as soon as possible, as it does have a ‘use by date’. If your code has expired when you enter it, please contact our Activelearn support site at digital.support@pearson.com
• The ActiveBook will be valid for three years upon activation.

Getting help

• To check that you will be able to access an ActiveBook, go to www.pearsonactivelearn.com and choose ‘Will ActiveLearn Digital Service work on my computer?’
• If you have any questions about accessing your ActiveBook, please contact our Activelearn support site at www.pearsonactivelearn.com/support
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOUT THIS BOOK</td>
<td>vi</td>
</tr>
<tr>
<td>ASSESSMENT OVERVIEW</td>
<td>viii</td>
</tr>
<tr>
<td>UNIT 1: DIGITAL DEVICES</td>
<td>2</td>
</tr>
<tr>
<td>UNIT 2: CONNECTIVITY</td>
<td>64</td>
</tr>
<tr>
<td>UNIT 3: OPERATING ONLINE</td>
<td>94</td>
</tr>
<tr>
<td>UNIT 4: ONLINE GOODS AND SERVICES</td>
<td>166</td>
</tr>
<tr>
<td>UNIT 5: APPLYING INFORMATION AND COMMUNICATION TECHNOLOGY</td>
<td>180</td>
</tr>
<tr>
<td>UNIT 6: SOFTWARE SKILLS</td>
<td>200</td>
</tr>
<tr>
<td>ANSWERS TO END-OF-CHAPTER QUESTIONS</td>
<td>334</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>340</td>
</tr>
<tr>
<td>INDEX</td>
<td>348</td>
</tr>
</tbody>
</table>
UNIT 1
DIGITAL DEVICES
CHAPTER 1: DIGITAL DEVICES 4
CHAPTER 2: SOFTWARE 42
CHAPTER 3: MEMORY AND PROCESSORS 59

UNIT 2
CONNECTIVITY
CHAPTER 4: DIGITAL COMMUNICATION 66
CHAPTER 5: NETWORKS 79

UNIT 3
OPERATING ONLINE
CHAPTER 6: RISKS TO DATA AND PERSONAL INFORMATION 96
CHAPTER 7: IMPACT OF THE INTERNET 109
CHAPTER 8: ONLINE COMMUNITIES 132
CHAPTER 9: THE IMPLICATIONS OF DIGITAL TECHNOLOGIES 147
CHAPTER 10: ONLINE INFORMATION 159

UNIT 4
ONLINE GOODS AND SERVICES
CHAPTER 11: ONLINE SERVICES 168
CHAPTER 12: THE CLOUD 176
UNIT 5
APPLYING INFORMATION AND COMMUNICATION TECHNOLOGY
CHAPTER 13: APPLYING ICT 182

UNIT 6
SOFTWARE SKILLS
CHAPTER 14: FILE MANAGEMENT 202
CHAPTER 15: WORD PROCESSING 208
CHAPTER 16: GRAPHICS 239
CHAPTER 17: PRESENTATION 248
CHAPTER 18: WEB AUTHORING 262
CHAPTER 19: SPREADSHEETS 276
CHAPTER 20: DATABASE MANAGEMENT 307

ANSWERS TO END-OF-CHAPTER QUESTIONS 334
GLOSSARY 340
INDEX 348
ABOUT THIS BOOK

This book is written for students following the Edexcel International GCSE (9–1) Information and Communication Technology (ICT) specification and covers both years of the course. The specification and sample assessment materials for ICT can be found on the Pearson Qualifications website.

In each unit of this book, information is interspersed with activities in order to put learning into practice and Chapter Questions help assess understanding in preparation for the exam. Other features such as Did you know? and Hint boxes help to expand knowledge and reinforce learning.

The language throughout this textbook has been reviewed by a language specialist to ensure it is written in a clear and accessible style, with both advanced general and ICT-specific terminology highlighted. Subject specific vocabulary is also defined in the glossary at the back of the book.

EXTRA RESOURCES

Downloadable interactive practice activities are provided as part of your Activebook. They are marked with this symbol in the student book and can be downloaded by clicking on this icon within the Activebook.
ABOUT THIS BOOK

Activities provide exercises to help deepen your understanding of a topic.

General Vocabulary boxes provide definitions of the general terms used in the text.

Key Point boxes summarise the essentials.

Hint boxes give you tips on important points to remember in your examination.

Chapter Questions test your knowledge of the topic in that chapter.

Skills tags tell you which skills you are practising in each question.
ASSESSMENT OVERVIEW

The following tables give an overview of the assessment for the Edexcel International GCSE in ICT.

We recommend that you study this information closely to help ensure that you are fully prepared for this course and know exactly what to expect in the assessment.

PAPER 1

<table>
<thead>
<tr>
<th>PERCENTAGE</th>
<th>MARK</th>
<th>TIME</th>
<th>AVAILABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>100</td>
<td>1 hour and 30 minutes</td>
<td>June examination series First assessment May/June 2019</td>
</tr>
</tbody>
</table>

Written examination paper
- Paper code 4IT1/01
- Externally set and assessed by Edexcel

PAPER 2

<table>
<thead>
<tr>
<th>PERCENTAGE</th>
<th>MARK</th>
<th>TIME</th>
<th>AVAILABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>100</td>
<td>3 hours</td>
<td>June examination series First assessment May/June 2019</td>
</tr>
</tbody>
</table>

Practical examination paper
- Paper code 4IT1/02
- Externally set and assessed by Edexcel

ASSESSMENT OBJECTIVES AND WEIGHTINGS

<table>
<thead>
<tr>
<th>ASSESSMENT OBJECTIVE</th>
<th>DESCRIPTION</th>
<th>% IN INTERNATIONAL GCSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO1</td>
<td>Demonstrate knowledge and understanding of Information and Communication Technology (ICT)</td>
<td>25-27%</td>
</tr>
<tr>
<td>AO2</td>
<td>Apply knowledge, understanding and skills to produce ICT-based solutions</td>
<td>46-52%</td>
</tr>
<tr>
<td>AO3</td>
<td>Analyse, evaluate, make reasoned judgements and present conclusions*</td>
<td>24-26%</td>
</tr>
</tbody>
</table>

* Students will be required to demonstrate approximately 15% analysis and 10% evaluation.
Relationship of Assessment Objectives to Units

<table>
<thead>
<tr>
<th>UNIT NUMBER</th>
<th>ASSESSMENT OBJECTIVE</th>
<th>AO1</th>
<th>AO2</th>
<th>AO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper 1</td>
<td></td>
<td>20-23%</td>
<td>14-16%</td>
<td>13-14%</td>
</tr>
<tr>
<td>Paper 2</td>
<td></td>
<td>5-6%</td>
<td>34-36%</td>
<td>10-11%</td>
</tr>
<tr>
<td>Total for International GCSE</td>
<td></td>
<td>25-27%</td>
<td>46-52%</td>
<td>24-26%</td>
</tr>
</tbody>
</table>

Paper 1
- **Written paper**
 - **Paper code**: 4IT1/01
 - **Structure**
 - Paper 1 assesses 50% of the total ICT qualification.
 - The examination comprises a mixture of multiple-choice, short- and long-answer questions.
 - **Total number of marks available**: 100

Paper 2
- **Practical paper**
 - **Paper code**: 4IT1/02
 - **Structure**
 - Paper 2 assesses 50% of the total ICT qualification.
 - There are two sections in the paper – both are required.
 - There is no optional element to the practical examination.
 - **Total number of marks available**: 100
UNIT 1
DIGITAL DEVICES

Assessment Objective 1
Demonstrate knowledge and understanding of Information and Communication Technology (ICT)

In this unit, you will learn about the features, purpose and use of a range of digital devices and the software that can be used with them. Understanding the rapid developments in the features and functionality of digital devices will help you to understand their current and possible future uses by individuals, organisations and society.

