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Introduction 

As a professor who teaches a variety of introductory mathematics courses as well as 
courses for pre-service K – 12 teachers, I have found the free dynamic mathematics 
software Geogebra to be extremely useful in my teaching. At the 28th ICTCM, I gave a 
presentation on the robustness of Geogebra across many branches of mathematics (Cooper, 
2017). In this paper, I focus on the usefulness of Geogebra in visualizing three-dimensional 
solids. In particular, I demonstrate how Geogebra makes it possible to use dissection 
models to intuitively derive several volume formulas. While the methods could be extended 
to other solids, I have chosen to focus on pyramids, tetrahedra, and two shapes arising from 
recreational mathematics investigations, a square based frustum and a stellated burr puzzle. 

I first learned the term “frustum” in 2006 when I was a graduate student at the University 
of Georgia. My professor, Thomas Banchoff, who was visiting from Brown University, 
presented my class with a Foxtrot comic (Amend, 2006) where the character Jason is asking 
his family if a cup is half-empty or half-full. His punch line is that it is 7/12 empty and 5/12 
full. It turns out, Jason’s cup, being two-dimensional is a trapezoid as shown in Figure 1, 
but the three-dimensional version would be a frustum of a cone, the shape formed by slicing 
the top off of a cone parallel to the base. We can also consider frustums of pyramids with 
any base. In this paper, I will explore the polyhedral version with square bases. 

 

Figure 1. Jason’s Trapezoid Cup and a Three-Dimensional Square-Based Frustum 



Another object that I explore is called a stellated burr puzzle. Several companies produce 
wooden or plastic versions of this puzzle in which six congruent pieces can be assembled 
into a stellated burr or “star” shape. For those without a physical model, I created a virtual 
version with Geogebra that users can manipulate and break apart or assemble using a slider: 
https://www.Geogebra.org/classic/nhbhtf5b 

 

Figure 2. The Six Piece Stellated Burr Puzzle 

Although the frustum and the stellated burr puzzle may seem unrelated, we can in fact 
explore the volume of each by dissecting the solids into a combination of pyramids and 
tetrahedra. The necessary tetrahedra, known as semi-orthocentric, have the property that 
they have a pair of perpendicular opposite edges. It turns out that this property greatly 
simplifies their volume formulas.  

 

Figure 3. A Square-Based Frustum and a Stellated Burr Piece Dissected into Pyramids 
and Tetrahedra 



Volumes of Prisms 

To derive the volume of a square-based frustum and the stellated burr puzzle, we need to 
begin with the most basic volume and work our way up through pyramids and tetrahedra. 
The simplest solid in terms of volume is known as a cuboid or right rectangular prism. For 
these shapes, we can literally count the number of unit cubes that fill the shape using the 
familiar 𝑉 = 𝐿𝑊𝐻. This can be demonstrated for students with physical models of unit 
cubes, or with the virtual version that I created with Geogebra:  
https://www.Geogebra.org/m/qdr9m9gq  
 

  

Figure 4. Geogebra Demonstration that 𝑉 =  𝐿𝑊𝐻 for a Right Rectangular Prism 

 

In the applet, I have created a sequence of cubes, using Geogebra’s prism tool, with the 
number of cubes in each direction controlled by sliders. Using this applet, we can see that 
the length times the width gives the number of unit squares in the plane, and this value 
times the height gives the number of cubes in the solid. 

To understand the volume formulas for oblique prisms or prisms with non-rectangular 
bases, we need the important result known as Cavalieri’s Principle, which asserts that any 
pair of solids will have the same volume if for any intersecting plane, the cross sections 
have equal areas. This is often modeled for cylinders with stacks of coins, and I have 
designed a Geogebra applet with three different prisms:  
https://www.Geogebra.org/m/sgrvjvrm 

 

 

  

 



 

Figure 5. Geogebra Demonstration of Cavalieri’s Principle for Prisms 

I constructed three prisms with equal heights and equal area bases in the xy-plane. The 
slider s controls the length of the sides of the square base of the center prism, and h controls 
the height. A second prism is constructed with a congruent square base, but it is oblique 
with parallelogram sides instead of rectangles. A third prism is constructed with a trapezoid 
base of the same area. I have added an intersecting plane parallel to the xy-plane that can 
be moved up and down with a draggable point on the z-axis. Dragging the point, shows 
that for each prism, the cross sections are congruent to the respective bases, and thus, they 
all have the same area. The volumes, which are automatically computed by Geogebra for 
prisms, are all the same, verifying Cavalieri’s Principle. Note that for a rectangular prism, 
the volume formula is equivalent to computing the area of the base times the height. 
Therefore, by Cavalieri’s Principle, the volume of any prism, including cylinders or prisms 
with non-polygonal bases, can be computed as the height times the area of the base. 

