EXPLORING VOLUMES WITH GEOGEBRA DISSECTION MODELS

Thomas E. Cooper
University of North Georgia
82 College Circle, Dahlonega, GA 30597

tom.cooper@ung.edu

Introduction

As a professor who teaches a variety of introductory mathematics courses as well as
courses for pre-service K — 12 teachers, I have found the free dynamic mathematics
software Geogebra to be extremely useful in my teaching. At the 28" ICTCM, I gave a
presentation on the robustness of Geogebra across many branches of mathematics (Cooper,
2017). In this paper, I focus on the usefulness of Geogebra in visualizing three-dimensional
solids. In particular, I demonstrate how Geogebra makes it possible to use dissection
models to intuitively derive several volume formulas. While the methods could be extended
to other solids, I have chosen to focus on pyramids, tetrahedra, and two shapes arising from
recreational mathematics investigations, a square based frustum and a stellated burr puzzle.

I first learned the term “frustum” in 2006 when I was a graduate student at the University
of Georgia. My professor, Thomas Banchoff, who was visiting from Brown University,
presented my class with a Foxtrot comic (Amend, 2006) where the character Jason is asking
his family if a cup is half-empty or half-full. His punch line is that it is 7/12 empty and 5/12
full. It turns out, Jason’s cup, being two-dimensional is a trapezoid as shown in Figure 1,
but the three-dimensional version would be a frustum of a cone, the shape formed by slicing
the top off of a cone parallel to the base. We can also consider frustums of pyramids with
any base. In this paper, I will explore the polyhedral version with square bases.

Figure 1. Jason’s Trapezoid Cup and a Three-Dimensional Square-Based Frustum



Another object that I explore is called a stellated burr puzzle. Several companies produce
wooden or plastic versions of this puzzle in which six congruent pieces can be assembled
into a stellated burr or “star” shape. For those without a physical model, I created a virtual
version with Geogebra that users can manipulate and break apart or assemble using a slider:
https://www.Geogebra.org/classic/nhbhtf5b

Figure 2. The Six Piece Stellated Burr Puzzle

Although the frustum and the stellated burr puzzle may seem unrelated, we can in fact
explore the volume of each by dissecting the solids into a combination of pyramids and
tetrahedra. The necessary tetrahedra, known as semi-orthocentric, have the property that
they have a pair of perpendicular opposite edges. It turns out that this property greatly
simplifies their volume formulas.

Figure 3. A Square-Based Frustum and a Stellated Burr Piece Dissected into Pyramids
and Tetrahedra



Volumes of Prisms

To derive the volume of a square-based frustum and the stellated burr puzzle, we need to
begin with the most basic volume and work our way up through pyramids and tetrahedra.
The simplest solid in terms of volume is known as a cuboid or right rectangular prism. For
these shapes, we can literally count the number of unit cubes that fill the shape using the
familiar V = LWH. This can be demonstrated for students with physical models of unit
cubes, or with the virtual version that I created with Geogebra:
https://www.Geogebra.org/m/qdr9m9gq
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Figure 4. Geogebra Demonstration that V = LWH for a Right Rectangular Prism

In the applet, I have created a sequence of cubes, using Geogebra’s prism tool, with the
number of cubes in each direction controlled by sliders. Using this applet, we can see that
the length times the width gives the number of unit squares in the plane, and this value
times the height gives the number of cubes in the solid.

To understand the volume formulas for oblique prisms or prisms with non-rectangular
bases, we need the important result known as Cavalieri’s Principle, which asserts that any
pair of solids will have the same volume if for any intersecting plane, the cross sections
have equal areas. This is often modeled for cylinders with stacks of coins, and I have
designed a Geogebra applet with three different prisms:
https://www.Geogebra.org/m/sgrvjvrm
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Figure 5. Geogebra Demonstration of Cavalieri’s Principle for Prisms

I constructed three prisms with equal heights and equal area bases in the xy-plane. The
slider s controls the length of the sides of the square base of the center prism, and / controls
the height. A second prism is constructed with a congruent square base, but it is oblique
with parallelogram sides instead of rectangles. A third prism is constructed with a trapezoid
base of the same area. I have added an intersecting plane parallel to the xy-plane that can
be moved up and down with a draggable point on the z-axis. Dragging the point, shows
that for each prism, the cross sections are congruent to the respective bases, and thus, they
all have the same area. The volumes, which are automatically computed by Geogebra for
prisms, are all the same, verifying Cavalieri’s Principle. Note that for a rectangular prism,
the volume formula is equivalent to computing the area of the base times the height.
Therefore, by Cavalieri’s Principle, the volume of any prism, including cylinders or prisms
with non-polygonal bases, can be computed as the height times the area of the base.