Assessment Objective 2
Apply knowledge, understanding and skills to produce ICT based solutions

Assessment Objective 3
Analyse, evaluate, make reasoned judgments and present conclusions
1 DIGITAL DEVICES

Digital devices are pieces of hardware that use computers or microcontrollers, and they are found everywhere in our digital world. They enhance and support how we live our lives every day. They can connect and work together to give us the data we need, when and where we need it.

Digital devices are always developing. This changes the way in which they are used by individuals, organisations and local, national and global societies.

LEARNING OBJECTIVES

- Be aware that mainframe computers are used for complex processing tasks and microprocessors are embedded in products such as washing machines
- Understand that laptop and desktop computers are types of personal computers. Some laptops are used as desktop replacements
- Know about types of mobile phones; smartphones and specialist phones and how they connect to the network (SIM)
- Know about tablet devices
- Be able to describe the purpose and use of other digital devices such as:
 - cameras and camcorders
 - games consoles
 - home entertainment systems
 - media players
- Know about navigation aids and how they are used
- Understand the terms ‘multifunctional’ (e.g. mobile phones that include a camera, have limited game playing functionality and GPS) and ‘convergence’ (e.g. functionality of smartphones and tablet devices becomes more similar) in the context of digital devices
- Understand features of digital devices: portability, performance, storage, user interface, connectivity, media support, energy consumption, expansion capability, security features
- Be able to discuss the features of identified digital devices
- Be able to identify digital devices and associated peripheral devices that meet particular needs, including accessibility
- Know about types of output peripheral such as monitor (screen size, resolution), printer (laser, inkjet, 3D), plotter, data projector, speaker, control device and when they would be used
- Know about types of input peripheral such as keyboard, mouse, tracker ball, joystick, graphics tablet, scanner, digital camera, webcam, microphone, touch screen, OMR reader, OCR reader, bar code scanner, biometric scanner, magnetic stripe reader, chip and pin, sensor and when they would be used
- Be able to differentiate between storage devices and the media used to store data
- Know the characteristics of hard disk drives (HDD), solid state drives (SSD), optical disk drives, flash memory drives
- Know that storage devices can be internal or external
- Know about types of storage media such as hard disks, optical disks (CD, DVD, Blu-ray), flash memory devices, magnetic tape
- Know that storage media can be recordable / write once (R) and rewritable (R/W)
- Understand the terms describing the capacity of storage such as bit, byte and multiples of these (kbytes, mbytes, gbytes, tbytes) (using $1KB = 1000$ bytes)
UNIT 1 DIGITAL DEVICES

TYPES OF DIGITAL DEVICES

There are many types of digital devices. They range from very powerful **mainframe computers**, used by large organisations for complex processing tasks such as statistical analysis and bulk data processing, to **microprocessors** used to control washing machines, televisions and other household appliances. Examples of the devices you will consider include personal computers, digital cameras and home entertainment systems.

Figure 1.1 A mainframe computer

Figure 1.2 A microprocessor

ACTIVITY

1. Research the difference between a mainframe computer, a server and a supercomputer.
2. Create a list of the digital devices in your home that use microprocessors.

PERSONAL COMPUTERS

SUBJECT VOCABULARY

upgrade to make a computer better and able to do more things

peripheral device equipment that is connected to a computer and used with it

Personal computers (PCs) are common in homes and offices. They come in many different shapes and sizes, such as desktops and laptops.

DESKTOPS

Desktops have more space for components than laptops and often provide users with the option to upgrade them or add additional components. A desktop computer usually needs to have peripheral devices connected to it, such as a monitor, a printer, a mouse and a keyboard. For more information about peripheral devices, see pages 19, 20 and 32.
Some desktops are ‘all-in-one’. This means that they combine the monitor with the PC hardware, as shown in Figure 1.4.

Laptops include a keyboard, a screen, a track pad (see page 23) and a rechargeable battery. Having these features means that they can be taken away from the desk, which makes them an example of a portable device.

Some laptops are called ‘desktop replacements’. These tend to be larger than other laptops, as well as having a bigger and better-quality screen and higher performance levels.
SINGLE-BOARD COMPUTERS

Single-board computers (SBCs) are affordable computers used in education, embedded computing projects and physical computing projects. The Raspberry Pi Zero (see Figure 1.6) is an example of an SBC. The unit itself costs very little and uses a cheap microSD card as its storage.

MOBILE PHONES

Mobile phones use a SIM card to connect to a mobile phone network. SIM stands for subscriber identity module, and a SIM card is used to identify the subscriber to a mobile phone network.

DID YOU KNOW?

Sri Lanka has more mobile phones than people. In 2015, for every 100 Sri Lankan citizens there were 113 mobile phones.

SPECIALIST PHONES

Some mobile phones have specialist features to provide users with functions that meet particular user needs. For example, some phones have an emergency button that is linked to a list of emergency contacts. When this button is pressed, the phone will call each person on the list until someone answers.

ACTIVITY

Discuss which groups of people could need a phone with an emergency button. How would this phone meet their needs?

Other phones meet users’ accessibility needs. Examples include the Alto 2 ‘talking phone’, shown in Figure 1.8, which is a specialist mobile phone for blind and partially sighted people. It meets its users’ needs because every feature and function is spoken aloud. Other phones provide fewer, larger buttons and connections for hearing aids.
SMARTPHONES

Smartphones are small computers with Wi-Fi and mobile phone connectivity to allow them to make phone calls and access the internet. They also include features of other devices such as cameras, media players and hand-held games consoles. They have a more advanced operating system than other mobile phones. Applications (or apps) can be downloaded onto the smartphone, which allow users to customise their smartphones with entertainment, educational and business features. Most smartphones use a touch screen to allow users to input information. A virtual keyboard is used to enter text, numbers and other characters.

Because they combine so many features, smartphones use more power than other types of mobile phone. This means that they have a shorter battery life and need to be charged more regularly than other mobile phones.

ACTIVITY

SMARTPHONES AND MOBILE PHONES

1 Research which smartphone features use the most power.
2 Make a list of activities for which a standard mobile phone would be more suitable than a smartphone.

