

Translating graphs

A LEVEL LINKS

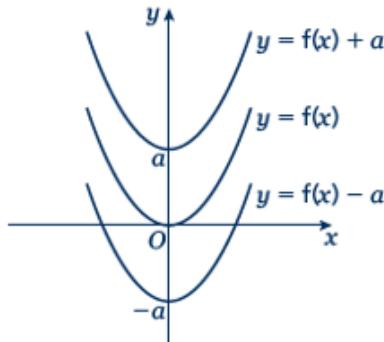
Scheme of work: 1f. Transformations – transforming graphs – $f(x)$ notation

Key points

- The transformation $y = f(x) \pm a$ is a translation of $y = f(x)$ parallel to the y -axis; it is a vertical translation.

As shown on the graph,

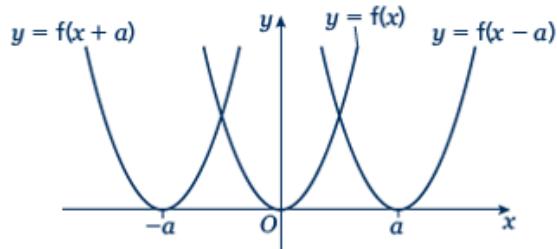
- $y = f(x) + a$ translates $y = f(x)$ up
- $y = f(x) - a$ translates $y = f(x)$ down.



- The transformation $y = f(x \pm a)$ is a translation of $y = f(x)$ parallel to the x -axis; it is a horizontal translation.

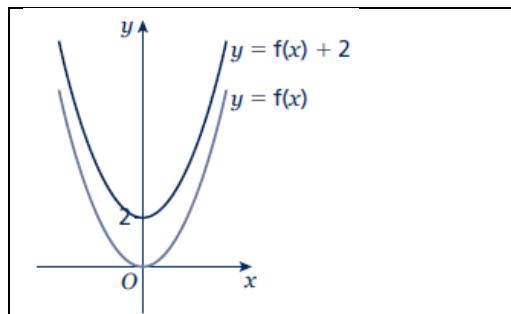
As shown on the graph,

- $y = f(x + a)$ translates $y = f(x)$ to the left
- $y = f(x - a)$ translates $y = f(x)$ to the right.



Example 1 The graph shows the function $y = f(x)$.

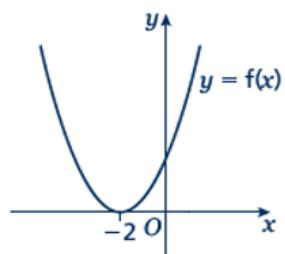
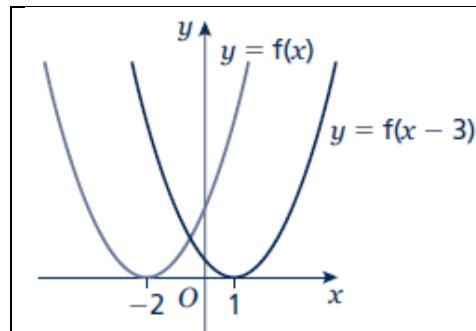
Sketch the graph of $y = f(x) + 2$.



For the function $y = f(x) + 2$ translate the function $y = f(x)$ 2 units up.

Example 2 The graph shows the function $y = f(x)$.

Sketch the graph of $y = f(x - 3)$.



For the function $y = f(x - 3)$ translate the function $y = f(x)$ 3 units right.

Practice question

1

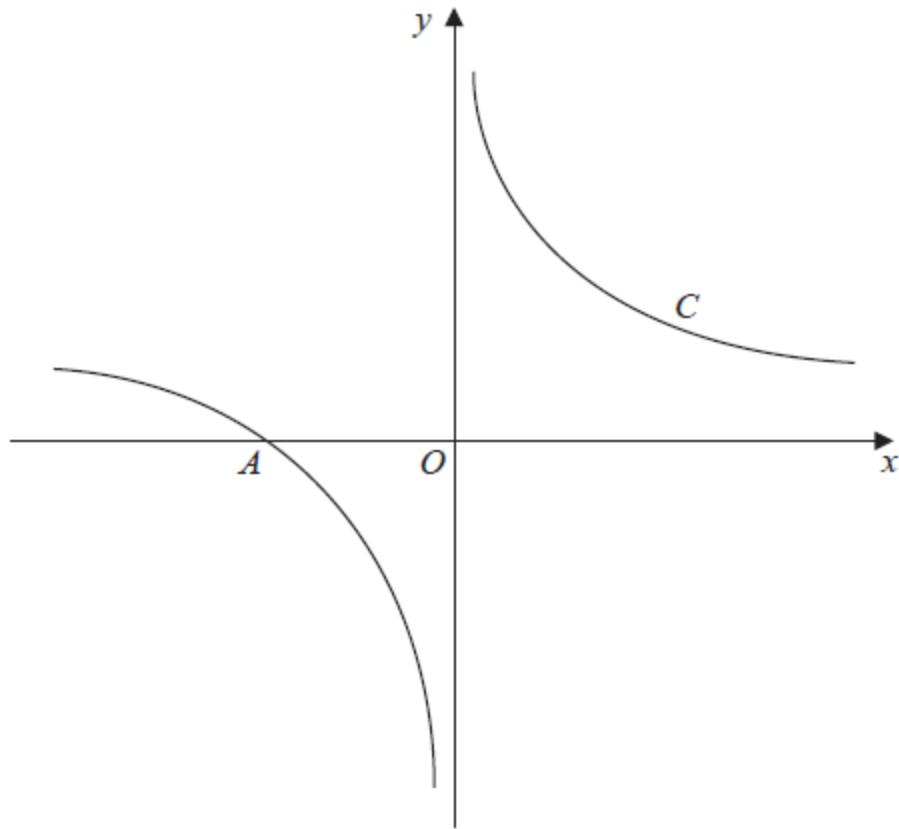


Figure 1

Figure 1 shows a sketch of the curve C with equation

$$y = \frac{1}{x} + 1, \quad x \neq 0.$$

The curve C crosses the x -axis at the point A .

(a) State the x -coordinate of the point A .

The curve D has equation $y = x^2(x - 2)$, for all real values of x .

(b) On a copy of Figure 1, sketch a graph of curve D . Show the coordinates of each point where the curve D crosses the coordinate axes.

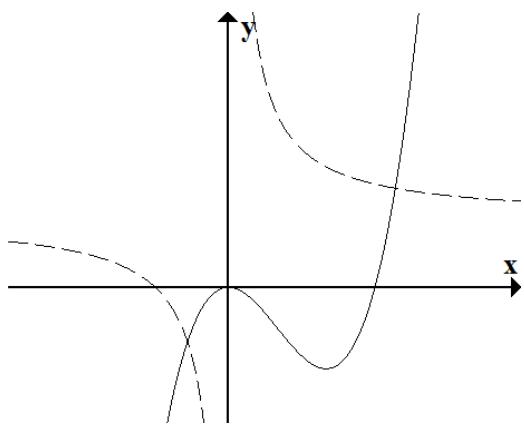
(c) Using your sketch, state, giving a reason, the number of real solutions to the equation

$$x^2(x - 2) = \frac{1}{x} + 1.$$

Answers

1 (a) -1

(b)



Shape Touches at $(0,0)$

Crosses at $(2,0)$ **only**

(c) 2 solutions as **curves** cross twice