Edexcel AS and A level Further Mathematics

Core Pure Mathematics

Book 1/AS

NEW FOR 2017
Complex numbers contain a real and an imaginary part. Engineers and physicists often describe quantities with two components using a single complex number. This allows them to model complicated situations such as air flow over a cyclist.
1.1 Imaginary and complex numbers

The quadratic equation \(ax^2 + bx + c = 0 \) has solutions given by:

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

If the expression under the square root is negative, there are no real solutions.

You can find solutions to the equation in all cases by extending the number system to include \(-1\). Since there is no real number that squares to produce \(-1\), the number \(-1\) is called an imaginary number, and is represented using the letter \(i\). Sums of real and imaginary numbers, for example \(3 + 2i\), are known as complex numbers.

- \(i = \sqrt{-1}\)
- An imaginary number is a number of the form \(bi\), where \(b \in \mathbb{R}\).
- A complex number is written in the form \(a + bi\), where \(a, b \in \mathbb{R}\).

Example 1

Write each of the following in terms of \(i\):

- \(\sqrt{-36}\)
- \(\sqrt{-28}\)

\[
\begin{align*}
\sqrt{-36} &= \sqrt{36 \times (-1)} = \sqrt{36} \times \sqrt{-1} = 6i \\
\sqrt{-28} &= \sqrt{28 \times (-1)} = \sqrt{28} \times \sqrt{-1} = 2\sqrt{7}i
\end{align*}
\]

In a complex number, the real part and the imaginary part cannot be combined to form a single term.

- Complex numbers can be added or subtracted by adding or subtracting their real parts and adding or subtracting their imaginary parts.
- You can multiply a real number by a complex number by multiplying out the brackets in the usual way.

Example 2

Simplify each of the following, giving your answers in the form \(a + bi\), where \(a, b \in \mathbb{R}\).

\[
\begin{align*}
&\text{a} \quad (2 + 5i) + (7 + 3i) & \quad \text{b} \quad (2 - 5i) - (5 - 11i) \\
&\text{c} \quad 2(5 - 8i) & \quad \text{d} \quad \frac{10 + 6i}{2}
\end{align*}
\]

\[
\begin{align*}
\text{a} \quad 2 + 5i + 7 + 3i &= 9 + 8i \\
\text{b} \quad 2 - 5i - 5 + 11i &= -3 + 6i \\
\text{c} \quad 2(5 - 8i) &= 10 - 16i & \quad \text{d} \quad 5 + 3i
\end{align*}
\]

Links

For the equation \(ax^2 + bx + c = 0 \), the discriminant is \(b^2 - 4ac \).
- If \(b^2 - 4ac > 0 \), there are two distinct real roots.
- If \(b^2 - 4ac = 0 \), there are two equal real roots.
- If \(b^2 - 4ac < 0 \), there are no real roots.

\[\Rightarrow \text{ Pure Year 1, Section 2.5}\]

Exercise 1A

Do not use your calculator in this exercise.

1 Write each of the following in the form \(bi\) where \(b\) is a real number.

- \(\sqrt{-9}\)
- \(\sqrt{-49}\)
- \(\sqrt{-121}\)
- \(\sqrt{-10000}\)
- \(\sqrt{-225}\)

2 Simplify, giving your answers in the form \(a + bi\), where \(a \in \mathbb{R}\) and \(b \in \mathbb{R}\).

- \((5 + 2i) + (8 + 9i)\)
- \((7 + 6i) + (-3 - 5i)\)
- \((20 + 12i) - (11 + 3i)\)
- \((-4 - 6i) - (-8 - 8i)\)
- \((-2 - 7i) + (1 + 3i) - (-12 + i)\)

3 Simplify, giving your answers in the form \(a + bi\), where \(a \in \mathbb{R}\) and \(b \in \mathbb{R}\).

- \(2(7 + 2i)\)
- \(2(3 - 4i)\)
- \(2(3 + i) + 3(2 + i)\)
- \(5(4 + 3i) - 4(-1 + 2i)\)
- \(\frac{15 + 25i}{5}\)
- \(\frac{9 + 11i}{3}\)
- \(\frac{-8 + 3i}{2}\)

