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Abstract: The reverse Lucas sequence will be explored using CAS technology to determine
divisibility, prime outputs, periodicity and palatable number tricks.

1. Introductory Observations.

We initially examine the role played by the graphing calculator handhelds (models VOYAGE
200 and T1-89) when we enter the recursive sequence. See FIGURES 1-4:
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We note that the first ten terms in the table are 3, 1, 4, 5, 9, 14, 23, 37, 60 and 97. The calculator
reads the second term followed by the first terms when we enter 1, 3. Hence the expected Lucas
sequence is not generated. Instead the sequence we obtain will heretofore be classified as the
reverse Lucas sequence. Let us examine in TABLE 1 the initial one hundred terms in the
sequence together with their prime factorizations with prime outputs underline
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TABLE 1: PRIME FACTORIZATIONS OF THE FIRST ONE HUNDERED TERMS IN
THE REVERSE LUCAS SEQUENCE.

n: S, : Prime Factorization of S :
1 3 3

2 1 1

3 4 22

4 5 5

5 9 3?

6 14 2-7

7 23 23

8 37 37

9 60 2°.3.5

10 |97 97

11 | 157 157

12 254 2-127

13 411 3-137

14 | 665 5.-7-19

15 | 1076 2% -269

16 | 1741 1741

17 2817 32.313

18 | 4558 2-43-53

19 | 7375 5°.59

20 11933 11933

21 | 19308 2%.3-1609
22 | 31241 7-4463

23 | 50549 50549

24 | 81790 2-5-8179

25 | 132339 3-31.1423
26 | 214129 214129

27 | 346468 2?.37-2341
28 | 560597 560597

29 | 907065 3*.5.6719
30 | 1467662 2-7-79-1327
31 | 2374727 23-223-463
32 | 3842389 19.202231
33 | 6217116 2%.3.379-1367
34 | 10059505 5.227-8863
35 |16276621 16276621

36 | 26336126 2-641-20543
37 | 42612747 3-1637-8677
38 | 68948873 7-181-54419
39 | 111561620 2% .5.5578081
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40 180510493 180510493

41 292072113 32.32452457

42 472582606 2-1109-213067

43 764654719 67-2083-5479

44 1237237325 5%.49489493

45 2001892044 22.3.53.3147629

46 3239129369 7%.37-1786613

47 5241021413 71-3613-20431

48 8480150782 2-167-3607 - 7039

49 13721172195 3-5-914744813

50 22201322977 19-83-14078201

51 35922495172 22.3371- 2664083

52 58123818149 129631- 448379

53 94046313321 3%.2671-3912239

54 152170131470 2-5-7-2173859021

55 246216444791 23-31-345324607

56 398386576261 398386576261

57 644603021052 2%.3-619-86780159

58 1042989597313 1042989597313

59 1687592618365 5-97-499-6973091

60 2730582215678 2-118967-11476217

61 4418174834043 3-1472724944681

62 7148757049721 7-43-929-4967-5147
63 11566931883764 2% .487-947-6270169
64 18715688933485 5-919-5023-810881

65 30282620817249 32.37.401-75593351

66 48998309750734 2-305353-80232239

67 79280930567983 102301- 774977083

68 128279240318717 19.6751538964143

69 207560170886700 2%.3.5%.179-8017-482123
70 335839411205417 7-94343-508538617

71 543399582092117 577-683-1378868287

72 879238993297534 2-53-363581-22813919
73 1422638575389651 3-229-1194671-1733363
74 2301877568687185 5-460375513737437

75 3724516144076836 2%.367-2537136337927
76 6026393712764021 271-563-156677 - 252101
77 9750909856840857 3%.59.103-23917 - 7454297
78 15777303569604878 2-7-257-547-57727-138869
79 25528213426445735 5.23-221984464577789
80 41305516996050613 41305516996050613

81 66833730422496348 2%.3.5569477535208029




82 108139247418546961 137-269-2934340417/837

83 | 174972977841043309 174972977841043309

84 | 283112225259590270 2-5-37-1223- 625648549777
85 | 458085203100633579 3-31.-2333-14221-148463071
86 | 741197428360223849 7-19-18749.297237879097

