

Solving linear and non-linear simultaneous equations by substitution

A LEVEL LINKS

Scheme of work: Scheme of work: 1c. Equations – quadratic/linear simultaneous

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous equations in two unknowns involves finding the value of each unknown which works for both equations.
- Find an expression for one of the unknowns from one of the equations.
- It's usually easier to start with the linear equation.
- Substitute this expression in the other equation to obtain an equation with only one unknown.
- Solve this equation to obtain values for one of the unknowns.
- Substitute these values into the first equation to find values for the second unknown.
- The substitution method is the method most commonly used for A level. This is because it is the method used to solve linear and non-linear simultaneous equations.

Example 1 Solve the simultaneous equations $y = 2x - 1$ and $y = x^2 - 4$

$2x - 1 = x^2 - 4$ $x^2 - 2x - 3 = 0$ $(x+1)(x-3) = 0$ $x = -1 \text{ and } x = 3$ $x = -1, y = -3$ $x = 3, y = 5$ <p>Check:</p> <p>Equation 1: $-3 = 2(-1) - 1$ YES $5 = 2(3) - 1$ YES</p> <p>Equation 2: $-1 = (-1)^2 - 4$ YES $5 = (3)^2 - 4$ YES</p>	<p>1 Substitute $2x - 1$ for y in the linear equation</p> <p>2 Rearrange to obtain a quadratic equation whose RHS is zero</p> <p>3 Factorize</p> <p>4 Find two values for x</p> <p>5 Substitute each of these values in turn into the other equation to find two values for y</p> <p>6 Substitute both values for x and y into both equations to check your answers.</p>
--	--

Example 2

Solve simultaneously, $y = x + 1$ and $y = 1 + \frac{4}{x}$

$x + 1 = 1 + \frac{4}{x}$ $x^2 + x = x + 4$ $x^2 - 4 = 0$ $(x - 2)(x + 2) = 0$ $x = 2 \text{ and } x = -2$ $x = 2, y = 3$ $x = -2, y = -1$ <p>Check:</p> <p>Equation 1: $3 = 2 + 1$ YES $-1 = -2 + 1$ YES</p> <p>Equation 2: $3 = 1 + (4 \div 2)$ YES $-1 = 1 + (4 \div (-2))$ YES</p>	<p>1 Substitute $x + 1$ for y in the linear equation</p> <p>2 Multiply both sides by x</p> <p>3 Rearrange to obtain a quadratic equation whose RHS is zero</p> <p>4 Factorize</p> <p>5 Find two values for x</p> <p>6 Substitute each of these values in turn into the other equation to find two values for y</p> <p>6 Substitute both values for x and y into both equations to check your answers.</p>
--	---

Practice questions

Solve these simultaneous equations.

1 $xy = 9$ and $y = x$

2 $x^2 + y^2 = 50$ and $y = x$

3 $xy - 3 = 16$ and $x - 19y = 0$

4 $x - 2y = 3$ and $(x - 4)^2 + (y - 3)^2 = 25$

Answers

1 $x = -3, y = -3$ and $x = 3, y = 3$

2 $x = -5, y = -5$ and $x = 5, y = 5$

3 $x = -19, y = -1$ and $x = 19, y = 1$

4 $x = 1, y = -1$ and $x = 9, y = 3$