ACCESSIBILITY

The Royal National Institute of Blind People is a UK organisation that supports people with sight impairments. Do an internet search for the key terms ‘RNIB mobile phone accessibility’ to visit the RNIB’s website, which will give you lots of information about the accessibility features of mobile phones and smartphones.

Watch the video on the RNIB’s website about the accessibility features of major smartphones and make a list of the features mentioned. Which features did you already know about?
TABLETS

Tablet devices or tablets are bigger than smartphones, but have similar features. For example, a tablet device has a touch screen, apps and Wi-Fi connectivity to provide access to the internet. Some tablet devices have SIM card slots to allow internet connectivity using the mobile phone network, so that they can be online when they are not within range of a Wi-Fi signal.

CAMERAS AND CAMCORDERS

Digital cameras and camcorders use light sensors to capture images formed by light passing through the device’s lens. Traditionally, cameras are used to capture still images and camcorders are used to capture moving images. However, most digital cameras can now film moving images and most camcorders can photograph still images.

The quality of the image captured by the camera depends on the quality of the lens, the image processor and the resolution of the sensor.

- A good lens allows light to travel through it without introducing any defects. It also allows the user to choose how much light can travel through it, which affects the final image.
- A good image processor can compensate for poor lighting conditions.
- Digital images are made up of small dots called pixels. Better-quality sensors can capture more detail and produce images with a greater number of pixels. The sensor resolution of a camera is expressed as the number of pixels that can be captured, as shown in Table 1.1. Some cameras use more than one sensor, each dedicated to a different colour or wavelength of light.
SUBJECT VOCABULARY

resolution the number of pixels used by a screen to display an image

pixelated an effect that creates an unclear image consisting of large individual pixels that are visible to the human eye

HOME ENTERTAINMENT SYSTEMS

Television

Television displays still and moving images on a screen. The quality of the image is set by the number of pixels that are used to display the image. This is referred to as the screen’s resolution. High definition (HD) television screens contain a larger number of pixels, which means that they have a higher resolution than standard definition televisions.

The resolution of a television in pixels is stated as horizontal pixels × vertical pixels. Often, television manufacturers do not specify the number of horizontal pixels and instead refer only to the number of vertical pixels. For example, a resolution of 1280 × 720 is often stated as 720p and 1920 × 1080 is stated as 1080p.

Ultra High Definition (UHD) television screens are sometimes referred to as 4K or 8K because they have a horizontal resolution of approximately 4,000 or 8,000 pixels. 8K screens make each pixel impossible to tell apart even when users are close to the screen.

Table 1.1 Maximum display size at different resolutions

<table>
<thead>
<tr>
<th>Resolution (number of pixels)</th>
<th>Maximum display size of image (in pixels, width × height) before pixelation occurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3 megapixel (1.3 million pixels)</td>
<td>1280 × 960</td>
</tr>
<tr>
<td>2 megapixel</td>
<td>1600 × 1200</td>
</tr>
<tr>
<td>3 megapixel</td>
<td>2048 × 1536</td>
</tr>
<tr>
<td>4 megapixel</td>
<td>2272 × 1704</td>
</tr>
<tr>
<td>8 megapixel and above</td>
<td>2560 × 1920</td>
</tr>
</tbody>
</table>

Figure 1.13 The area of the image with the leaf becomes **pixelated** when enlarged

Figure 1.14 Comparison chart showing different screen resolutions
ACTIVITY

▼ TYPES OF TELEVISION

1 Research the cost of HD, 4K and 8K televisions.
2 Research the types of content that is broadcast or available to buy in each resolution. How easy would it be to stream content in each resolution?
3 Estimate how far you sit from your television when watching television at home, then research how close to the screen a user must be in order to notice the quality of the three different resolutions.
4 Discuss whether it is worth paying the extra cost for 4K and 8K televisions in order to watch television. Do you think there is any point in creating 16K screens for home use?

For the production of sound, most televisions come with built-in speakers. However, these are often small and of limited quality because the screen is usually very thin. Most modern televisions can be connected to an external sound system to improve their sound quality.

Smart televisions use apps and can download and stream content from the internet.

SOUND SYSTEMS

Sound systems can produce loud, rich sound using high-quality speakers and amplifiers. Some speakers contain built-in amplifiers.

Sound systems can play music from CDs or from local storage. They can usually be connected to personal devices like smartphones, media players and tablet devices using wired connections like USB or wireless connections like Bluetooth. They can also be connected to a local network via Wi-Fi to play music that is stored on connected devices. Some sound systems can also connect to the internet to play music stored online.

PERSONAL VIDEO RECORDERS

A personal video recorder (PVR) is a device that records broadcasted content so that it can be watched at a later date.

Some devices fall into multiple categories. For example, some satellite television devices contain both a set-top box (STB) and a PVR.

BLU-RAY AND DVD PLAYERS

Blu-ray and DVD players connect to televisions in order to play films and other content that is stored on DVD or Blu-ray disks (see page 39 for more on Blu-ray media). Blu-ray players will usually play DVD disks, but DVD players will not play Blu-ray disks.

Blu-ray disks can store HD movies, which have higher-quality picture and sound. Newer 4K Ultra HD Blu-ray players can play 4K content on 4K televisions.
Games consoles are designed to enable users to play video games on a television screen. Games are provided on disks or as downloads from the internet. They use controllers, which are often wireless, to control the characters, vehicles and/or objects in the game.

Some consoles use motion sensors to allow the player to control the game with gestures and body movements. Other games use virtual reality controllers and headsets to immerse the player in a realistic gaming experience, where their own movements in the real world are replicated by an avatar in the virtual world of the game.

Modern games consoles are multifunctional (see page 15). They may have apps and connectivity that provide access to local networks and the internet as well as the option to play movies and music. Some consoles also have disk drives to play films and other content on DVD, Blu-ray or 4K Ultra HD Blu-ray media.
Consoles can often do more than just play games. Handheld versions of games consoles provide mobile gaming. Handheld consoles have a built-in screen and less storage than a full-size console. This means that the games that can be played on these devices often have reduced image and sound quality, reduced game complexity and limited storylines in order to reduce the amount of data that needs to be stored.

Media players provide video and audio content to a television. This content could be streamed directly from the internet or accessed from networked or local storage. Media players can be connected to a television directly or using a wired or wireless network. They are controlled using a remote control or, in some cases, a smartphone app. Some media players offer output in 4K.

Media players provide video and audio content to a television. This content could be streamed directly from the internet or accessed from networked or local storage. Media players can be connected to a television directly or using a wired or wireless network. They are controlled using a remote control or, in some cases, a smartphone app. Some media players offer output in 4K.

Smart televisions have the streaming and networking functions of a media player built in. Do you think that smart televisions are going to replace media players? Discuss your reasons for thinking that this may or may not happen.