𝑉prism = (height) × (area of the base) 

Volumes of Pyramids 

We can also use Cavalieri’s Principle to see that the volume of a pyramid is determined by 
the area of the base and the height, and with other constructions, we can derive that the 
volume of a pyramid, including cones and pyramids with non-polygonal bases, is one-third 
the area of the base times the height or one-third times the area of the circumscribed prism. 
To reach this result, I start with a Geogebra construction for pyramids that is similar to the 
one for prisms, demonstrating Cavalieri’s Principle:  
https://www.Geogebra.org/m/zskwjznv 

  



 

Figure 6. Geogebra Demonstration of Cavalieri’s Principle for Pyramids 

In this applet, I have constructed pyramids with equal height and equal area bases in the 
shape of a circle, a square, and a right triangle. The slider h controls the common height, 
and the slider r controls the radius of the circular base of the cone. The square and right 
triangle bases are constructed to have the same area as the circular base. By dragging the 
intersecting plane, controlled by a draggable point, we see that while the areas of the cross 
section change as the height of the plane changes, the three cross-section areas are always 
the same. The computed volumes verify that by Cavalier’s Principle the three solids all 
have the same volume. Therefore, any two pyramids with the same height and bases of 
equal area will have the same volume.  

There is a classic demonstration that the volume of a pyramid is one-third the height times 
the area of the base for a very specific case, using a trisection of a cube. Slicing a cube as 
shown in Figure 7 creates three congruent pyramids. These pyramids with square bases 
and apexes perpendicular over one corner of the base were called yangma by Chinese 
Mathematician Liu Hui (263 AD). I have shown this dissection of the cube into three 
congruent yangma in Geogebra: https://www.Geogebra.org/classic/agk6edhf 



 

Figure 7. A Cube Trisected into Three Congruent Yangma 

For more general cases, we can use Cavalieri’s Principle and pyramids with right triangle 
bases. By Cavalier’s Principle, if we need to compute the volume of a given pyramid, we 
may instead compute the volume of a pyramid with the same height and a right triangle 
base with the same area as the base of the given pyramid. We can then construct a triangular 
prism with this pyramid and two others with the same volume. 
https://www.Geogebra.org/m/qbabburu 

 

 

Figure 8. Constructing a Prism with Three Pyramids of Equal Volume 



For my Geogebra construction, I began with a right triangle base and created a pyramid 
with the apex perpendicular over one of the acute angles. Three color-coded sliders control 
the lengths of the two legs of the base and the edge that is the height of the pyramid. I then 
used vectors and translations to create two other pyramids with right triangle bases having 
one leg that is the same length as the height of the original pyramid and another leg that is 
the same length as one of the legs of the base of the original pyramid.  

A slider can be used to move the pyramids apart or slide them together to create a triangular 
prism whose bases are right triangles with the same dimensions as the original pyramid 
base. The volume of this prism is, therefore, the height of the original pyramid times the 
area of its base. If the three pyramids have the same volume, then each is one-third the area 
of the original base times the original height. Which in turn, means that the volume of any 
pyramid is one-third its height times the area of its base. Exploring the applet, we can 
observe that any pair of the pyramids can be seen to have congruent bases and the same 
heights. So again, by Cavalieri’s Principle, the three all have the same volume. Note in 
Figure 8, that I added an additional green segment onto the vertex of one of the pyramids 
to show that the height matches the lengths of the other green segments. Thus, we have 
established the familiar formula for pyramids, which includes cones and pyramids with any 
type of base. 

𝑉pyramid =
1

3
× (area of the base) × height 

Volumes of Tetrahedra 

Note that a tetrahedron is just a special case of a pyramid where the base is a triangle. So, 
the pyramid formula holds for a tetrahedron, though it may be hard to measure the height 
of a given tetrahedron. It is common in multivariable calculus to note that when using 
vectors, the volume of a tetrahedron is one-sixth the volume of a parallelepiped defined by 
the same vectors. This can be computed with dot products and cross products. 

