

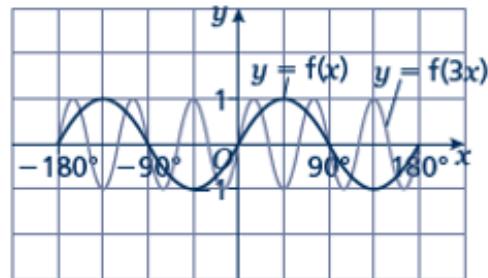
Transforming trigonometric graphs

A LEVEL LINKS

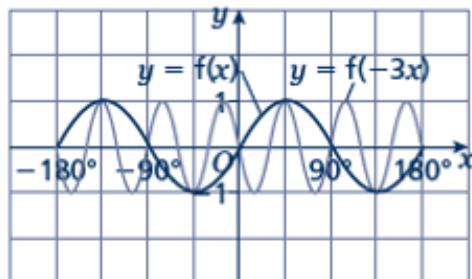
Scheme of work: 4a. Trigonometric ratios and graphs

Key points

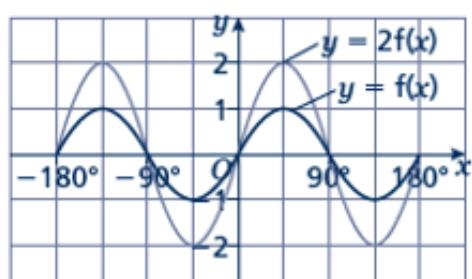
- The transformation $y = f(ax)$ is a horizontal stretch of $y = f(x)$ with scale factor $\frac{1}{a}$ parallel to the x -axis.



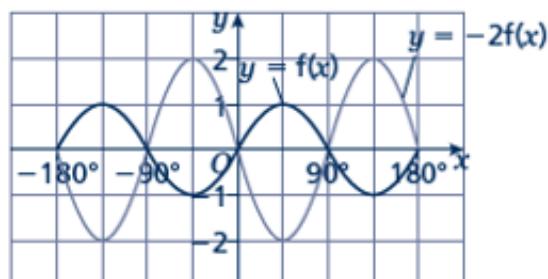
- The transformation $y = f(-ax)$ is a horizontal stretch of $y = f(x)$ with scale factor $\frac{1}{a}$ parallel to the x -axis and then a reflection in the y -axis.



- The transformation $y = af(x)$ is a vertical stretch of $y = f(x)$ with scale factor a parallel to the y -axis.



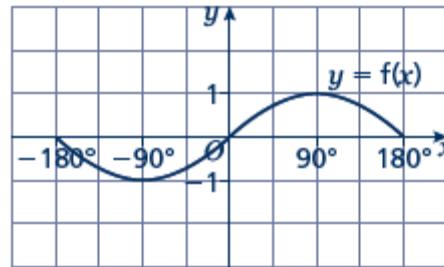
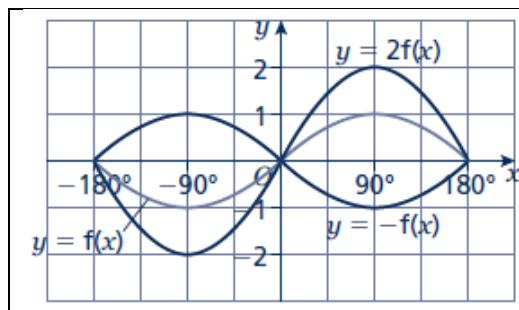
- The transformation $y = -af(x)$ is a vertical stretch of $y = f(x)$ with scale factor a parallel to the y -axis and then a reflection in the x -axis.



Examples

Example 1 The graph shows the function $y = f(x)$.

Sketch and label the graphs of $y = 2f(x)$ and $y = -f(x)$.

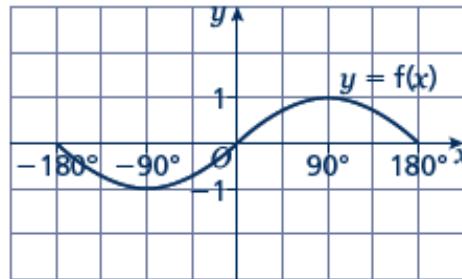
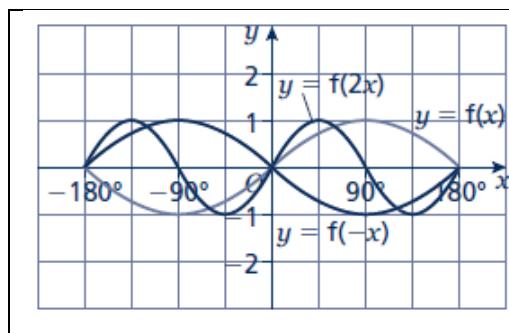


The function $y = 2f(x)$ is a vertical stretch of $y = f(x)$ with scale factor 2 parallel to the y -axis.