87 1199282631460857428 2% .1567-6473- 29558810227
88 | 1940480059821081277 36/1-26903-109541-179369
89 | 3139762691281938705 3% .5-69772504250709749

90 |5080242751103019982 2-157-2063-4483-1749390847
91 | 8220005442384958687 279677689-29390994583

92 13300248193487978669 | 13300248193487978669

93 | 21520253635872937356 | 2°.3.647-2357-1175986337947
94 | 34820501829360916025 | 5°.7.283.703089385751861
95 | 56340755465233853381 | 311-7417-3749849-6513587
96 | 91161257294594769406 | 2-58921-773588850279143
97 147502012759828622787 | 3-631-101807971- 765359629
98 | 238663270054423392193 | 238663270054423392193

99 | 386165282814252014980 | 22.5.53-364306870579483033
100 | 624828552868675407173 | 624828552868675407173

2. Some Conjectures and Further Analysis.

A brief perusal of the Table 1 leads us to the following true conjectures where S represents the
n" term in the sequence.

Conjecture 1: Every third term in the sequence is even. Hence S, S¢,S,,S,,,... are even.

Conjecture 2: Every term that is congruent to one modulo four is divisible by three. Hence the
terms S,,S;,S,,S,;,... are divisible by three.

Conjecture 3: Every term that is congruent to three modulo six is divisible by four. Hence the
terms S;, Sy, Sis, S,,,... are divisible by four which are the odd integer multiples of three.

Conjecture 4: Every term that is congruent to four modulo five is divisible by five. Hence the
terms S,,S,,S,,,S,,,... are divisible by five.

Conjecture 5: Every term that is congruent to six modulo eight is divisible by seven. Hence the
terms S;,S,,,S,,,S,,... are divisible by seven.

Conjecture 6: Every term that is congruent to nine modulo fifteen is divisible by ten. Hence the
terms S;,S,,, Sy, Ss,, ... are divisible by ten.

The Principle of Mathematical Induction or Modular Arithmetic can be utilized to establish the
truth of these conjectures. For example, we Prove Conjecture 2.
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We are asserting that 3|S,, , VneN. (The symbol | means divides or is a factor of.)

Step 1: The statement is true for n=1:

Observe that 3|S,, , <> 3|S, ; <> 3|S, <> 3|3 since 3=3-1. (1)

Step 2: Assume the statement is true for n=Kk:

We assume that 3|S,, ,. (2)

Step 3. We prove that the statement is true for n=k +1 given that the statement is assumed true
for n=k:

We prove that 3|S, ;)5 <> 3| Sy.s5 <> 3| S, IS true given that 3|S,, , is assumed true. (3)

S4»k+l = S4<k—1 + S4-k = (844«3 + S4»k—2 ) + (84-k—2 + S4-k—1) = S4»k—3 +2- S4-|<72 + S4-k—1 =
S4K%-+2'SAKQ'+(S4k3_ks4k2)::2'S4K%-+3'S4k4'

Clearly 3|[3-S,, ,]. By the induction hypothesis (2), 3|S,, ; > 3|2-S,, 5. Hence
3|[2-S,45+3-S4y o] >3] S,4.s- Hence (3) is true and thus P(k) — P(k +1). Note that we have

utilized the recursion relation in The Fibonacci sequence and elementary divisibility properties.
Step 4: By The Principle of Mathematical Induction, since the statement is true for n=1, the

statement must be true for n=1+1=2,n=2+2=3,...,ie.VneN.o

The other properties can be verified similarly. When the modulus is large, it is much easier to
employ modular arithmetic. To check for divisibility by seven, we examine the sequence modulo
seven and secure the remainders. When we see a term of the sequence with zero remainder, we
arrive at our desired goal. The sequence of remainders modulo seven are respectively 3, 1, 4, 5,
2,0,2,2,4,6,3,2,5,0,5,5,3, 1, .... We notice that the sixth, fourteenth, twenty-second and
thirtieth terms are divisible by seven and the pattern continues. Once the sequence of remainders
enters with successive terms of 3 and 1, we know that the period modulo that integer has been
completed. Here the sequence of remainders modulo seven has a period of length sixteen as can
easily be viewed. The VOYAGE 200 displays this in FIGURES 5-8:
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We are asserting the following congruences are valid:

3=3(mod7),1=1(mod7), 4=4(mod7),5=5(mod7), 9=2(mod7),14=0(mod7),
23=2(mod7),37=2(mod7),60=4(mod7), 97 =6(mod7), 157 =3(mod 7),254 = 2(mod 7),
411=5(mod7),665=0(mod7),1076 =5(mod 7), 1741=5(mod 7), 2817 =3(mod 7),4558 =1(mod 7),....
We notice that the prime 11 does not occur as a factor of any term of the reverse Lucas sequence.

This is immediate from modular arithmetic; for the sequence of remainders modulo eleven are

respectively 3, 1,4, 5,9, 3, 1, ... and the sequence of remainders recycles after five terms which
is the length of the period modulo eleven. This can be seen below using congruences:

3=3(mod11), 1=1(mod11), 4=4(mod11), 5=5(mod11), 9 =9(mod11),14=3(mod11), 23=1(mod11),....

Also see FIGURES 9-10 using the VOYAGE 200 screen captures.
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Determining the length of the period of a prime as well as when the prime enters the sequence as
a factor (if it does) is best achieved by resorting to modular arithmetic and technology.

The least common multiple greatly enhances obtaining the entry points of divisibility of a term in
the sequence and the length of the period modulo the term for composite integer indices. For
example, if one desires to determine the entry point for the composite integer 12 as a factor of

the terms of the sequence and the length of the period modulo 12, we note that [3, 4] =12. We
utilize [a,b] as the standard notation for the least common multiple (Ilcm) of two non-negative

integers a and b. The reader can easily check that the sequence of remainders modulo four is
respectively 3, 1,0, 1, 1,2, 3, 1, .... The length of the period modulo four for this sequence is
six. Now since the sequence of remainders modulo three is respectively 0,1, 1, 2,0, 2, 2, 1, 0, 1,

..., we see that the length of the period modulo three is eight. We note that 3=0(mod3) (3 and
0 have the same remainder of O upon division by three).

Now [6,8] = 24. Hence the length of the period modulo twelve for this sequence is 24. This is

indeed the case. The reader can check that the sequence of remainders modulo 24 is respectively
3,1,4,5/92/11,1,0,1,1,2,3,5,8,1,9,10,7,5,0, 5,5,10,3, 1, ....



Observe that since the first, fifth, ninth and thirteenth terms are divisible by three while the third,
ninth, fifteenth and twenty-first terms are divisible by four, it is immediate that the ninth term is
divisible by twelve (since it is divisible by the relatively prime pair of term integers 3 and 4)
which is the least common multiple of three and four. The next three terms that are divisible by
twelve are hence the twenty-first, the thirty-third and the forty-fifth.

On the other hand, no term of the sequence is divisible by twenty-two; for an integer to be
divisible by twenty-two, the integer must be divisible by both 2 and 11. We have seen that no
term in the sequence is divisible by 11. No term of the sequence is divisible by eight; for the
sequence of remainders modulo eight are respectively 3, 1,4,5,1,6,7,5,4,1,5,6,3, 1, ... and
recycles after twelve terms so that none of the remainders is ever 0.

No term of the sequence is likewise divisible by twenty-eight; for a term to be divisible by
twenty-eight, the term would have to divisible by both four and seven. We note that
S;,S4, S5, S,,,... Which are odd numbered terms are divisible by four while the even numbered

terms S;,S,,,S,,,S;,... are divisible by seven which yields no possible intersection; for no term
number can be both even and odd.