𝑉୲ୣ୲୰ୟ୦ୣୢ୰୭୬ =
1

6
|𝒂 × 𝒃 ∙ 𝒄| 

Geometrically, this result is true because as we have seen, a tetrahedron is one-third the 
volume of the prism that is defined by its vectors, and this can be doubled to get a 
parallelepiped. I made a Geogebra construction to demonstrate this idea that is much like 
the one for more general pyramids. In this applet, shown in Figure 9, the three tetrahedra 
can be moved by dragging the three green points, and the reflection of the triangular prism 
can be turned off and on with a checkbox. The slider controls the height.  
https://www.Geogebra.org/m/z7akxsrm 



 

Figure 9. Geogebra Demonstration that the Volume of a Tetrahedron is 1/6 the Volume 
of a Parallelepiped 

While investigating the frustum and the burr puzzle, I stumbled onto the special family of 
tetrahedra known as “semi-orthocentric.” An orthocentric tetrahedron has perpendicular 
opposite edges, and a semi-orthocentric tetrahedron has one pair of perpendicular opposite 
edges. When a pair of opposite edge are perpendicular, the tetrahedron is one-third of a 
prism with right triangular bases as shown in Figure 10. In this case, the area of the base 

of this prism is 
ଵ

ଶ
𝑎𝑏, where 𝑎 and 𝑏 are the lengths of the perpendicular opposite edges of 

the tetrahedron. Therefore, the volume of the semi-orthocentric tetrahedron is one-third 

times the volume of the prism, which is simply 
ଵ

଺
𝑎𝑏ℎ, where the height of the prism ℎ is 

the distance between the two perpendicular opposite edges.  
https://www.Geogebra.org/classic/ydcegax6  

 

   

 



 

Figure 10. A Semi-Orthocentric Tetrahedron and the Circumscribed Prism with Right 
Triangle Bases. 

Volume of a Square-Based Frustum 

There is a classic decomposition of a square-based frustum that dates at least as far back as 
Liu Hui’s work (263 AD). Hui decomposed a square frustum into a center cuboid, four 
wedge shaped triangular prisms, and four yangma pyramids. To compute the volume, 
suppose that the smaller base has side lengths 𝑏, the larger base has side lengths 𝑎, and the 
height of the frustum is ℎ. Then the cuboid has a base with area 𝑏ଶ and height ℎ. Thus, the 

cuboid has volume ℎ𝑏ଶ. The yangma have height ℎ and square bases with side lengths 
௔ି௕

ଶ
. 

Together the yangma have a total volume of 
ସ

ଷ
ℎ ቀ

௔ି௕

ଶ
ቁ

ଶ

=
௛

ଷ
(𝑎 − 𝑏)ଶ. The triangular 

prisms have height 𝑏 and right triangle bases with leg lengths ℎ and 
௔ି௕

ଶ
. Combined the 

triangular prisms have volume 4 ቀ
ଵ

ଶ
ቁ ቀ

௔ି௕

ଶ
ቁ 𝑏ℎ = (𝑎 − 𝑏)𝑏ℎ. Adding these together gives 

the volume of the frustum.  

𝑉௙௥௨௦௧௨௠ = ℎ𝑏ଶ +
ℎ

3
(𝑎 − 𝑏)ଶ + (𝑎 − 𝑏)𝑏ℎ 

=
1

3
ℎ(𝑎ଶ + 𝑎𝑏 + 𝑏ଶ) 



I have modeled Hui’s decomposition in Geogebra, using a slider to break apart the 
frustum: https://www.Geogebra.org/classic/hagbkp78 

 

 

Figure 11. Liu Hui’s Decomposition of a Square Frustum 

This is a nice derivation, but it does not show a clear correspondence between the pieces 
and the final three terms of the volume formula. While preparing a discussion of the 
FoxTrot comic for the Gathering for Gardner conference, Tom Banchoff came up with an 
interesting decomposition based on Jason’s cup (Banchoff & Cooper, 2018). Tom 
envisioned placing the 12 triangle decomposition of a trapezoid shown in Figure 1 onto a 
three dimensional frustum and slicing the object along the lines. I made a Geogebra 
construction that focuses on the bottom of “full” portion of Jason’s cup:  
https://www.Geogebra.org/classic/g8rmspkk 

 



 

Figure 12. Banchoff’s Decomposition of a Square-Based Frustum into Square Pyramids 
and Semi-Orthocentric Tetrahedra 

The frustum shown in Figure 12 has 2 × 2 and 3 × 3 square bases, but Professor 
Banchoff’s dissection would work for any frustum with 𝑛 × 𝑛 and (𝑛 + 1) × (𝑛 + 1) 
bases. The fascinating result is that the decomposition corresponds exactly to the three 
terms in the volume formula. There a 𝑛ଶ upward pointing pyramids, each with volume 
௛

ଷ
ቀ

௔

௡
ቁ

ଶ

. So, the upward pointing pyramids have a total volume of 
௛

ଷ
𝑎ଶ. There are (𝑛 + 1)ଶ 

downward pointing pyramids, each with volume 
௛

ଷ
ቀ

௕

௡ାଵ
ቁ

ଶ

. So, the downward pointing 

pyramids have a total volume of  
௛

ଷ
𝑏ଶ. Looking at the frustum’s volume formula, it must 

be that the space in between the pyramids has a volume of  
௛

ଷ
𝑎𝑏. In fact, this space is made 

up of 2𝑛(𝑛 + 1) semi-orthocentric tetrahedra, each with a volume of 
ଵ

଺
ℎ ቀ

௔

௡
ቁ ቀ

௕

௡ାଵ
ቁ. 