The function $y = -f(x)$ is a reflection of $y = f(x)$ in the x -axis.

Example 2 The graph shows the function $y = f(x)$.

Sketch and label the graphs of $y = f(2x)$ and $y = f(-x)$.



The function $y = f(2x)$ is a horizontal stretch of $y = f(x)$ with scale factor $\frac{1}{2}$ parallel to the x -axis.

The function $y = f(-x)$ is a reflection of $y = f(x)$ in the y -axis.

Practice questions

1

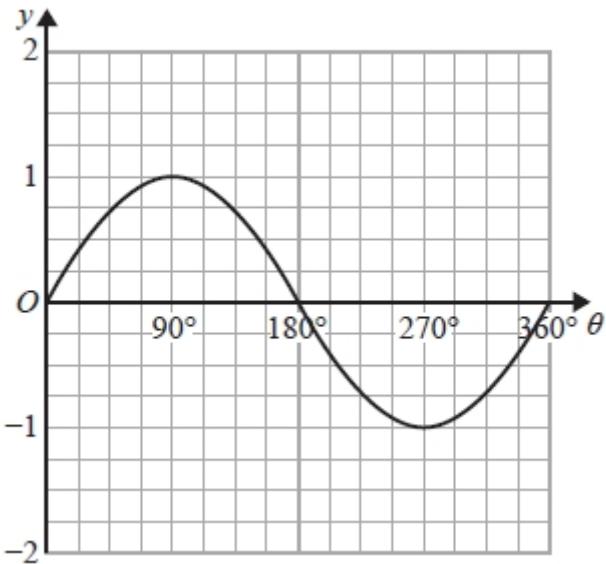


Figure 3

Figure 3 shows a plot of the curve with equation $y = \sin \theta$, $0 \leq \theta \leq 360^\circ$

(a) State the coordinates of the minimum point on the curve with equation

$$y = 4 \sin \theta, \quad 0 \leq \theta \leq 360^\circ$$

A copy of Figure 3, called Diagram 1, is shown here.

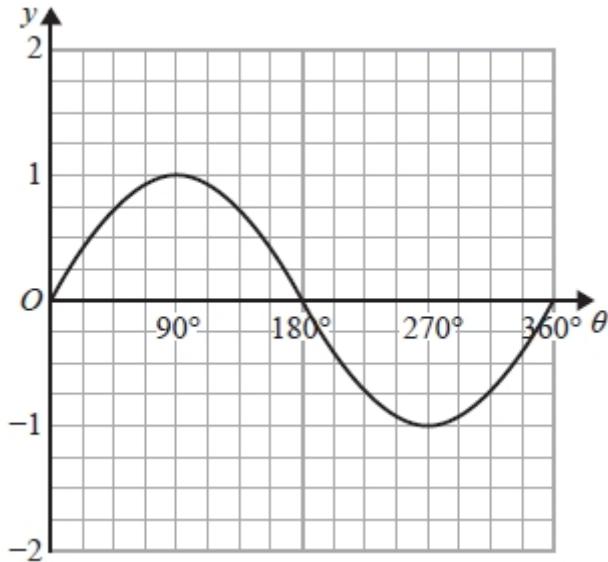


Diagram 1

(b) On Diagram 1, sketch and label the curves

$$(i) \quad y = 1 + \sin \theta, \quad 0 \leq \theta \leq 360^\circ$$

(ii) $y = \tan \theta$, $0 \leq \theta \leq 360^\circ$

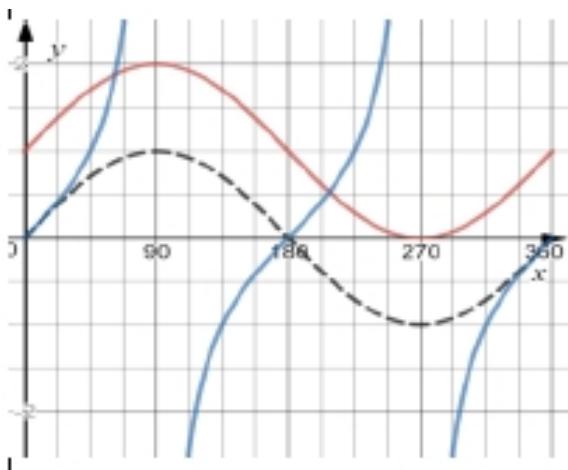
(c) Hence find the number of solutions of the equation

- $\tan \theta = 1 + \sin \theta$ that lie in the region $0 \leq \theta \leq 2160^\circ$
- $\tan \theta = 1 + \sin \theta$ that lie in the region $0 \leq \theta \leq 1980^\circ$

Answers

1 (a) $(270^\circ, -4)$

(b)



(c) (i) $6 \times 2 = 12$

(ii) 11