Virism = (height) X (area of the base)

Volumes of Pyramids

We can also use Cavalieri’s Principle to see that the volume of a pyramid is determined by
the area of the base and the height, and with other constructions, we can derive that the
volume of a pyramid, including cones and pyramids with non-polygonal bases, is one-third
the area of the base times the height or one-third times the area of the circumscribed prism.
To reach this result, I start with a Geogebra construction for pyramids that is similar to the
one for prisms, demonstrating Cavalieri’s Principle:
https://www.Geogebra.org/m/zskwjznv




> Algebra [X| | » craphics >< _» 3D Graphics
-—'| lv fev

Cone L
@ Cone:7.52

Conic ———
----- @ Circle:X=1{4,0,377)+( h=4.25
----- ® cX=(4,00+(13cos '_Q“‘
----- d: X={4,0,4.25)

MNumber
----- AreaCircle = 0.07 Araas
..... a=1.63 Circle: 0.07
----- ® h=435 Square: 0.07

Right
Triangle: 0.07

Yolume

..... A=1(0,0,4.25) Cone : 7.52

----- ® B=(0,0,3.77) 3

----- C=(-0.13,0.13,3.77) e

..... D=(0.13,0.13,3.77) Pyramid: 7.52

----- E=1{0.13, -0.13,3.77} Triangular

----- F={-0.13,-013,3.77)

----- K=(3.37,1.863,3.77)

----- L=1{3.37,1.26, 3.77)

----- M=(3.74,1.63, 3.77)
Folygon

@ RightTriangle = 0.07

@ Square =0.07
Pyramid

@ SouarePvramid = 7.52

Pyramid:7.52

Figure 6. Geogebra Demonstration of Cavalieri’s Principle for Pyramids

In this applet, I have constructed pyramids with equal height and equal area bases in the
shape of a circle, a square, and a right triangle. The slider /4 controls the common height,
and the slider 7 controls the radius of the circular base of the cone. The square and right
triangle bases are constructed to have the same area as the circular base. By dragging the
intersecting plane, controlled by a draggable point, we see that while the areas of the cross
section change as the height of the plane changes, the three cross-section areas are always
the same. The computed volumes verify that by Cavalier’s Principle the three solids all
have the same volume. Therefore, any two pyramids with the same height and bases of
equal area will have the same volume.

There is a classic demonstration that the volume of a pyramid is one-third the height times
the area of the base for a very specific case, using a trisection of a cube. Slicing a cube as
shown in Figure 7 creates three congruent pyramids. These pyramids with square bases
and apexes perpendicular over one corner of the base were called yangma by Chinese
Mathematician Liu Hui (263 AD). I have shown this dissection of the cube into three
congruent yangma in Geogebra: https://www.Geogebra.org/classic/agk6edhf




Figure 7. A Cube Trisected into Three Congruent Yangma

For more general cases, we can use Cavalieri’s Principle and pyramids with right triangle
bases. By Cavalier’s Principle, if we need to compute the volume of a given pyramid, we
may instead compute the volume of a pyramid with the same height and a right triangle
base with the same area as the base of the given pyramid. We can then construct a triangular
prism with this pyramid and two others with the same volume.
https://www.Geogebra.org/m/gbabburu
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Figure 8. Constructing a Prism with Three Pyramids of Equal Volume



For my Geogebra construction, I began with a right triangle base and created a pyramid
with the apex perpendicular over one of the acute angles. Three color-coded sliders control
the lengths of the two legs of the base and the edge that is the height of the pyramid. I then
used vectors and translations to create two other pyramids with right triangle bases having
one leg that is the same length as the height of the original pyramid and another leg that is
the same length as one of the legs of the base of the original pyramid.