4 Write in the form \(a + bi\), where \(a\) and \(b\) are simplified surds.

- \(\frac{4 - 2i}{\sqrt{2}}\)
- \(\frac{2 - 6i}{1 + \sqrt{3}}\)

5 Given that \(z = 7 - 6i\) and \(w = 7 + 6i\), find, in the form \(a + bi\), where \(a, b \in \mathbb{R}\).

- \(z - w\)
- \(w + z\)

6 Given that \(z_1 = a + 9i\), \(z_2 = -3 + bi\) and \(z_1 - z_2 = 7 + 2i\), find \(a\) and \(b\) where \(a, b \in \mathbb{R}\). (2 marks)

7 Given that \(z_1 = 4 + i\) and \(z_2 = 7 - 3i\), find, in the form \(a + bi\), where \(a, b \in \mathbb{R}\).

- \(z_1 - z_2\)
- \(4z_2\)
- \(2z_1 + 5z_2\)

8 Given that \(z = a + bi\) and \(w = a - bi\), show that:

- \(z + w\) is always real
- \(z - w\) is always imaginary

You can use complex numbers to find solutions to any quadratic equation with real coefficients.

- If \(b^2 - 4ac < 0\) then the quadratic equation \(ax^2 + bx + c = 0\) has two distinct complex roots.
Chapter 1

Complex numbers

Example 1
Solve the equation $z^2 + 9 = 0$.

$$z^2 = -9$$
$$z = \pm \sqrt{-9} = \pm \sqrt{9 \cdot -1} = \pm 3i$$
$$z = +3i, z = -3i$$

Note that just as $z^2 = 9$ has two roots +3 and -3, $z^2 = -9$ also has two roots +3i and -3i.

Example 4
Solve the equation $z^2 + 6z + 25 = 0$.

Method 1 (Completing the square)
$$z^2 + 6z + 25 = (z + 3)^2 - 9 + 25 = (z + 3)^2 + 16$$
$$(z + 3)^2 = -16$$
$$z + 3 = \pm \sqrt{-16} = \pm 4i$$
$$z = -3 \pm 4i$$

Method 2 (Quadratic formula)
$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$z = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 25}}{2}$$
$$z = \frac{-6 \pm \sqrt{-64}}{2}$$
$$z = \frac{-6 \pm 8i}{2}$$
$$z = -3 \pm 4i$$

Because $(z + 3)^2 - 9 + 25 = z^2 + 6z + 25$

$$\sqrt{-16} = \sqrt{16 \cdot -1} = \sqrt{16} \cdot \sqrt{-1} = 4i$$

Example 5
Express each of the following in the form $a + bi$, where a and b are real numbers.

$$a \ (2 + 3i)(4 + 5i) \quad b \ (7 - 4i)^2$$

Using $z = -b \pm \sqrt{b^2 - 4ac}$

Solve this equation quickly using your calculator.

$$\sqrt{-64} = \sqrt{64 \cdot -1} = \sqrt{64} \cdot \sqrt{-1} = 8i$$

Exercise 18

1. Solve each of your calculator in this exercise.

1. Solve each of the following equations. Write your answers in the form $\pm bi$.
 a) $z^2 + 12i = 0$
 b) $z^2 + 40 = 0$
 c) $2z^2 + 120 = 0$
 d) $3z^2 + 150 = 38 - z^2$
 e) $z^2 + 30 = -3z^2 - 66$
 f) $6z^2 + 1 = 2z^2$

2. Solve each of the following equations.
 Write your answers in the form $a \pm bi$.
 a) $(z - 3)^2 - 9 = -16$
 b) $2(z - 7i) + 30 = 6$
 c) $16z + 1i^3 + 11 = 2$

3. Solve each of the following equations. Write your answers in the form $a \pm bi$.
 a) $z^2 + 2z + 5 = 0$
 b) $z^2 - 2z + 10 = 0$
 c) $z^2 + 4z + 29 = 0$
 d) $z^2 + 10z + 26 = 0$
 e) $z^2 + 5z + 25 = 0$
 f) $z^2 + 3z + 5 = 0$

4. Solve each of the following equations. Write your answers in the form $a \pm bi$.
 a) $2z^2 + 5z + 4 = 0$
 b) $7z^2 - 3z + 3 = 0$
 c) $5z^2 - z + 3 = 0$

5. The solutions to the quadratic equation $z^2 - 8z + 21 = 0$ are z_1 and z_2.
 Find z_1 and z_2, giving each answer in the form $a \pm \sqrt{b}$.

