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Abstract:

In this paper we will consider a generalization of the brachistochrone problem using
Lagrange multipliers. Our goal is to design a level in a video game in which the player
moves an avatar from one point on a computer screen to another point on the screen in a
minimal amount of time. The speed at which the avatar can move depends on where on the
screen the avatar is.
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1 Introduction

The simplest version of this problem is to break the screen into a finite number, n, of
rectangles each of which stretch horizontally across the screen. The height of the rectangles
I3, I2...1nare known as are the corresponding speeds S, S2 ...sn With which the avatar can
move through each rectangle. The player must create a path from a point A on the screen
to a point B through the rectangles which minimizes the time of transversal. The problem
reduces to a constrained minimization problem which can be solved by the method of
Lagrange multipliers [1]. The same technique used can also be used to approximate the
solution of the brachistochrone problem from the calculus of variations [2].

2 Creating the Fastest Path Between Two Points

In Figure 1 below we illustrate our problem. For sake of example we will look at a computer
screen defined by [0, 1000] x [0, 1000]. In this example the domain is broken into n=10
rectangles: [0, 100]x[0,1000]...[900, 1000]x[0,1000]. On the i™ rectangle the avatar can
move at a speed of s; =10*i pixels/time unit.

The objective is to create a path of shortest time from a given point A=(0,0) to another
point B=(XE, YE) ((1000,1000) in this example). Note: As is customary with this type of
problem, positive y will be denoted in a downwards direction. Here, on the rectangle y=0
to y=100 x=0..1000 an avatar can travel at s=10 pixels/time unit. On y=100 to y=200
x=0..1000 the avatar can travel at s=20 pixels/time unit and so on to on the rectangle y=900
to y=1000 x=0..1000 the avatar can travel at a speed of 100 pixels/time unit.
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Figure 1-Finding the Fastest Path

We shall approximate our optimal path by breaking the optimal curve into n line segments-
each of which is the hypotenuse of a right triangle-see Figure 2 below. As we know the
length of the vertical sides, the li, we only need to find the lengths of the horizontal
components, the di, which minimizes the sum of the times is takes to traverse the line
segments. As we are dealing with a minimization problem subject to the constraint that the
sum of the horizontal displacements must equal XE (1000 in our example), we use the
classic method of Lagrange multipliers.
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Figure 2-What we Need to Minimize

The function we need to minimize is the sum of the times it takes to transverse each of
the n rectangles-which is given by:

Vi + 12
£(d1,d2, ...,dn) = Z—
= % (2.1)

subject to the constraint:

gd1,d2,..,dn) = d1+d2+--+dn=Xg

(2.2)
Hence, we must find a A for which satisfies [1]
Vf=Avg=1<11,..,1>
(2.3)
Solving for (2.3) yields
i Ai=1 here A >0
=1 i=1..nwhere
si xV0i%2 + di? (2.4)

Solving (2.4) for the di we get



di = Axli =1
i T i=1..n

Gz —4)° (2.5)
By (2.2) and (2.5) A must satisfy
— — A2)> (2.6)

1

where 1 < min{ }i =1..n
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As the left-hand side of (2.6) is an increasing function of A, (2.6) has a unique solution on
(0, min{1/si}). Using any simple numerical tool allows us to approximate the solution A
with any degree of accuracy desired.

Example:

Let the starting point A= (0, 0) and the ending point B= (XE, YE)=(1000, 1000) as
illustrated in Figure 1.

Break the region [0, 1000]x[0, 1000] into n=10 rectangles each having height ;=100 and
let the speed on the i rectangle be given by si=10%i i=1...n. Solving (2.6) for 1 we can
solve for di i=1...10 using (2.5):

The values of djare presented in the following table:

Where xi = d1 + -+ di

d1is 9.717592076941

d2 is 19.716469280426
d3 is 30.320551487255
d4 is 41.955199508211
d5 is 55.250555011642
d6 is 71.258726625095
d7 is 91.996416566653
d8 is 122.145576401652
d9 is 176.855999289317
d10 is 380.782915477145

x1 s 9.717592076941

X2 is 29.434061357368

x3 is 59.754612844623

x4 is 101.709812352834
x5 is 156.960367364476
X6 is 228.219093989570
X7 is 320.215510556223
x8 is 442.361086957875
X9 is 619.217086247193
x10 is 1000.000001724338




Total time is 35.777931135649
Total distance is 1542.980226242951

The path is illustrated as follows (where the x-coordinate of A is 0, the x-coordinate of B
is X1, the X-coordinate of C is x2...):
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Figure 3-Our Optimal Path Timewise
3 A Special Case-The Brachistochrone Problem

Using the above method, we can approximate the solution to the classic brachistochrone
problem [2]:

The brachistochrone problem was stated by Bernoulli in 1696: Given two points A and B,
find the path along which an object would slide (without friction) in the shortest time from
a point A to a point B, if it starts at A in rest and is only accelerated by gravity, denoted by

g.

We shall once again define A= (0, 0) and B= (XE, YE). To solve this problem, we need to
find the function y(x) which minimizes the time T where T is given by

JXE /1 + (Zi’)z

(3.1)



Define our integrand as follows

Ji+ @

F(x'y»y’) = \/ZJT}/ (32)

To make T stationary, as F does not contain x we can use the special case of the Euler-
Lagrange equation-The Beltrami Identity [3]

Foy ¢
-y 7=
dy (3.3)

Using separable equations and substitutions we get [2] a solution of (3.1)-(3.3) of the
form

x(t)=a(t-sin(t))

y(t)=a(1-cos(t)) (3.4

Where the range t=0..te comes from approximating the solution of

t—sin(tE)_x_E_O

1—cos (tg) yg (3.5)
Using the solution of (3.5) we can then solve for a:
_ XE _ VE
ty —sin(tg) 1 —cos(tg) (3.6)

It is easy to show that the time T along the curve is given by

, dy
1 1+ (a)z B a (3.7)
T = EL —y dx = tE\/;



Example:

Letting A=(0, 0) be our starting point and B=(XE, YE)=(1000, 1000) we get the
following equations for the brachistochrone problem:

X(t)=572.917(t-sin(t))

y(t)=572.917(1-cos(t)) (3.8)

where t=0..2.412. We will graph this in a moment.

Using our method of Lagrange multipliers and breaking the y domain [0, 1000] into 1000
partitions and approximating gravity g to be a constant over each subinterval, we get the
following result (sampling at every 100" point):

Lagrange Multiplier Method (n=1000 partitions)

x1=20.24 | x2=58.93 | x3=111.74 | x4=178.08 | x5=258.56
y1=100 |y2=200 |y3=300 y4=400 y5=500

x6=354.7 | x7=469.44 | x8=607.44 | x9=777.67 | x10=1000
y6=600 |y7=700 | y8=800 y9=900 y10=1000

The solution of the brachistochrone problem is given by the solid line and the points (X,
yi) i=1...n are from the Lagrange multiplier method as illustrated in Figure 4 below:
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Figure 4-Comparing the Method of Lagrange Multipliers and the Calculus of Variation

As can be seen, the Lagrange multiplier method yields excellent results. However, the
Lagrange multiplier method allows us to consider any speed, atmospheric modeling,
acceleration, and decelerations in a very easy method.
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