Personal media players are compact, portable devices with local storage to hold media files for playback. They are useful when travelling or exercising due to their small size and long battery life. They often use solid state flash memory storage (see page 62), which is not affected by being moved or shaken.
NAVIGATION AIDS

Navigation aids (such as Sat-Nav) can calculate the best route between two or more locations and can provide updates to the route if it is not followed accurately. They are commonly used in cars, delivery vans and ships. They provide visual prompts and alerts to help drivers take the correct route, such as by taking a particular turning. Specialist devices with audio alerts and waterproof and shockproof cases are available for walkers, cyclists and runners.

Navigation aids use information from GPS satellites to determine the exact location of the device on Earth. Navigation aids also use orientation sensors to know which way the device is currently pointing, and the device will display the user’s position and orientation on a map. Maps are either stored permanently on the device or downloaded from the internet when they are needed.

GPS does not need internet connectivity in order to work. However, navigation aids need internet connectivity in order to update map data.

DID YOU KNOW?

GPS satellites orbit more than 20km above Earth. They are accurate to within 5 metres.

HOME AUTOMATION DEVICES AND SMART ASSISTANTS

One type of emerging technology is a group of devices that can be used to create smart homes. For example, home automation devices can connect a range of digital devices which sense and control functions in the home, such as temperature and lighting. These functions can be controlled from apps on smartphones or the internet.
A smartphone is a type of mobile phone, which means that its primary function is to make phone calls. It can also be used to take photographs or to function as a navigation aid, fitness tracker, music player or handheld games console. Because a smartphone can perform such a range of different functions, it is classed as a **multifunctional device**.

ACTIVITY

Identify another example of a multifunctional device. What is its primary function? What else can it do?

As they develop, devices like smartphones often adopt technologies and features from other types of device. This is called **convergence**.

Convergence blurs the distinction between different types of device. For example, smartphones and tablet devices are very similar. They are different in that a smartphone has mobile phone network connectivity and is smaller than a tablet device. However, newer smartphones are getting bigger to look more like tablets (and are known as ‘phablets’), while tablet devices can now connect to mobile phone networks. Similarly, most smartphones have digital cameras, while some digital cameras have Wi-Fi and mobile phone network connectivity.
Research the differences and similarities between smartphones, tablet devices and touch screen laptops.

The digital devices that you use have a number of features, such as portability, performance and connectivity. Different devices will have different features.

For a device to be portable, it needs to be easy to carry and move around. This means that the portability of a device is directly related to its size and weight. For some devices, such as a television or a desktop computer, portability is unlikely to be a priority.

A high-performance device performs its job or tasks quickly. The speed at which a device performs is determined by the speed at which it can carry out instructions from its software. Software instructions are carried out by the processor, which means that a faster processor will increase performance (see page 62).

Instructions are loaded into the processor from RAM, which means that faster RAM will also allow instructions to be loaded into the processor more quickly. RAM holds all software instructions to be carried out, so more RAM will allow the system to have more programs running at the same time. In addition, because instructions are loaded into RAM from storage, such as a hard disk (see page 39), faster storage will enable faster loading of instructions to RAM.

When the space in RAM runs out, storage is used as an overflow, and this is known as virtual memory (see page 60). This means that fast storage means faster access to instructions in virtual memory.

The software itself can also be written in an efficient way that makes the most of the processor’s capabilities. Inefficient software can slow down the whole system and therefore has an impact on a device’s performance.

Files and programs are stored in storage. More available storage allows users to store more files and programs. Storage speed also affects performance, as you saw in the previous section.

Users give commands to a device through the user interface. There are several different types of user interface.

When using a command line interface, users enter text instructions and the computer system provides results or feedback as text. This type of interface
is often found on older systems or for devices with limited storage because it requires little memory.

Commands have to be typed precisely because the interface only recognises certain commands. There is usually a help menu for users that lists and explains the acceptable commands.

MENU-DRIVEN INTERFACE

This type of interface displays a list of options as a menu. Selecting one of these options will either trigger a command or display another menu with further options to choose from.

Menu-driven interfaces are easier to use than command line interfaces, but can take more time as you have to go through the menu structure each time you want to carry out a command, rather than typing the command directly into the system.

This type of interface is used in many devices including ATMs (cash machines in banking), televisions and older mobile phones.
GRAPHICAL USER INTERFACE (GUI)

A graphical user interface (GUI) is controlled by a pointer on the screen and uses a screen made up of windows, icons and menus.
- Windows are areas of the screen that are dedicated to applications or operating system tasks.
- Icons are small images that represent an application. They can be selected with the pointer to open the application.
- Menus provide options for tasks relating to the operating system or open application.

This is the easiest type of interface to use, but it takes up more memory and storage than a command line or menu-driven interface.

VOICE INTERFACE

A voice interface allows the user to give spoken commands to a device. The device has voice recognition software which matches the spoken words against a library of words to find a match. To save storage on the device, the library of words is often stored online, so these devices usually require internet access.

The disadvantage of using a voice interface is that sometimes the software cannot find a match or returns an incorrect match, which produces unwanted results. For this reason, voice interfaces sometimes check the instruction with the user before searching for a match. Some voice interfaces use the results of this confirmation to ‘learn’ the voice of their user and improve future matches.
The advantage of voice interfaces is that hands-free operation is possible. This means that they are often used in vehicles in order to improve road safety.

GESTURE INTERFACE

This type of interface allows the user to control the device by swiping their finger or fingers across the screen, or by pinching their fingers together to zoom in or out. This type of interface is commonly found on devices with touch screens.

CONNECTIVITY

Devices can share data by connecting to each other using wired or wireless connectivity. Connectivity can be used to update software, back up files or play media from one device on another. Different connectivity types provide different speeds of data transfer and levels of convenience. Wired connectivity is usually faster and more reliable, but introduces additional cost, mess, inconvenience and safety risks such as tripping, especially for young children.

You will learn more about connectivity types in Unit 2 Connectivity (pages 71–76).

MEDIA SUPPORT

Different devices can read data from and write data to different types of media. Examples of media include SD and microSD flash memory cards, and DVD. If devices do not have built-in (native) media, adapters can usually be connected to provide connectivity to an external device into which the media can be inserted.
Digital devices require electricity to work. One benefit of lower energy consumption in mobile devices is a longer battery life. Due to the rising cost of energy and pressure from customers and governments to be more environmentally responsible, manufacturers are creating digital devices that consume less energy. The aim of this is to save their customers money and demonstrate social responsibility, such as by reducing environmental damage. You will learn more about sustainability in Unit 3 Operating online (page 153).

DID YOU KNOW?
Computers can generate a lot of heat. This means that a large proportion of the energy consumed in data centres is used to cool the computers.

ACTIVITY
Visit environment.google in order to research the steps that Google™ has taken to make its activities more environmentally responsible. You could also watch Google’s video, Story of Send.

Some PCs allow users to install additional components. Some smartphones and tablet devices have expansion slots to allow them to make use of flash memory cards (see page 19). Systems can also be expanded using ports such as USB ports. These allow the user to connect extra devices called peripheral devices (pages 21–41).