6. The equation $z^2 + 6z + 11 = 0$, where $b \in \mathbb{R}$, has distinct complex roots.
 Find the range of possible values of b.

(3 marks)

1.2 Multiplying complex numbers

You can multiply complex numbers using the same technique that you use for multiplying brackets in algebra. You can use the fact that $i = \sqrt{-1}$ to simplify powers of i.

- $i^2 = -1$

Example 6
Simplify:

- a) i^3
- b) i^4
- c) $(2i)^3$

$$i^3 = i \times i \times i = i^2 \times i = -i$$

$$i^4 = i \times i \times i \times i = i^2 \times i^2 = (-1) \times (-1) = 1$$

$$i(2i) = i \times 2i = 2i^2 = -2$$

Multiply the two brackets as you would with real numbers.

Add real parts and add imaginary parts.

Multiply out the two brackets as you would with real numbers.

Add real parts and add imaginary parts.

First work out $i^2 = 1$.

$$i^3 = -i$$

$$i(2i)^3$$

$$i^4 = 1$$
Do not use your calculator in this exercise.

1. Simplify each of the following, giving your answers in the form \(a + bi \).
 a. \((5 + i)(3 + 4i)\)
 b. \((6 + 3i)(7 + 2i)\)
 c. \((5 - 2i)(1 + 5i)\)
 d. \((13 - 3i)(2 - 8i)\)
 e. \((-3 - i)(4 + 7i)\)
 f. \((8 + 5i)^2\)
 g. \((2 - 9i)^2\)
 h. \((1 + i)(2 + i)(3 + i)\)

2. a. Simplify \((4 + 5i)(4 - 5i)\), giving your answer in the form \(a + bi \).
 b. Simplify \((7 - 2i)(7 + 2i)\), giving your answer in the form \(a + bi \).
 c. Comment on your answers to parts a and b.
 d. Prove that \((a + bi)(a - bi)\) is a real number for any real numbers \(a \) and \(b \).

3. Given that \((a + 3i)(1 + bi) = 31 - 38i\), find two possible pairs of values for \(a \) and \(b \).

4. Write each of the following in its simplest form.
 a. \(i^6\)
 b. \((3i)^4\)
 c. \(i^2 + i\)
 d. \((4i)^3 - 4i^3\)

5. Find the value of the real part of \((3 - 2i)^4\).

6. Find the value of \(f(c)\) in the form \(a - bi \), where \(a \) and \(b \) are integers to be found.
 a. \(f(2i)\)
 b. \(f(3 - 6i)\)

7. Find: \(a\) \(f(2i)\)
 b. \(f(3 - 6i)\)
 c. \(f(3)^2 - 2z + 17\)
 d. \(f(i^3)\)

8. a. Given that \(i^3 = 1 + i^2\), write \(i^2\) and \(i^3\) in their simplest forms.
 b. Write \(i^4\), \(i^8\) and \(i^{16}\) in their simplest forms.
 c. Write down the value of:
 i. \(1^{100}\)
 ii. \(i^{200}\)
 iii. \(i^{300}\)

Problem-solving
You can use the binomial theorem to expand \((a + b)^4\).

Hint
For part h, begin by multiplying the first pair of brackets.

Notation
The principal square root of a complex number, \(\sqrt{2}\), has a positive real part.

Challenge
Expand \(a + bi\).

Hence, or otherwise, find \(\sqrt{40 - 42i}\), giving your answer in the form \(a - bi\), where \(a\) and \(b\) are positive integers.

1.3 Complex conjugation

- For any complex number \(z = a + bi\), the complex conjugate of the number is defined as \(z^* = a - bi\).

