


Gradients given two points

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation $y = mx + c$, where m is the gradient and c is the y -intercept (where $x = 0$).
- The equation of a straight line can be written in the form $ax + by + c = 0$, where a , b and c are integers.
- When given the coordinates (x_1, y_1) and (x_2, y_2) of two points on a line the gradient is calculated using the formula $m = \frac{y_2 - y_1}{x_2 - x_1}$

Example 1 Work out the gradient of the line joining $(2, 4)$ and $(8, 7)$.

$$x_1 = 2, x_2 = 8, y_1 = 4 \text{ and } y_2 = 7$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 4}{8 - 2} = \frac{3}{6} = \frac{1}{2}$$

$$m = \frac{1}{2}$$

Substitute the coordinates into the equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out the gradient of the line.

Practice questions

1 Work out the gradient of the line joining each pair of coordinates.

a $(4, 5), (10, 17)$	b $(0, 6), (-4, 8)$
c $(-1, -7), (5, 23)$	d $(3, 10), (4, 7)$

Answers

1 **a** $m = 2$

b $m = -\frac{1}{2}$

c $m = 5$

d $m = -3$