The data stored on digital devices may be private, valuable or both. This means that devices need to have security features to keep their users’ data safe.

SOFTWARE SECURITY
To prevent unauthorised access to data, digital devices have a range of software security features to ensure that the person trying to use the device is allowed to do so.

The operating systems of many devices can be set so that, when the device is turned on, the user must enter a password or personal identification number (PIN) before the device can be used. Another common security setting locks the device’s screen or keyboard if it has not been used for a specified period of time, after which the password or PIN will be required to unlock it again. Some devices are set so that, if an incorrect password or PIN is entered, the user must wait a set amount of time before trying again. Such systems may even wipe the data after only a few failed attempts. This prevents criminals from freely guessing thousands of combinations in order to break into the device or system.

The longer and more complex a password is, the better it is. Pattern PINs are used by some smartphone operating systems, and they allow the user to set a swipe pattern between a group of points. A four-digit pattern PIN is more secure than a four-digit PIN, because it has 389,112 possible combinations, whereas the four-digit PIN has 10,000 possible combinations.
Some devices use biometric scanners, such as Apple® Touch ID®1, to provide authorised users access to data on that device (see page 27 for more about biometric scanners).

You will learn more about passwords, PINs and other ways to secure data in Unit 3 Operating online (page 100).

PHYSICAL SECURITY

Physical security to prevent theft is also important. Many devices use security slots which can have locks attached to secure them to furniture. Some attach to specialist slots. Others connect to a port on the device with special screws used to secure the locks in place. Figure 1.33 shows an example of a security lock.

SKILLS

CRITICAL THINKING

INTELLECTUAL INTEREST AND CURIOSITY

ACTIVITY

DRONES AND SECURITY

1. Search for and watch these three videos online:
 - TU Delft – Ambulance Drone
 - Drone Racing: First Person View (FPV) Lateline
 - Amazon® Prime Air’s First Custom Delivery
 How do the features of these drones allow them to perform their function?

2. Search for ‘Eagles drones Dutch Police’ and read an online news article about how police are responding to the negative use of these devices.

TYPES OF PERIPHERAL DEVICES

Peripheral devices are devices that can be connected to a computer, such as a PC or tablet device. Peripherals can be connected inside or outside a computer and can be grouped into three types (see Figure 1.34):

- input
- output
- storage.

1 TOUCH ID® IS A TRADEMARK OF APPLE INC., REGISTERED IN THE U.S. AND OTHER COUNTRIES
ACTIVITY

THE CHARACTERISTICS OF PERIPHERAL DEVICES

Create posters that include the characteristics and uses of a range of peripheral devices. You could split the work between members of your class so that some of you investigate input peripherals, some investigate output peripherals and some investigate storage peripherals.

INPUT

Input peripherals are devices that send data to the computer. They allow the user to control the computer or store data captured from sources outside the system.

KEYBOARDS

Keyboards use buttons known as keys, which users press to input text or to interact with software. Keyboards send data to the computer either using a wired or wireless connection. Different types of keyboards are used for different operating systems, languages and functions, as shown in Figure 1.35.

![Figure 1.35 Different layouts are provided for different operating systems or language requirements](image)

Combinations of key presses allow the user to access common software commands called shortcuts. Some people learn to touch-type, which is a method of typing without needing to look at the keys. This increases the speed at which these people can input data.

![Figure 1.36 This is an example of a keyboard used with specialist video software; the keys are mapped to specialist commands](image)
ACTIVITY

KEYBOARD SHORTCUTS

Choose a piece of software and look up three keyboard shortcuts that you could use to complete common tasks more quickly.

POINTING DEVICES

A **pointer** is used on a screen to select displayed objects. There are several types of device that allow you to control a pointer.

- **Mouse**: A mouse uses an optical sensor to recognise the movement of the device. Its sensitivity can be affected by the surface upon which it is placed. Some mice use roller balls to control the movement of the pointer.

 ▲ Figure 1.38 Have you used a roller ball before?

- **Tracker ball**: A tracker ball is rolled to move the pointer. It does not have buttons to press.

 ▲ Figure 1.39 Tracker balls are often used in installations like the kiosk shown here

- **Track pad**: The track pad surface senses finger movements, touches and presses.

 ▲ Figure 1.40 Track pads are often built into laptop computers to save space

DID YOU KNOW?

The layout of keys on a standard QWERTY keyboard comes from the layout of keys on a typewriter. The most commonly used letters were spread out, to reduce the number of times the metal typewriter hammers hit each other.

SUBJECT VOCABULARY

pointer an on-screen indicator used to select displayed objects

▲ ▲ Figure 1.37 An arrow is often used as the pointer
Digital Devices

Joystick: Joysticks are commonly used on games controllers to move sprites around the game.

![Figure 1.41 Have you used a joystick like this one?](image)

Graphics tablet: A graphics tablet is a flat pad that is used with a stylus. Users use the stylus to draw or write on the graphics tablet. These devices are often used by digital artists and designers.

![Figure 1.42 Graphics tablets are often used by digital artists and designers](image)

Scanner (Including OCR and OMR)

Scanners use light sensors to record physical documents as images, which are then saved as files to the computer. Software allows scanners to read characters on the document and store the result in a text file. This is known as Optical Character Recognition (OCR). Optical Mark Recognition (OMR) software can also be used with scanners to detect simple marks on a document. A common use for OMR is for recognising and recording responses to multiple choice tests.

Barcode Scanner

A barcode is a pattern of lines and gaps that can be read by barcode scanners, which detect the width of lines and gaps in a barcode. Barcodes are often used on parcels, so that they can be tracked, and on items for sale in shops. The barcode represents letters and numbers which are used to identify the item.

There are two types of barcode:

- **Linear**
- **Matrix**

![Figure 1.44 Linear barcode used to identify a parcel](image)
Matrix codes are also known as QR codes. They are newer than linear barcodes and have some advantages over linear barcodes, such as:

- they can hold much more information than linear barcodes
- they can be scanned from any angle.

In South Korea, a supermarket company wanted to open a new shop, but there was no space left on the high street. Instead, the company created a ‘virtual store’ by putting posters of their supermarket shelves in a subway station, as shown in Figure 1.45. Every item pictured on the shelves had its own QR code that shoppers could scan. This allowed people to shop while they were travelling to work in the morning, knowing that their shopping would be delivered to their home that evening.

![Figure 1.45 A Virtual Subway Store in South Korea](image)

Did You Know?

There are apps for smartphones and tablet devices that use the device’s camera to read barcodes and QR codes. There are also websites that allow users to create barcodes and QR codes.

Activity

Matrix Codes

Visit a website to create a QR code for a plain text message. Ask a friend to scan it to reveal the message you have left for them.

Webcam

Webcams are specialised cameras. They are generally lower quality than camcorders, and may have built-in microphones to capture sound. They can be used as security cameras and can stream images or video to the internet.