Example 7

Given that \(z = 2 - 7i\):

a. write down \(z^*\)
 b. find the value of \(z + z^*\)
 c. find the value of \(zz^*\)

Example 8

Write \(\frac{5 + 4i}{2 - 3i}\) in the form \(a + bi\).

Example 11D

Do not use your calculator in this exercise.

1. Write down the complex conjugate \(z^*\) for:
 a. \(z = 8 + 2i\)
 b. \(z = 6 - 5i\)
 c. \(z = \frac{1 - 3i}{2}\)
 d. \(z = \sqrt{5} + 3i\)

2. Find \(z + z^*\) and \(zz^*\) for:
 a. \(z = 6 - 3i\)
 b. \(z = 10 + 5i\)
 c. \(z = \frac{1}{2} + 3i\)
 d. \(z = \sqrt{5} - 3i\sqrt{5}\)

3. Write each of the following in the form \(a + bi\):
 a. \(\frac{3 - 5i}{1 + 3i}\)
 b. \(\frac{3 + 5i}{6 - 8i}\)
 c. \(\frac{28 - 3i}{1 - i}\)
 d. \(\frac{2 + i}{1 + 4i}\)
4 Write \((3 - 4i)^2\) in the form \(x + iy\) where \(x, y \in \mathbb{R}\).

5 Given that \(z_1 = 1 + i\), \(z_2 = 2 + i\) and \(z_3 = 3 + i\), write each of the following in the form \(a + bi\).
 \[a\ z_1^2, \ b\ (z_2)^2, \ c\ z_1 + z_3\]

6 Given that \(\frac{5 + 2i}{z} = 2 - i\), find \(z\) in the form \(a + bi\). (2 marks)

7 Simplify \(\frac{6 + 8i}{1 + i} - \frac{6 + 8i}{1 - i}\), giving your answer in the form \(a + bi\).

8 \(w = \frac{-4}{8 - i\sqrt{2}}\)
 Express \(w\) in the form \(a + bi\), where \(a\) and \(b\) are rational numbers.

9 \(z = 1 - 9i\)
 Express \(\frac{1}{w^2}\) in the form \(a + bi\), where \(a\) and \(b\) are rational numbers.

10 \(z = 4 - i\sqrt{2}\)
 Use algebra to express \(\frac{z + 4}{\sqrt{z - 3}}\) in the form \(p + qi\sqrt{2}\), where \(p\) and \(q\) are rational numbers.

11 The complex number \(z\) satisfies the equation \((4 + 2i)(z - 2i) = 6 - 4i\).
 Find \(z\), giving your answer in the form \(a + bi\) where \(a\) and \(b\) are rational numbers. (4 marks)

12 The complex numbers \(z_1\) and \(z_2\) are given by \(z_1 = p - 7i\) and \(z_2 = 2 + 5i\) where \(p\) is an integer.
 Find \(z_1\) in the form \(a + bi\) where \(a\) and \(b\) are rational, and are given in terms of \(p\). (4 marks)

13 \(z = \sqrt{2} + 4i\)
 \(z^*\) is the complex conjugate of \(z\).
 Show that \(\frac{z^*}{z^2} = a + bi\sqrt{2}\), where \(a\) and \(b\) are rational numbers to be found. (4 marks)

14 The complex number \(z\) is defined by \(z = \frac{p + 5i}{p - 2i}, p \in \mathbb{R}, p > 0\).
 Given that the real part of \(z\) is \(\frac{1}{2}\),
 a find the value of \(p\)
 b write \(z\) in the form \(a + bi\), where \(a\) and \(b\) are real. (4 marks)

1.4 Roots of quadratic equations

For real numbers \(a, b, c\), if the roots of the quadratic equation \(az^2 + bz + c = 0\) are complex, then they occur as a conjugate pair.

Another way of stating this is that for a real-valued quadratic function \(f(z)\), if \(z_1\) is a root of \(f(z) = 0\) then \(z_1^*\) is also a root. You can use this fact to find one root if you know the other, or to find the original equation.