A slider can be used to move the pyramids apart or slide them together to create a triangular
prism whose bases are right triangles with the same dimensions as the original pyramid
base. The volume of this prism is, therefore, the height of the original pyramid times the
area of its base. If the three pyramids have the same volume, then each is one-third the area
of the original base times the original height. Which in turn, means that the volume of any
pyramid is one-third its height times the area of its base. Exploring the applet, we can
observe that any pair of the pyramids can be seen to have congruent bases and the same
heights. So again, by Cavalieri’s Principle, the three all have the same volume. Note in
Figure 8, that I added an additional green segment onto the vertex of one of the pyramids
to show that the height matches the lengths of the other green segments. Thus, we have
established the familiar formula for pyramids, which includes cones and pyramids with any
type of base.

|74

1
pyramid = 3 X (area of the base) X height

Volumes of Tetrahedra

Note that a tetrahedron is just a special case of a pyramid where the base is a triangle. So,
the pyramid formula holds for a tetrahedron, though it may be hard to measure the height
of a given tetrahedron. It is common in multivariable calculus to note that when using
vectors, the volume of a tetrahedron is one-sixth the volume of a parallelepiped defined by
the same vectors. This can be computed with dot products and cross products.

Vietrahedron = g |a X b - Cl

Geometrically, this result is true because as we have seen, a tetrahedron is one-third the
volume of the prism that is defined by its vectors, and this can be doubled to get a
parallelepiped. I made a Geogebra construction to demonstrate this idea that is much like
the one for more general pyramids. In this applet, shown in Figure 9, the three tetrahedra
can be moved by dragging the three green points, and the reflection of the triangular prism
can be turned off and on with a checkbox. The slider controls the height.
https://www.Geogebra.org/m/z7akxsrm
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Figure 9. Geogebra Demonstration that the Volume of a Tetrahedron is 1/6 the Volume
of a Parallelepiped

While investigating the frustum and the burr puzzle, I stumbled onto the special family of
tetrahedra known as “semi-orthocentric.” An orthocentric tetrahedron has perpendicular
opposite edges, and a semi-orthocentric tetrahedron has one pair of perpendicular opposite
edges. When a pair of opposite edge are perpendicular, the tetrahedron is one-third of a
prism with right triangular bases as shown in Figure 10. In this case, the area of the base

of this prism is %ab, where a and b are the lengths of the perpendicular opposite edges of
the tetrahedron. Therefore, the volume of the semi-orthocentric tetrahedron is one-third
times the volume of the prism, which is simply %abh, where the height of the prism h is

the distance between the two perpendicular opposite edges.
https://www.Geogebra.org/classic/ydcegax6




Figure 10. A Semi-Orthocentric Tetrahedron and the Circumscribed Prism with Right
Triangle Bases.

Volume of a Square-Based Frustum

There is a classic decomposition of a square-based frustum that dates at least as far back as
Liu Hui’s work (263 AD). Hui decomposed a square frustum into a center cuboid, four
wedge shaped triangular prisms, and four yangma pyramids. To compute the volume,
suppose that the smaller base has side lengths b, the larger base has side lengths a, and the
height of the frustum is h. Then the cuboid has a base with area b? and height h. Thus, the

cuboid has volume hb?. The yangma have height h and square bases with side lengths az;b.

ab
2
prisms have height b and right triangle bases with leg lengths h and az;b. Combined the

2
Together the yangma have a total volume of %h( ) = %(a — b)2. The triangular

triangular prisms have volume 4 G) (az;b) bh = (a — b)bh. Adding these together gives
the volume of the frustum.

h
Verustum = hb* + g(a —b)? + (a — b)bh

1
= §h(a2 + ab + b?)



I have modeled Hui’s decomposition in Geogebra, using a slider to break apart the
frustum: https://www.Geogebra.org/classic/hagbkp78

Figure 11. Liu Hui’s Decomposition of a Square Frustum

This is a nice derivation, but it does not show a clear correspondence between the pieces
and the final three terms of the volume formula. While preparing a discussion of the
FoxTrot comic for the Gathering for Gardner conference, Tom Banchoff came up with an
interesting decomposition based on Jason’s cup (Banchoff & Cooper, 2018). Tom
envisioned placing the 12 triangle decomposition of a trapezoid shown in Figure 1 onto a
three dimensional frustum and slicing the object along the lines. I made a Geogebra
construction that focuses on the bottom of “full” portion of Jason’s cup:
https://www.Geogebra.org/classic/g8rmspkk




Figure 12. Banchoff’s Decomposition of a Square-Based Frustum into Square Pyramids
and Semi-Orthocentric Tetrahedra

The frustum shown in Figure 12 has 2 X 2 and 3 X 3 square bases, but Professor
Banchoff’s dissection would work for any frustum with nXn and (n+1) X (n+ 1)
bases. The fascinating result is that the decomposition corresponds exactly to the three
terms in the volume formula. There a n? upward pointing pyramids, each with volume