Activity

Using Webcams

Webcam footage can be used for a variety of purposes. For example, if you do an internet search for ‘Bondi Beach webcam’, you will be able to see live footage from Bondi Beach in Australia, which can be used to check the conditions for surfing at the beach.

Find out about any webcams in your local country or local area. What are they being used for? Who would be interested in the footage?
MICROPHONE

A microphone is used to capture sound. It uses a **diaphragm** which moves when air hits it. This movement produces an **analogue** electrical signal. A microphone converts the electrical signal to a digital signal with its **sound card**, which acts as an analogue-to-digital converter.

Microphones can often be included in other devices, such as the headset in Figure 1.48. The headset itself is not a type of peripheral device, but a piece of equipment for combining a microphone and headphone speakers. Try to provide specific examples of peripheral devices when answering questions in the exam.

TOUCH SCREEN

SUBJECT VOCABULARY

- **diaphragm**: a thin round object, especially in a telephone or loudspeaker, that is moved by sound or that moves when it produces sound
- **analogue**: representing information with continuously variable electrical signals that digital signals approximate
- **sound card**: a device built into or added into a computer to allow it to playback and record audio
- **VoIP**: Voice over Internet Protocol, which is the technology that allows people to use broadband internet connections to speak to other people, rather than using a conventional telephone

Small, low-quality microphones are often built into computers and are used for voice recognition, recording speech or allowing **VoIP** calls using software such as Skype®. Higher quality microphones are often used by recording artists and can be connected to a sound card's audio input port.

DID YOU KNOW?

Microphones are often used in order to make devices and technology accessible to people with disabilities, as they provide access for people who are unable to input data using a mouse and keyboard.

HINT

Do not confuse accessibility (increasing people's ability to access devices and technologies) with usability (making devices more efficient and satisfying to use).
When a user presses on a resistive screen, the pressure causes two layers underneath the screen to touch and make a connection. Resistive touch screens are more durable than capacitive touch screens, but are harder to read because more layers reflect more light. In addition, they can only recognise one touch at a time, so they are not suitable for multi-touch applications.

Under the glass of a capacitive screen, there is a layer of capacitive material. When a user touches the screen, a small amount of charge flows away from their finger because humans are conductive. The change in electrical charge is measured precisely: the closer the finger is to the charged areas, the more current flows away. This allows the computer to calculate the precise location at which the screen was touched. Capacitive touch screens are often used in smartphones.

BIOMETRIC SCANNER

If you have watched a spy film, you may have seen a biometric scanner being used. Biometric scanners work by measuring part of the unique physical characteristics of a user, often multiple times, until a suitable average result is produced. This average result is then stored and future samples are compared against it in order to check whether the person being scanned is the authorised user. This allows the information to be updated so that the saved sample is perfected.

Four examples of biometric scanners are as follows.

- **Fingerprint recognition:** These scanners read the patterns of arches, loops and whorls in a human fingerprint. Fingerprints are unique to each individual person, which makes them a useful method of identification, but fingerprints can be obscured, damaged or changed, such as by injury or disease.

- **Facial recognition:** These scanners identify the structure of a human face in order to identify an individual.
- **Voice recognition**: These scanners require a microphone to capture the voice. They then compare the voice print against a saved original and check to see whether the two prints match. (See page 26 for more information about microphones.)

![Figure 1.54 Voice recognition software compares a voice print with a stored original and checks for a match](image1)

- **Iris recognition**: Like fingerprints, the human iris has a unique pattern, though an iris scan is approximately 120 times more detailed than a fingerprint. This means that iris recognition is 120 times more reliable when identifying people.

![Figure 1.55 Some passports now contain a chip that holds biometric data about the passport holder that is compared with the results of biometric scans carried out at airports](image2)

Table 1.2 Advantages and disadvantages of using biometric scanners

<table>
<thead>
<tr>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easier for users than passwords because biometric data cannot be forgotten</td>
<td>Cause privacy and security concerns because detailed personal information is stored electronically</td>
</tr>
<tr>
<td>More difficult to trick or confuse biometric scanners than some other methods</td>
<td>Possible to trick or confuse them</td>
</tr>
<tr>
<td>Can speed up transactions</td>
<td>Expensive to make and buy</td>
</tr>
<tr>
<td>Are not restricted by language barriers</td>
<td>Make some people feel uncomfortable</td>
</tr>
</tbody>
</table>
ACTIVITY

USING BIOMETRIC SCANNERS

1. Use the internet to do some research and create a table that compares the advantages and disadvantages of each method of biometric scanning (see Unit 6 Software skills (page 308) for more information about creating tables).

2. Create a survey to ask other people how they would feel about using each type of biometric scanner. What are their concerns?

3. What affects the reliability of each type of biometric scanner? Discuss your research findings and your thoughts with your teacher and the rest of your class.

4. What other factors could be considered when choosing a biometric security system?

CARD READERS

Card readers are used to read data stored on a card that is carried by a user. The data can be used to unlock doors, access secure areas, make payments or track people, parcels and even pet animals.

Cards can carry data using three methods. Each method needs a specialist type of reader.

- **Magnetic strip**: This is the least secure method as the data on the magnetic strip can easily be stolen by criminals who put the card through a card reader without the card owner’s knowledge.

- **Programmable chip**: Data on a programmable chip is only readable when a correct PIN is entered into the reader. In 2005, the UK introduced the chip and PIN system, which reduced certain types of fraud by 67%.

ACTIVITY

FRAUD

In the UK, online fraud rose 79% in the first three years after the country switched to the chip and PIN system. Discuss why this may have happened.
Radio Frequency Identification (RFID) and Near Field Communication (NFC): RFID is a short-range wireless communication method, and Near Field Communication (NFC) is a branch of RFID. RFID tags are cheap and small and they can be included in a variety of objects such as cards, key fobs and smartphones. They contain a unique identification number (ID) that is linked to records in a database. For example, the first image in Figure 1.58 shows a traveller using a prepaid travel card. A unique ID stored on the card links to account information stored in a database. You will learn more about databases in Unit 6 Software skills (page 307).

Figure 1.58 RFID tags can be included in a variety of objects

SENSORS

Sensors are used to input data about the physical environment. They can automatically input data without the need for human action. Their output is then processed by a computer. Sensors are one of the main features of smart devices such as smartphones and smart environments such as smart homes.

Figure 1.59 (Left to right) motion sensor, proximity sensor, temperature sensor and button sensor; the red item at the top is a light sensor and the red item at the bottom is a UV sensor
The use of sensors has many benefits, such as:

- they can be placed in remote or dangerous places
- they can monitor continually
- they remove the possibility of human error
- they can sense things that people cannot (such as small changes in pressure or gas levels)
- the data is easily (sometimes automatically) converted to a digital form.

There are many different types of sensor to allow for the monitoring of a range of environmental factors. Some of these factors are:

- light
- moisture and humidity
- temperature
- proximity and distance
- motion and movement (such as Passive Infrared (PIR) sensors)
- pressure.