If the roots of a quadratic equation are \(\alpha\) and \(\beta\), then you can write the equation as \((z - \alpha)(z - \beta) = 0\) or \(z^2 - (\alpha + \beta)z + \alpha\beta = 0\)

Example 9

Given that \(\alpha = 7 + 2i\) is one of the roots of a quadratic equation with real coefficients,

a state the value of the other root, \(\beta\)

b find the quadratic equation

c find the values of \(\alpha + \beta\) and \(\alpha\beta\) and interpret the results.

\[\begin{align*}
&\alpha + \beta \text{ will always be a complex conjugate pair.} \\
&\text{The quadratic equation with roots } \alpha \text{ and } \beta \text{ is } (z - \alpha)(z - \beta) = 0 \\
&\text{Collect like terms. Use the fact that } i^2 = -1.
\end{align*}\]

Problem-solving

For \(z = a + bi\), you should learn the results:
\[z + z^* = 2a\]
\[z + z^* = a^2 + b^2\]
You can use these to find the quadratic equation quickly.

Exercise 1.5

1 The roots of the quadratic equation \(z^2 + 2z + 26 = 0\) are \(\alpha\) and \(\beta\).
 Find: a \(\alpha + \beta\) b \(\alpha\beta\) c \(\alpha\beta\)

2 The roots of the quadratic equation \(z^2 - 8z + 25 = 0\) are \(\alpha\) and \(\beta\).
 Find: a \(\alpha + \beta\) b \(\alpha\beta\) c \(\alpha\beta\)

3 Given that \(2 + 3i\) is one of the roots of a quadratic equation with real coefficients,
 a write down the other root of the equation
 b find the quadratic equation, giving your answer in the form \(az^2 + bz + c = 0\)
 where \(a, b\) and \(c\) are real constants. (3 marks)

4 Given that \(5 - i\) is a root of the equation \(z^2 + pz + q = 0\), where \(p\) and \(q\) are real constants,
 a write down the other root of the equation
 b find the value of \(p\) and the value of \(q\). (3 marks)

5 Given that \(z_1 = -5 + 4i\) is one of the roots of the quadratic equation \(z^2 + bz + c = 0\), where \(b\) and \(c\) are real constants, find the values of \(b\) and \(c\). (4 marks)

6 Given that \(1 + 2i\) is one of the roots of a quadratic equation with real coefficients, find the equation giving your answer in the form \(z^2 + bz + c = 0\) where \(b\) and \(c\) are integers to be found. (4 marks)
Chapter 1

1.5 Solving cubic and quartic equations

You can generalise the rule for the roots of quadratic equations to any polynomial with real coefficients.

- If \(f(z) \) is a polynomial with real coefficients, and \(z_1 \) is a root of \(f(z) = 0 \), then \(z_1^* \) is also a root of \(f(z) = 0 \).

You can use this property to find roots of cubic and quartic equations with real coefficients.

- An equation of the form \(az^3 + bz^2 + cz + d = 0 \) is called a cubic equation, and has three roots.

- For a cubic equation with real coefficients, either
 - all four root are real, or
 - two roots are real and the other two roots form a complex conjugate pair.

Example 10

Given that \(-1\) is a root of the equation \(z^3 - z^2 + 3z + k = 0\),

- find the value of \(k \)
- find the other two roots of the equation.

Problem-solving

- **Use the factor theorem to help:** if \(f(\alpha) = 0 \), then \(\alpha \) is a root of the polynomial and \(z - \alpha \) is a factor of the polynomial.

Use long division (or another method) to find the quadratic factor.

Example 11

Given that \(3 + i\) is a root of the quartic equation \(2z^4 - 3z^3 - 39z^2 + 120z - 50 = 0\), solve the equation completely.

Complex roots occur in conjugate pairs.

If \(\alpha \) and \(\beta \) are roots of \(f(z) = 0 \), then \(z - (\alpha + \beta) \) is a factor of \(f(z) \).

You can work this out quickly by noting that \((z - (\alpha + \beta))(z - (\alpha - \beta)) = z^2 - 2\alpha z + \alpha^2 + \beta^2 \).

