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Abstract: 

In this paper we will consider a generalization of the brachistochrone problem using 

Lagrange multipliers. Our goal is to design a level in a video game in which the player 

moves an avatar from one point on a computer screen to another point on the screen in a 

minimal amount of time. The speed at which the avatar can move depends on where on the 

screen the avatar is. 
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1 Introduction 

The simplest version of this problem is to break the screen into a finite number, n, of 

rectangles each of which stretch horizontally across the screen. The height of the rectangles 

l1, l2 …ln are known as are the corresponding speeds s1, s2 …sn with which the avatar can 

move through each rectangle. The player must create a path from a point A on the screen 

to a point B through the rectangles which minimizes the time of transversal. The problem 

reduces to a constrained minimization problem which can be solved by the method of 

Lagrange multipliers [1]. The same technique used can also be used to approximate the 

solution of the brachistochrone problem from the calculus of variations [2].  

2 Creating the Fastest Path Between Two Points 

In Figure 1 below we illustrate our problem. For sake of example we will look at a computer 

screen defined by [0, 1000] x [0, 1000]. In this example the domain is broken into n=10 

rectangles: [0, 100]x[0,1000]…[900, 1000]x[0,1000]. On the ith rectangle the avatar can 

move at a speed of si =10*i pixels/time unit.  

The objective is to create a path of shortest time from a given point A=(0,0) to another 

point B=(XE, YE) ((1000,1000) in this example). Note: As is customary with this type of 

problem, positive y will be denoted in a downwards direction. Here, on the rectangle y=0 

to y=100 x=0..1000 an avatar can travel at s=10 pixels/time unit. On y=100 to y=200 

x=0..1000 the avatar can travel at s=20 pixels/time unit and so on to on the rectangle y=900 

to y=1000 x=0..1000 the avatar can travel at a speed of 100 pixels/time unit. 



 

Figure 1-Finding the Fastest Path 

We shall approximate our optimal path by breaking the optimal curve into n line segments-

each of which is the hypotenuse of a right triangle-see Figure 2 below. As we know the 

length of the vertical sides, the li, we only need to find the lengths of the horizontal 

components, the di, which minimizes the sum of the times is takes to traverse the line 

segments. As we are dealing with a minimization problem subject to the constraint that the 

sum of the horizontal displacements must equal XE (1000 in our example), we use the 

classic method of Lagrange multipliers.  



 

Figure 2-What we Need to Minimize 

The function we need to minimize is the sum of the times it takes to transverse each of 

the n rectangles-which is given by: 

𝑓(𝑑1, 𝑑2, … , 𝑑𝑛) =  ∑
√𝑑𝑖2 + 𝑙𝑖2

𝑠𝑖

𝑛

𝑖=1

 

 

(2.1) 

subject to the constraint: 

𝑔(𝑑1, 𝑑2, … , 𝑑𝑛) =  𝑑1 + 𝑑2 + ⋯ + 𝑑𝑛 = 𝑋𝐸 

 
(2.2) 

Hence, we must find a λ for which satisfies [1] 

∇𝑓 = 𝜆∇𝑔 = 𝜆 < 1, 1, … , 1 > 

 
(2.3) 

Solving for (2.3) yields 

𝑑𝑖

𝑠𝑖 ∗ √𝑙𝑖2 + 𝑑𝑖2
= 𝜆   𝑖 = 1 … 𝑛 𝑤ℎ𝑒𝑟𝑒 𝜆 > 0 

 

(2.4) 

Solving (2.4) for the di we get 



𝑑𝑖 =
𝜆 ∗ 𝑙𝑖

(
1

𝑠𝑖2 − 𝜆2).5
   𝑖 = 1 … 𝑛 

 

(2.5) 

By (2.2) and (2.5) 𝜆 must satisfy  

∑
𝜆 ∗ 𝑙𝑖

(
1

𝑠𝑖2 − 𝜆2).5
= 𝑋𝐸

𝑛

𝑖=1

 

 

(2.6) 

where 𝜆 < min {
1

𝑠𝑖
} 𝑖 = 1 … 𝑛. 

As the left-hand side of (2.6) is an increasing function of 𝜆, (2.6) has a unique solution on 

(0, min{1/si}). Using any simple numerical tool allows us to approximate the solution 𝜆 

with any degree of accuracy desired. 

Example: 

Let the starting point A= (0, 0) and the ending point B= (XE, YE)=(1000, 1000) as 

illustrated in Figure 1. 