ACTIVITY

USING SENSORS

1. For each environmental factor listed above, state one remote and one dangerous environment where a sensor could be used.

2. Research the appliances in modern smart homes that can use sensors. For each one, describe how sensors are used.

3. Research how sensors can help to prevent air traffic accidents. Can you find any instances where they may have caused accidents?

▲ Figure 1.60 Sensors are used in aircraft and data from them are displayed to the flight crew on instruments in the cockpit.
Output peripherals are connected to a computer and output the results of the computer's processing in various forms, including:

- electronic display
- printed text
- video
- audio
- tactile (touch) forms.

Monitor

Monitors allow users to see the output from the computer on an electronic display. Features of monitors include:

- screen size, which is measured diagonally
- resolution, which is measured in pixels (see pages 9–10 for information about pixels and screen resolutions)
- energy efficiency measures, such as going into a low-power standby mode if no input is detected.

Some monitors also use touch screen technology (see pages 26–27 for more information about touch screens).

Activity

1. Discuss the different uses for monitors.
2. Create a table of the uses for monitors with different sizes and resolutions (see Unit 6 Software skills (pages 220–223) for more information about creating tables).
PRINTER

There are three types of standard printer: dot matrix, inkjet and laser.

- **Dot matrix:** These printers are sometimes called ‘impact’ printers. This is because the print is made by hitting or ‘impacting’ the paper through a ribbon of ink, and this process is very noisy. The paper often has a number of **carbon copy** layers so it can make several copies of the same document as it prints it.

- **Inkjet printers:** These printers use cartridges containing different coloured ink. Black ink is held in a one cartridge, while the colour cartridge is often split into three colours: cyan, magenta and yellow. Tiny dots of these inks are sprayed onto the paper to form images or text.

GENERAL VOCABULARY

- **carbon copy** a copy of a document made using carbon paper (paper coated in a coloured substance that leaves traces on clean paper)

DID YOU KNOW?

Many cartridges can be refilled to save money and protect the environment.
Laser printers: These printers contain a rotating cylinder or drum that holds an electrical charge. A laser is used to **discharge** certain points on the drum and ‘draw’ an image. Electrically charged **toner** is attracted to those points on the drum and is heated onto paper that is passed over the drum.

Table 1.3 Comparing printer types

<table>
<thead>
<tr>
<th>SPEED</th>
<th>PRINTER COST</th>
<th>COST PER COPY</th>
<th>COLOUR PRINTING</th>
<th>QUALITY</th>
<th>EXAMPLES OF WHERE IT IS USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dot matrix</td>
<td>Slowest</td>
<td>Cheap</td>
<td>Low</td>
<td>Rare</td>
<td>Low</td>
</tr>
<tr>
<td>Inkjet</td>
<td>Fast</td>
<td>Medium</td>
<td>High</td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td>Laser</td>
<td>Fastest</td>
<td>Expensive</td>
<td>Medium</td>
<td>Yes</td>
<td>Highest</td>
</tr>
</tbody>
</table>

3D PRINTER

Three-dimensional (3D) printers create real-life versions of digital models. These printers work by adding layers of heated material from the bottom of the model all the way to the top. 3D-printed models take a long time to create.

![Figure 1.65 A 3D printer](image)

ACTIVITY

USING 3D PRINTERS

Find a video online that shows a 3D printer in action.

3D printers are often used to create complex items, sometimes with working parts. Some of these items could not be assembled in any other way. Examples of 3D-printed items include aeroplane parts, artificial limbs, prototype models of cars and even food such as pasta and chocolate.
In 2013, someone published the plans for a 3D-printed gun online. Discuss the impact of this.

2 Write notes to support two opposing arguments. One argument should support the wide availability of 3D printers, and the other should argue against the wide availability of these printers. You could then use your notes to debate this topic in your class.

DID YOU KNOW?
Plotters can also use a cutter attachment instead of the pen attachment to cut vinyl. This can be used to create stickers or images to go on printed clothing.

GENERAL VOCABULARY

cartographers people who draw and produce maps
DATA PROJECTOR

Data projectors are used for home entertainment, such as watching television or playing games, and for giving presentations in classrooms and business meetings. They have the following features.

- **Light bulbs:** These bulbs can have various brightness levels (measured in lumens) and are expensive to replace.
- **Resolution:** Like monitors, they use different quality screens (see page 9–10 for more about screen resolutions).
- **Zoom functionality:** The projected image can be made larger by enlarging the image using either optical zoom or digital zoom.
- **Portability:** Some smaller and lighter projectors are available, and these are easier to move around.

![Data projector](image)

▲ Figure 1.68 Data projectors are used to project a large image (or film) onto screens

ACTIVITY

▼ TYPES OF PROJECTOR

1. Do some online research to find an appropriate projector for:
 - use in a classroom
 - a home entertainment system
 - a person travelling on business.
2. For each projector that you identify, find out how long its light bulbs last (on average) and how much the replacement bulbs cost.

SPEAKER

Speakers allow a computer to output sound. Speakers often come in pairs to provide stereo sound. Multiple speakers are commonly used to provide surround sound in home entertainment systems. These speakers need a special amplifier that can deliver different levels of sound to each speaker to provide spatial awareness.

![Speaker](image)

▲ Figure 1.69 A pair of speakers is required for stereo sound because one is used for the left side and one is used for the right side
UNIT 1 DIGITAL DEVICES

ACTIVITY

DIFFERENT TYPES OF SOUND

Do some research to find out when mono sound may be most appropriate. When might listeners prefer stereo sound?

A single speaker is usually used to provide low-quality audio feedback to a user. These speakers are often small and low-quality, and are often found in alert systems such as alarms and buzzers.

ACTIVITY

USING LOW-QUALITY SPEAKERS

Think of the appliances and devices in your home that use low-quality speakers (you might want to start in the kitchen!).

CONTROL DEVICE

Control devices are also known as actuators, and they are components of a system that make something happen in the real physical world. These devices are often mechanical. Examples of actuators include:

- valves
- pistons
- heaters
- coolers
- motors.

DID YOU KNOW?

Nanorobots are made up of tiny sensors and actuators that are capable of assisting a surgeon by carrying out very precise medical procedures.
SECONDARY STORAGE (STORAGE)

GENERAL VOCABULARY
volatile likely to change, especially quickly or unpredictably

HINT
People often confuse storage and memory. You must know the difference between these terms, including what they do and the ways in which they are used.

SUBJECT VOCABULARY
virtual memory space on a computer for storing instructions and programs until they are needed or being used motherboard the circuit in a computer with connectors to which other components connect

SECONDARY STORAGE is often referred to as ‘storage’. However, it should not be confused with primary storage or main memory, which are terms sometimes used to refer to Random Access Memory (RAM) or Read Only Memory (ROM). You will learn more about RAM and ROM on pages 59–61. Secondary storage is non-volatile, which means it will not lose data when the system’s power is turned off.

Secondary storage is used for:
- storing a document for future use
- storing an application, ready to be loaded into RAM when the user opens the application
- virtual memory (see page 60).