Problem-solving

It is possible to factorise a polynomial without using a formal algebraic method. Here, the polynomial is factorised by 'inspection'. By considering each term of the quartic separately, it is possible to work out the missing coefficients.
Consider \(-50\):
The only constant term in the expansion is \(10 \times c\), so \(c = -5\).
\[2z^4 - 3z^3 - 39z^2 + 120z - 50 = (z - 6z + 10)(2z^2 + 9z - 5)\]

Solving \(2z^2 + 9z - 5 = 0:\)
\((2z - 1)(z + 5) = 0\)
\(z = \frac{1}{2}, z = -5\)
So the roots of \(2z^3 - 3z^2 - 39z^2 + 120z - 50 = 0\) are \(\frac{1}{2}, 5, -5, 3 + i\) and \(3 - i\).

Example 12

Show that \(z^3 + 4\) is a factor of \(z^4 - 2z^3 + 21z^2 - 8z + 68\).
Hence solve the equation \(z^4 - 2z^3 + 21z^2 - 8z + 68 = 0\).

Using long division:
\[z^2 - 2z + 17\]
\[z^2 - 2z^2 + 21z^2 - 8z + 68\]
\[z^2 - 2z + 17\]
\[z^2 - 2z + 17\]
\[\downarrow\]
\[0\]
So \(z^4 - 2z^3 + 21z^2 - 8z + 68 = z^4 + 4z^2 + 9z + c\)
Either \(z^2 + 4 = 0\) or \(z^2 - 2z + 17 = 0\)
Solving \(z^2 = -4\):
\(x = \pm 2i\)
Solving \(z^2 - 2z + 17 = 0:\)
\((z - 1)^2 + 16 = 0\)
\(z - 1 = \pm 4i\)
\(z = 1 \pm 4i\)
So the roots of \(z^4 - 2z^3 + 21z^2 - 8z + 68 = 0\) are \(2i, -2i, 1 + 4i\) and \(1 - 4i\).

Alternatively, the quartic can be factorized by inspection:
\[z^4 - 2z^3 + 21z^2 - 8z + 68 = (z^2 - 2z + 17)(z^2 + 4)\]
\(a = 1\), as the leading coefficient is 1.
The only \(z^2\) term is formed by \(z^1 \times hz\) so \(h = -2\).
The constant term is formed by \(4 \times c\), so \(4c = 68\), and \(c = 17\).

Exercise 1F

1. \(f(z) = z^3 - 6z^2 + 21z - 26\)
 a. Show that \(f(2) = 0\).
 b. Hence solve \(f(z) = 0\) completely.

2. \(g(z) = 2z^3 + 5z^2 + 9z - 6\)
 a. Show that \(f\left(\frac{1}{2}\right) = 0\).
 b. Hence write \(f(z)\) in the form \((2z - 1)(z^2 + hz + c)\), where \(b \) and \(c \) are real constants to be found.
 c. Use algebra to solve \(f(z) = 0\) completely.

3. \(g(z) = 2z^3 - 4z^2 - 5z - 3\)
 Given that \(z = 3\) is a root of the equation \(g(z) = 0\), solve \(g(z) = 0\) completely.

4. \(p(z) = z^3 + 4z^2 - 15z - 68\)
 Given that \(z = -4 + i\) is a solution to the equation \(p(z) = 0\),
 a. show that \(z^2 + 8z + 17\) is a factor of \(p(z)\)
 b. hence solve \(p(z) = 0\) completely.

5. \(h(z) = z^4 + 2z^3 + 3z + 25\)
 Given that \(f(z) = (z + 1)(z^3 + az^2 + b)\), where \(a \) and \(b \) are real constants,
 a. find the value of \(a\) and the value of \(b\)
 b. find the three roots of \(f(z) = 0\)
 c. find the sum of the three roots of \(f(z) = 0\).

6. \(g(z) = z^3 - 12z^2 + cz + d = 0\), where \(c, d \in \mathbb{R}\)
 Given that \(6\) and \(3 + i\) are roots of the equation \(g(z) = 0\),
 a. write down the other complex root of the equation
 b. find the value of \(c\) and the value of \(d\).

7. \(h(z) = 2z^3 + 3z^2 + 3z + 1\)
 Given that \(2z + 1\) is a factor of \(h(z)\), find the three roots of \(h(z) = 0\).

