
Distance between two points

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation $y = mx + c$, where m is the gradient and c is the y -intercept (where $x = 0$).
- The equation of a straight line can be written in the form $ax + by + c = 0$, where a , b and c are integers.
- When given the coordinates (x_1, y_1) and (x_2, y_2) of two points on a line the gradient is calculated using the formula $m = \frac{y_2 - y_1}{x_2 - x_1}$

Practice questions

1 (a) Factorise completely $9x - 4x^3$

(b) Sketch the curve C with equation

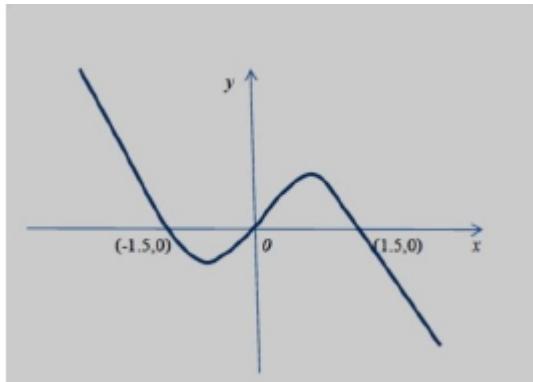
$$y = 9x - 4x^3$$

Show on your sketch the coordinates at which the curve meets the x -axis.

The points A and B lie on C and have x coordinates of -2 and 1 respectively.

(c) Show that the length of AB is $k\sqrt{10}$ where k is a constant to be found.

Answers


1 (a) $9x - 4x^3 = x(9 - 4x^2)$ or $-x(4x^2 - 9)$

$$9 - 4x^2 = (3 + 2x)(3 - 2x) \text{ or}$$

$$4x^2 - 9 = (2x - 3)(2x + 3)$$

$$9x - 4x^3 = x(3 + 2x)(3 - 2x)$$

(b)

(c) $A = (-2, 14), B = (1, 5)$

$$(AB =) \sqrt{(-2-1)^2 + (14-5)^2} \left(= \sqrt{90} \right)$$

E.g. $AB = \sqrt{(-2+1)^2 + (14-5)^2}$

However $AB = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2} = \sqrt{(-2+1)^2 + (14-5)^2}$

$$(AB =) 3\sqrt{10}$$