


Straight line equations

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation $y = mx + c$, where m is the gradient and c is the y -intercept (where $x = 0$).
- The equation of a straight line can be written in the form $ax + by + c = 0$, where a , b and c are integers.
- When given the coordinates (x_1, y_1) and (x_2, y_2) of two points on a line the gradient is calculated using the formula $m = \frac{y_2 - y_1}{x_2 - x_1}$

Practice questions

- Write these lines in the form $ax + by + c = 0$.

a $y = 3x + 5$	b $y = -\frac{1}{2}x - 7$
c $2y = 4x - 3$	d $x + y = 5$
e $y = \frac{1}{2}x - \frac{3}{4}$	f $3y = \frac{2}{3}x - 2$
- Find, in the form $ax + by + c = 0$ where a , b and c are integers, an equation for each of the lines with the following gradients and y -intercepts.

a gradient $-\frac{1}{2}$, y -intercept -7	b gradient 2 , y -intercept 0
c gradient $\frac{2}{3}$, y -intercept 4	d gradient -1.2 , y -intercept -2

Answers

1 a $3x - y + 5 = 0$ b $x + 2y + 14 = 0$

 c $4x - 2y - 3 = 0$ d $x + y - 5 = 0$

 e $2x - 4y - 3 = 0$ f $2x - 9y - 6 = 0$

2 a $x + 2y + 14 = 0$ b $2x - y = 0$

 c $2x - 3y + 12 = 0$ d $6x + 5y + 10 = 0$