In working with the first one thousand counting integers, | found that within the length of the
period, if there are factors that enter the sequence, such factors enter the sequence either once,
twice or four times. For example, the prime 19 enters the sequence once (at the fourteenth term)
within its period of length eighteen modulo nineteen. The prime 7 enters the sequence twice (at
the sixth and fourteenth terms) within its period of length sixteen modulo seven. Meanwhile the
prime 5 enters the sequence four times (at the fourth, ninth, fourteenth and nineteenth terms)
within its period of length twenty modulo five.

We present TABLE 2 which represents the divisibility and periodicity patterns for the first one
hundred terms in the sequence:

TABLE 2: DIVISIBILITY AND PERIODICITY IN THE REVERSE LUCAS SEQUENCE
TABLE FOR THE FIRST FIFTY INTEGERS

n: Length of Period in Z,: | Values of S, when n is a Factor:
1 --- ALL
2 3 S,,S:S:Spy0 e
3 8 S,,Sc,Sg: Spsrene
4 6 S,,Sg. 151 Spyr-
5 20 S41S4: 501 S0




6 24 So. 5,11 Saz0 Susr o
7 16 S S1: 521 Sap1 ..
8 12 NONE

9 24 S, S172Sgr Sapron
10 60 Sy, S50 Ss01 Seanon
11 5 NONE

12 24 S, 5,11 Saz0 Sugr o
13 28 NONE

14 48 Se»Sa0: Ser Sraron
15 40 S, S50, Sugs Segr -
16 24 NONE

17 36 NONE

18 24 NONE

19 18 S.4:Ss2r Sepr Segr -
20 60 Sg, S50+ Seor Sgr-n-
21 16 NONE

22 15 NONE

23 48 S,,S41,See: Srgr e
24 24 NONE

25 100 Si0.Susr Seor Seuron
26 84 NONE

27 72 Sy Sesr Siop S

291 651 <101 M1371* "




28 48 NONE

29 14 NONE

30 120 Sy, Seor Sprgs Siao s
31 30 Syer See Sees Sprer -
32 48 NONE

33 40 NONE

34 36 NONE

35 80 S,4 Seas Sou Syagn e
36 24 NONE

37 76 S, Ss7. Sugr Segrone
38 18 NONE

39 56 NONE

40 60 NONE

41 40 NONE

42 48 NONE

43 88 Si5+ Sear Siger Sigr--:
44 30 NONE

45 120 S5+ Seer Suaor Saogs -
46 48 NONE

47 32 NONE

48 24 NONE

49 112 Sus+ S102 Siesr Srar oo
50 300 Sesr S1at: Sigr Sogaroo




In TABLE 3, we show the divisibility and periodicity patterns for all primes less than five
hundred with regards to this sequence.

TABLE 3: TABLE OF DIVISIBILITY AND PERIODICITY FOR THE REVERSE
LUCAS SEQUENCE OF PRIMES <500.

p: Length of Period in Z : | Values of S| where p is a Factor:
2 3 S,,S5,59: S 1y
3 8 S,,S¢, S, Sya1
) 20 S,15:5,,, 5,9,
7 16 Se»SiarSypr Sapr -
11 5 NONE
13 28 NONE
17 36 NONE
19 18 Si42Ssy: Seg Segroe
23 48 S,,54,Se: Sgr -
29 14 NONE
31 30 S,5s Sess Sggy Sy e
37 76 S4,S,7, Sugr Segn o
41 40 NONE
43 88 Sig1Ser1 Si061 Sisg -+
47 32 NONE
53 108 Sig1 5451575, Sy
59 58 SierS77) Siagr Siagn o
61 60 NONE
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67 136 SisrS111 Spror Sprr s
71 70 S472S117+ Siar Sperronn
73 148 NONE
79 78 Sas S108r Siser Sesr oo
83 168 Ses: S1asr Sorgr Sapprooe
89 44 NONE
97 196 Si0.Sear Siop Sper s oo