Break the region [0, 1000]x[0, 1000] into n=10 rectangles each having height li=100 and 

let the speed on the ith rectangle be given by si=10*i i=1…n. Solving (2.6) for 𝜆 we can 

solve for di i=1…10 using (2.5): 

The values of di are presented in the following table: 

 

d1 is 9.717592076941 

d2 is 19.716469280426 

d3 is 30.320551487255 

d4 is 41.955199508211 

d5 is 55.250555011642 

d6 is 71.258726625095 

d7 is 91.996416566653 

d8 is 122.145576401652 

d9 is 176.855999289317 

d10 is 380.782915477145 

Where 𝑥𝑖 = 𝑑1 + ⋯ + 𝑑𝑖 

x1 is 9.717592076941 

x2 is 29.434061357368 

x3 is 59.754612844623 

x4 is 101.709812352834 

x5 is 156.960367364476 

x6 is 228.219093989570 

x7 is 320.215510556223 

x8 is 442.361086957875 

x9 is 619.217086247193 

x10 is 1000.000001724338 



Total time is 35.777931135649 

Total distance is 1542.980226242951 

The path is illustrated as follows (where the x-coordinate of A is 0, the x-coordinate of B 

is x1, the x-coordinate of C is x2…): 

 

Figure 3-Our Optimal Path Timewise 

3 A Special Case-The Brachistochrone Problem 

Using the above method, we can approximate the solution to the classic brachistochrone 

problem [2]: 

The brachistochrone problem was stated by Bernoulli in 1696: Given two points A and B, 

find the path along which an object would slide (without friction) in the shortest time from 

a point A to a point B, if it starts at A in rest and is only accelerated by gravity, denoted by 

g. 

We shall once again define A= (0, 0) and B= (XE, YE). To solve this problem, we need to 

find the function y(x) which minimizes the time T where T is given by 

𝑇 = ∫

√1 + (
𝑑𝑦
𝑑𝑥

)2

√2𝑔𝑦
𝑑𝑥

𝑋𝐸

0

 

 

(3.1) 

 

 



Define our integrand as follows 

𝐹(𝑥, 𝑦, 𝑦′) =
√1 + (

𝑑𝑦
𝑑𝑥

)2

√2𝑔𝑦
 

 

(3.2) 

To make T stationary, as F does not contain x we can use the special case of the Euler-

Lagrange equation-The Beltrami Identity [3] 

𝐹 − 𝑦′
𝜕𝐹

𝜕𝑦′
= 𝐶 

 

(3.3) 

Using separable equations and substitutions we get [2] a solution of (3.1)-(3.3) of the 

form 

x(t)=a(t-sin(t)) 

y(t)=a(1-cos(t)) 

 

(3.4) 

Where the range t=0..tE comes from approximating the solution of 

𝑡 − sin (𝑡𝐸)

1 − cos (𝑡𝐸)
−

𝑥𝐸

𝑦𝐸
= 0 

 

(3.5) 

Using the solution of (3.5) we can then solve for a: 

𝑎 =
𝑥𝐸

𝑡𝐸 − sin (𝑡𝐸)
=

𝑦𝐸

1 − cos (𝑡𝐸)
 

 

(3.6) 

It is easy to show that the time T along the curve is given by 

𝑇 =
1

√2𝑔
∫ √

1 + (
𝑑𝑦
𝑑𝑥

)2

𝑦
𝑑𝑥 = 𝑡𝐸√

𝑎

𝑔

𝑥𝐸

0

 
(3.7) 



Example: 

Letting A=(0, 0) be our starting point and B=(XE, YE)=(1000, 1000) we get the 

following equations for the brachistochrone problem: 

x(t)=572.917(t-sin(t)) 

y(t)=572.917(1-cos(t)) 

 

(3.8) 

where t=0..2.412. We will graph this in a moment. 

Using our method of Lagrange multipliers and breaking the y domain [0, 1000] into 1000 

partitions and approximating gravity g to be a constant over each subinterval, we get the 

following result (sampling at every 100th point): 

Lagrange Multiplier Method (n=1000 partitions) 

x1=20.24 

y1=100 

x2=58.93 

y2=200 

x3=111.74 

y3=300 

x4=178.08 

y4=400 

x5=258.56 

y5=500 

x6=354.7 

y6=600 

x7=469.44 

y7=700 

x8=607.44 

y8=800 

x9=777.67 

y9=900 

x10=1000 

y10=1000 

 

The solution of the brachistochrone problem is given by the solid line and the points (xi, 

yi) i=1…n are from the Lagrange multiplier method as illustrated in Figure 4 below: 

 



 

Figure 4-Comparing the Method of Lagrange Multipliers and the Calculus of Variation 

As can be seen, the Lagrange multiplier method yields excellent results. However, the 

Lagrange multiplier method allows us to consider any speed, atmospheric modeling, 

acceleration, and decelerations in a very easy method. 
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