8. \(f(z) = z^4 - 6z^2 + 28z + k\)
 Given that \(f(2) = 0\),
 a. find the value of \(k\)
 b. find the other two roots of the equation.

9. Find the four roots of the equation \(z^4 - 16 = 0\).

10. \(f(z) = z^4 - 12z^3 + 31z^2 + 108z - 360\)
 a. Write \(f(z)\) in the form \((z^2 - 9)(z^2 + bz + c)\), where \(b \) and \(c \) are real constants to be found.
 b. Hence find all the solutions to \(f(z) = 0\).
Chapter 1

11 \(g(z) = z^4 + 2z^3 - z^2 + 38z + 130 \)

Given that \(g(2 + 3i) = 0 \), find all the roots of \(g(z) = 0 \).

12 \(f(z) = z^4 - 10z^3 + 71z^2 + Qz + 442 \), where \(Q \) is a real constant.

Given that \(z = 2 - 3i \) is a root of the equation \(f(z) = 0 \),

a) show that \(z^2 - 6z + 34 \) is a factor of \(f(z) \)

b) find the value of \(Q \)

c) solve completely the equation \(f(z) = 0 \).

Challenge

Three of the roots of the equation \(az^2 + bz^2 + cz^2 + dz^2 + ez + f = 0 \) are \(-2, 2i \) and \(1 + i \). Find the values of \(a, b, c, d, e \) and \(f \).

Mixed exercise 1

1 Given that \(z_1 = 8 - 3i \) and \(z_2 = -2 + 4i \), find, in the form \(a + bi \), where \(a, b \in \mathbb{R} \),

a) \(z_1 + z_2 \)

b) \(3z_2 \)

c) \(6z_1 - z_2 \)

2 The equation \(z^2 + bz + 14 = 0 \), where \(b \in \mathbb{R} \) has no real roots.

Find the range of possible values of \(b \).

3 The solutions to the quadratic equation \(z^2 - 6z + 12 = 0 \) are \(z_1 \) and \(z_2 \).

Find \(z_1 \) and \(z_2 \), giving each answer in the form \(a + bi \).

4 By using the binomial expansion, or otherwise, show that \((1 + 2i)^5 = 41 - 38i \).

5 \(f(z) = z^2 - 6z + 10 \)

Show that \(z = 3 + i \) is a solution to \(f(z) = 0 \).

6 \(z_1 = 4 + 2i, \ z_2 = -3 + i \)

Express, in the form \(a + bi \), where \(a, b \in \mathbb{R} \),

a) \(z_1^2 \)

b) \(z_1 z_2 \)

c) \(z_1 \)

7 Write \(\frac{7 - 2i}{1 + i/3} \) in the form \(x + iy \) where \(x, y \in \mathbb{R} \).

8 Given that \(4 - 7i = 3 + i \), find \(z \) in the form \(a + bi \), where \(a, b \in \mathbb{R} \).

9 \(z = \frac{1}{2 + i} \)

Express in the form \(a + bi \), where \(a, b \in \mathbb{R} \)

a) \(z^2 \)

b) \(z - \frac{1}{z} \)

10 Given that \(z = a + bi \), show that \(\frac{z^2}{z} = \frac{(a^2 - b^2)}{a^2 + b^2} + \frac{2ab}{a^2 + b^2}i \)

11 The complex number \(z \) is defined by \(z = \frac{3 + qi}{q - 5i} \), where \(q \in \mathbb{R} \).

Given that the real part of \(z \) is \(\frac{1}{13} \),

a) find the possible values of \(q \)

b) write the possible values of \(z \) in the form \(a + bi \), where \(a \) and \(b \) are real constants.

12 Given that \(z = x + iy \), find the value of \(x \) and the value of \(y \) such that \(z + 4iz^* = -3 + 18i \)

where \(z^* \) is the complex conjugate of \(z \).

13 \(z = 9 + 6i, w = 2 - 3i \)

Express \(\frac{z}{w} \) in the form \(a + bi \), where \(a \) and \(b \) are real constants.