DEVICES

Storage devices are used to store data or software that is used in a computer system.

Storage devices can be either internal or external. Internal drives connect directly to the computer’s motherboard. External devices are connected to the computer’s motherboard through the different ports and adapters on the computer’s exterior.

There are different types of storage device.
- Hard disk drives (HDD) contain hard disk media. The drives provide a connection from the disk to the motherboard, either directly or using a wireless adapter like Wi-Fi or a wired port like USB.
- Solid state drives (SSD, often referred to as flash drives) contain flash memory media. They are otherwise identical to hard disk drives.
- Optical disk drives contain optical disk media. Newer drives are often compatible with older media. For example, a disk drive that can read Blu-ray media can also read DVD and CD media. This is known as backwards compatibility.
MEDIA

Hard disks

Hard disks are made up of many concentric platters. These platters make up a cylinder that spins on a central spindle. A read/write head moves on an arm across tracks on the platter. The amount of time that it takes the read/write head to access data on the tracks is determined by how fast the cylinder of platters spins and how fast the read/write head is moved across the tracks. When reading, a read/write head changes the magnetic field into electrical current. When writing, it transforms electrical current into a magnetic field.

Typical spin speeds are 5400 revolutions per minute (rpm) or 7200 rpm.

The average seek time for a read/write head is 4–15 milliseconds (ms).

Optical media

Types of optical media include CDs, DVDs and Blu-ray disks.

- **CDs** can store up to 700 MB of data. The data is written to the disk using a laser, which writes data to a plastic layer beneath layers of aluminium and acrylic.

- **DVDs** look very much like CDs. Data is written to DVDs using a shorter wavelength of red laser light, which allows DVDs to store more data. They can store 4.7 GB on a single-sided, single-layer disk. Double-sided, dual-layer disks can store as much as 18 GB.

- **Blu-ray** disks are similar to CDs and DVDs, but use a scratch-protection coating. Violet laser light is used to store data at greater density than the red laser light used in DVDs. They can store 25 GB on a single-sided disk, and double-sided disks can store 50 GB.

All optical media is recordable and is known as CD-R, DVD-R or BD-R. Some CDs and DVDs can be rewritten (CD-RW, DVD-RW), and some Blu-ray media can be written then erased and rewritten (BD-RE).
DID YOU KNOW?
One explanation of why flash memory is so-called is that each cell is flashed (flooded) with electrons, forcing it to hold its charge. One other explanation for the name is that data is written very quickly (or, in colloquial English, ‘in a flash’).

Flash media
Flash media are more energy-efficient than hard disks as they do not have moving parts. For the same reason, they are also less likely to fail when they are moved around. This makes them suitable for use in portable devices.

Magnetic tape
Magnetic tape was originally designed to record sound, but it is now also used to store data.

Figure 1.76 Magnetic tape is mainly used for backing up data in large organisations

Table 1.4 Comparing types of media

<table>
<thead>
<tr>
<th></th>
<th>HARD DISK</th>
<th>FLASH MEDIA</th>
<th>OPTICAL MEDIA</th>
<th>MAGNETIC TAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA ACCESS SPEED</td>
<td>Fast</td>
<td>Fastest</td>
<td>Slow</td>
<td>Slowest</td>
</tr>
<tr>
<td>MAXIMUM CAPACITY</td>
<td>Varies, up to 128 GB</td>
<td>Varies, up to many TB</td>
<td>CD 700 MB DVD 18 GB Blu-ray 50 GB</td>
<td>Varies, up to 185 TB</td>
</tr>
<tr>
<td>COST PER GB</td>
<td>High</td>
<td>Very high</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>USE</td>
<td>Servers, personal computers, backups</td>
<td>Laptops, mobile devices</td>
<td>Multimedia (music, games and films), file backups</td>
<td>Whole system backups and archives</td>
</tr>
<tr>
<td>PORTABILITY</td>
<td>Not suitable</td>
<td>Yes</td>
<td>Not suitable</td>
<td>Not suitable</td>
</tr>
</tbody>
</table>

Storage media store data in binary form. This means that each **bit** of data holds one of two values: 0 or 1. Different media types interpret 0 or 1 differently.

- Hard disks change the magnetic charge of a platter to either negative or positive, depending on whether the value is 0 or 1.
- Optical media use tiny bumps on the disk’s surface to represent 0 and 1.
- Flash media use different levels of electrical charge, held in tiny individual cells, to represent 0 or 1.
- Magnetic tape changes the magnetic charge of the tape to either negative or positive, depending on whether the value is 0 or 1.

DID YOU KNOW?
The ‘bi’ in ‘binary’ comes from the Latin for ‘two’.
Table 1.5 Units of storage capacity

<table>
<thead>
<tr>
<th>NUMBER OF BYTES</th>
<th>WITH UNIT SYMBOl</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1 KB</td>
<td>Kilobyte</td>
</tr>
<tr>
<td>1000,000</td>
<td>1 MB</td>
<td>Megabyte</td>
</tr>
<tr>
<td>1000,000,000</td>
<td>1 GB</td>
<td>Gigabyte</td>
</tr>
<tr>
<td>1000,000,000,000</td>
<td>1 TB</td>
<td>Terabyte</td>
</tr>
<tr>
<td>1000,000,000,000</td>
<td>1 PB</td>
<td>Petabyte</td>
</tr>
<tr>
<td>1000,000,000,000</td>
<td>1 EB</td>
<td>Exabyte</td>
</tr>
<tr>
<td>1000,000,000,000</td>
<td>1 ZB</td>
<td>Zettabyte</td>
</tr>
<tr>
<td>1000,000,000,000</td>
<td>1 YB</td>
<td>Yottabyte</td>
</tr>
</tbody>
</table>

The IBM 350 was the first disk drive. It was 172 cm high, 152 cm long and 74 cm wide, and it could store 3.75 MB of data. People could hire one for US$38,400 per year. In 2016, manufacturers started selling the 256 GB microSD card, which is a flash memory card the size of a human fingertip. It was priced at US$175 and can store the same amount of data as 68,266 IBM 350 disks!

DID YOU KNOW?
In 2017, it would take about 9457 trillion years to download one yottabyte of data with a good internet connection.

CHAPTER QUESTIONS

1. State one benefit of using barcodes in a supermarket. (1)
2. State one reason why small, built-in microphones are used in smartphones and laptops. (1)
3. Explain why capacitive touch screens do not work when you are wearing woollen gloves. (2)
4. State three computer systems that do not use monitors. (3)
5. State two benefits of using laser printers rather than inkjet printers. (2)
6. State two types of business that use plotters. (2)
7. Explain why some 3D printers use biodegradable materials to create models. (3)
8. List two sensors used in smartphones. For each one, describe one way in which it is used by the operating system or an app. (4)
9. Discuss the advantages and disadvantages of using sensors in smart cars. (8)
10. Explain one reason why Blu-ray disks are used to store modern console games. (2)