While working on the applet for Tom’s decomposition, I wondered about a case with 𝑛 =
1, and I came up with a nice decomposition that should work for any square based frustum. 
My decomposition is shown in Figure 13 and modeled with a Geogebra applet: 
https://www.Geogebra.org/classic/b6puzg3w 

 



 

Figure 13. Decomposition of a Square-Based Frustum into Two Pyramids and Two Semi-
Orthocentic tetrahedra. 

With this smaller decomposition, I have given up much of the symmetry found in the other 
decompositions, but the formulas still hold. We get two pyramids with square bases that 

have volumes 
௛

ଷ
𝑎ଶ and 

௛

ଷ
𝑏ଶ. The pyramids are oblique with the apexes not over the center 

of the bases, but by Cavalieri’s Principle, the volumes are one-third the area of the base 
times the height. Also, while not as symmetric as the tetrahedra in Banchoff’s dissection, 
the two tetrahedra formed are semi-orthocentric with the lengths of the opposite edges 
being 𝑎 and 𝑏, and the distance between them being the height of the frustum. So the 

volume of the frustum is 
௛

ଷ
𝑎ଶ +

௛

଺
𝑎𝑏 +

௛

଺
𝑎𝑏 +

௛

ଷ
𝑏ଶ, giving a simple derivation in which 

the terms of the resulting formula match nicely to the volumes of the decomposition. 

 

Volume of The Stellated Burr Puzzle 

At first glance, the stellated burr puzzle with its many sharp corners may appear 
complicated in terms of volume; however, it turns out to be a simple result. The burr puzzle 
is made up of six congruent pieces, and each of these can be dissected into two square 
pyramids and four semi-orthocentric tetrahedra. As with the other decompositions, I have 
modeled this with a slider in Geogebra: https://www.Geogebra.org/m/gm2mrt9k 

 

Figure 14. The Burr Puzzle Pieces Dissected into Pyramids and Semi-Orthocentric 
Tetrahedra 



To compute the volume of the puzzle piece, let the length of the longest edge be 2𝑠. Then 

the square pyramids have base edge length 𝑠 and height 
௦

ଶ
. This gives a volume of  

௦య

଺
 for 

each pyramid. The four tetrahedra have opposite perpendicular edges of length 𝑠 with a 

distance of 
௦

ଶ
 between them. This gives a volume of 

௦య

ଵଶ
 for each tetrahedron and a total 

volume of 
ଶ

ଷ
𝑠ଷ for the entire puzzle piece. Multiplying by six, gives a volume of 4𝑠ଷ for 

the complete burr puzzle. This is precisely half of (2𝑠)ଷ, or one half the volume of a cube 
with the side lengths matching the longest edge of the burr puzzle piece. In other words, 
the stellated burr puzzle is one half the cube that circumscribes it.  

The relationship between the stellated burr and a cube was not immediately obvious to me 
until I computed it, but I later discovered another interesting object known as the 
Yoshimoto Cube. A simpler version, sometimes called an infinity cube consists of eight 
cubes hinged together to form a larger cube. The hinges allow the object to be folded 
repeatedly into larger cubes changing face colors. Naoki Yoshimoto created a version in 
which the eight smaller cubes are replaced by convex polyhedra with half the volume. This 
version allows the user to repeatedly transform the outside shell from a cube to a star 
matching the shape of the stellated burr puzzle. Some companies even sell pairs of 
Yoshimoto cubes that fit inside one another, showing that the stellated burr puzzle fits 
perfectly inside of a cube. I have also created a Geogebra model showing the 
transformation from cube to star: https://www.Geogebra.org/classic/ee4nvbxf 

 

 

Figure 15. Geogebra Model of a Yoshimoto Cube 



In summary, the dynamic capabilities of Geogebra combined with its ability to model 
three-dimensional solids has allowed me to take a journey from simple prisms to pyramids 
and tetrahedra, ultimately finding the volumes of square-based frustums and the star shape 
of the stellated burr puzzle. Although the results are not novel, my investigations with 
Geogebra led to my own self discovery of the volume of semi-orthocentric tetrahedra and 
the relationship between the stellated burr puzzle and the Yoshimoto cube. These are 
interesting relationships that I would not have made without the technology. For many of 
us, it is challenging to visualize complex three-dimensional objects mentally, but tools such 
as Geogebra can provide us with powerful models for exploration.  
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