14 The complex number \(z \) is given by \(z = \frac{q + 3i}{4 + q^2} \) where \(q \) is an integer.

Express \(z \) in the form \(a + bi \) where \(a \) and \(b \) are rational and are given in terms of \(q \).

15 Given that \(6 - 2i \) is one of the roots of a quadratic equation with real coefficients,

a) write down the other root of the equation

b) find the quadratic equation, giving your answer in the form \(az^2 + bz + c = 0 \)

where \(a, b \) and \(c \) are real constants.

16 Given that \(z = -4 - ki \) is a root of the equation \(z^2 + 2mz + 32 = 0 \), where \(k \) and \(m \) are positive real constants, find the value of \(k \) and the value of \(m \).

17 \(h(z) = z^2 - 11iz + 20 \)

Given that \(2 + i \) is a root of the equation \(h(z) = 0 \), solve \(h(z) = 0 \) completely.

18 \(f(z) = z^3 + 6z + 20 \)

Given that \(f(1 + 3i) = 0 \), solve \(f(z) = 0 \) completely.

19 \(f(z) = z^3 + 3z^2 + k^2z + 48 \)

Given that \(f(4i) = 0 \),

a) find the value of \(k \)

b) find the other two roots of the equation.

20 \(f(z) = z^3 - 4z^2 - 16z^2 - 74 - 60 \)

a) Write \(f(z) \) in the form \((z^2 - 5z - 6)(z^2 + bz + c) \), where \(b \) and \(c \) are real constants to be found.

b) Hence find all the solutions to \(f(z) = 0 \).

21 \(g(z) = z^4 + 6z^3 + 19z^2 - 36z + 78 \)

Given that \(g(3 - 2i) = 0 \), find all the roots of \(g(z) = 0 \).

22 \(f(z) = z^4 - 4z^3 - 3z^2 + pz + 16 \)

Given that \(f(4) = 0 \),

a) find the value of \(p \)

b) solve completely the equation \(f(z) = 0 \).

1 mark

5 marks
a Explain why a cubic equation with real coefficients cannot have a repeated complex root.
b By means of an example, show that a quartic equation with real coefficients can have a repeated complex root.

Summary of key points

1 • $i = \sqrt{-1}$ and $i^2 = -1$
 • An imaginary number is a number of the form bi, where $b \in \mathbb{R}$.
 • A complex number is written in the form $a + bi$, where $a, b \in \mathbb{R}$.

2 • Complex numbers can be added or subtracted by adding or subtracting their real parts and adding or subtracting their imaginary parts.
 • You can multiply a real number by a complex number by multiplying out the brackets in the usual way.

3 If $b^2 - 4ac < 0$ then the quadratic equation $ax^2 + bx + c = 0$ has two distinct complex roots.

4 For any complex number $z = a + bi$, the complex conjugate of the number is defined as $z^* = a - bi$.

5 For real numbers a, b and c, if the roots of the quadratic equation $ax^2 + bx + c = 0$ are complex, then they occur as a conjugate pair.

6 If the roots of a quadratic equation are α and β, then you can write the equation as $(z - \alpha)(z - \beta) = 0$ or $z^2 - (\alpha + \beta)z + \alpha \beta = 0$.

7 If $f(z)$ is a polynomial with real coefficients, and z_1 is a root of $f(z) = 0$, then z_1^* is also a root of $f(z) = 0$.

8 An equation of the form $ax^3 + bx^2 + cx + d = 0$ is called a cubic equation, and has three roots.
 • For a cubic equation with real coefficients, either
 • all three roots are real, or
 • one root is real and the other two roots form a complex conjugate pair.

9 An equation of the form $ax^4 + bx^3 + cx^2 + dx + e = 0$ is called a quartic equation, and has four roots.
 • For a quartic equation with real coefficients, either
 • all four roots are real, or
 • two roots are real and the other two roots form a complex conjugate pair, or
 • two roots form a complex conjugate pair and the other two roots also form a complex conjugate pair.
Order now!

Visit our webpage to see all products in this series, and order now:
www.pearsonschools.co.uk/ALM1

Speak to us

For help and advice you can request a call back or appointment with one of our maths experts:
www.pearsonschools.co.uk/speakalmaths