2
%(%) . So, the upward pointing pyramids have a total volume of g a?. There are (n + 1)2

_ . . h( b \? _
downward pointing pyramids, each with volume E(m) . So, the downward pointing
. h . .
pyramids have a total volume of Ebz. Looking at the frustum’s volume formula, it must

be that the space in between the pyramids has a volume of gab. In fact, this space is made

up of 2n(n + 1) semi-orthocentric tetrahedra, each with a volume of % h (E) (L)

n n+1

While working on the applet for Tom’s decomposition, I wondered about a case with n =
1, and I came up with a nice decomposition that should work for any square based frustum.
My decomposition is shown in Figure 13 and modeled with a Geogebra applet:
https://www.Geogebra.org/classic/b6puzg3w




Figure 13. Decomposition of a Square-Based Frustum into Two Pyramids and Two Semi-
Orthocentic tetrahedra.

With this smaller decomposition, I have given up much of the symmetry found in the other
decompositions, but the formulas still hold. We get two pyramids with square bases that

h h ) . .
have volumes 3 a? and 3 b?. The pyramids are oblique with the apexes not over the center

of the bases, but by Cavalieri’s Principle, the volumes are one-third the area of the base
times the height. Also, while not as symmetric as the tetrahedra in Banchoff’s dissection,
the two tetrahedra formed are semi-orthocentric with the lengths of the opposite edges
being a and b, and the distance between them being the height of the frustum. So the

. h h h h .. i o .
volume of the frustum is Eaz +to ab + gab + Ebz, giving a simple derivation in which
the terms of the resulting formula match nicely to the volumes of the decomposition.

Volume of The Stellated Burr Puzzle

At first glance, the stellated burr puzzle with its many sharp corners may appear
complicated in terms of volume; however, it turns out to be a simple result. The burr puzzle
is made up of six congruent pieces, and each of these can be dissected into two square
pyramids and four semi-orthocentric tetrahedra. As with the other decompositions, I have
modeled this with a slider in Geogebra: https://www.Geogebra.org/m/gm2mrt9k

Figure 14. The Burr Puzzle Pieces Dissected into Pyramids and Semi-Orthocentric
Tetrahedra



To compute the volume of the puzzle piece, let the length of the longest edge be 2s. Then
3

the square pyramids have base edge length s and height 2. This gives a volume of S— for

each pyramld The four tetrahedra have opposite perpendlcular edges of length s w1th a

distance of between them. This gives a volume of — for each tetrahedron and a total

volume of 2 3 s3 for the entire puzzle piece. Multlplymg by six, gives a volume of 4s3 for

the complete burr puzzle. This is precisely half of (25)3, or one half the volume of a cube
with the side lengths matching the longest edge of the burr puzzle piece. In other words,
the stellated burr puzzle is one half the cube that circumscribes it.

The relationship between the stellated burr and a cube was not immediately obvious to me
until T computed it, but I later discovered another interesting object known as the
Yoshimoto Cube. A simpler version, sometimes called an infinity cube consists of eight
cubes hinged together to form a larger cube. The hinges allow the object to be folded
repeatedly into larger cubes changing face colors. Naoki Yoshimoto created a version in
which the eight smaller cubes are replaced by convex polyhedra with half the volume. This
version allows the user to repeatedly transform the outside shell from a cube to a star
matching the shape of the stellated burr puzzle. Some companies even sell pairs of
Yoshimoto cubes that fit inside one another, showing that the stellated burr puzzle fits
perfectly inside of a cube. I have also created a Geogebra model showing the
transformation from cube to star: https://www.Geogebra.org/classic/ee4nvbxf

Slide o, B, and v from 0° to 180° in that order to
transform the cube into the star.

@ =0

Figure 15. Geogebra Model of a Yoshimoto Cube



In summary, the dynamic capabilities of Geogebra combined with its ability to model
three-dimensional solids has allowed me to take a journey from simple prisms to pyramids
and tetrahedra, ultimately finding the volumes of square-based frustums and the star shape
of the stellated burr puzzle. Although the results are not novel, my investigations with
Geogebra led to my own self discovery of the volume of semi-orthocentric tetrahedra and
the relationship between the stellated burr puzzle and the Yoshimoto cube. These are
interesting relationships that I would not have made without the technology. For many of
us, it is challenging to visualize complex three-dimensional objects mentally, but tools such
as Geogebra can provide us with powerful models for exploration.
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