101 50 NONE

103 208 S, S1a1: Soess Saagr -

107 72 NONE

109 108 NONE

113 76 NONE

127 256 S1, Suior Soeg s Ssaps oo

131 130 S122 Syer» Ssgps Srgro

137 276 Si3.Ser Sis1s Syaon -

139 46 NONE

149 148 NONE

151 50 NONE

157 316 S11 S0 Sieer Sy -

163 328 S113:Sy77s Saans Sepsroe

167 336 Sue Sorer Saaas Seepr oo

173 348 NONE
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179

178

SeorSou71 S5, S

s0 Sy7 Sane: Sazn oo
181 90 Sus» Siosr Sozar S -
191 190 S15+ Ss13+ Sesar Seozr -
193 388 NONE
197 396 NONE
199 22 NONE
211 42 NONE
223 448 Su1 Sess Surgs Sragron
227 456 Sas: Syerr Saos Sorgsee
229 114 S1z. S1s+ Saots Sassr -
233 52 NONE
239 238 Sy35: Ss7o+ Ssrsr Sespro
241 240 NONE
251 250 S113: Sssar Sora Sapsro
257 516 Sos:Ss07+ Sazer Sasr -
263 176 NONE
269 268 Sic+ Sz Spaor Srg s
271 270 So Sauss Serss Saagr -
277 556 NONE
281 56 NONE
283 568 Sasr Ssra+ Seens Seasr
293 588 NONE
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307 88 NONE
311 310 Sus: Sasss Syisr Sipgsro
313 628 S, S1rar Ssars Sugaroe
317 636 Sy00: a3 Susar Serto -
331 110 NONE

337 676 NONE

347 232 NONE

349 174 NONE

353 236 NONE

359 358 Si06: Susr Sent Strgs -
367 736 Soc, Suiz Sarts Sirrgr oo
373 748 NONE

379 378 Sus. Surts Sraes Siiors -
383 768 S5 Ser71 S1op1s Suaas s oo
389 388 NONE

397 796 Siss» Saser Seens Srgarone
401 200 See: Saer Sussr Segsro
409 408 NONE

419 418 Syer Serer Sio03 Spens oo
421 84 NONE

431 430 S0 Sre0+ S11a0s Seror -
433 868 S0+ Sutr» Seats Sess oo
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439 438 S47+ Se10 S1aaer Sisses oo
443 888 Syeo+ Sr13s Sizsr Syeops oo
449 448 S22+ Suss Sesos Seaas--
457 916 NONE

461 46 NONE

463 928 S41, Suos Sosar Suazg s
467 936 Si06 Sesr Stra1s Sicgnr oo
479 478 S100 Sess Strzer Steper -
487 976 Ses: Seets S1oz9s Sisprs e
491 490 Sueor Seaos Suzas Siszor -
499 498 Ses: Seers Sioess Siegs oo

3. Palatable Number Tricks Associated With The Reverse Lucas Sequence.

In light of the fact that the Reverse Lucas Sequence is a Fibonacci-style sequence (with the
exception of the initial two terms, but follows the Fibonacci recursion rule), all of the palatable
number tricks that work for the Fibonacci sequence likewise hold for this sequence including the
following:

a. If one considers the sum of any ten consecutive terms in the sequence, forms the sum and

divides the sum by eleven, then the quotient will always be the seventh term in the sequence.

b. Suppose one consider any four consecutive terms in the Fibonacci sequence and applies the
following three simple steps. First form the product of the first and fourth terms. Take twice the
product of the second and third terms. Finally take the sum of the squares of the second and third
terms in your sequence. We relate this to plane geometry and observe that a Pythagorean triple is
obtained.

c. We finally take the ratio of each even numbered term to the previous odd-numbered term and
form a conjecture and then take the ratio of each odd numbered term to the previous even
numbered term and form a conjecture. What appears to be happening to these ratios is
remarkable. These sequence of ratios appear to be approaching the Golden Ratio!
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Let us prove each of these assertions. The reader is invited to first gather some empirical
evidence to see that the above conclusions are palatable. We first illustrate with two examples.

a. Suppose the ten consecutive terms in the sequence are {5,9,14,23,37,60,97,157, 254,411}
Using the VOYAGE 200 in FIGURES 11-12, we obtain the following:

1 b a|cate [t her [Pran o c1emn Ug| | a1 dbra|cate [other Pronto|c1emn Us| |

S+ 4+ 14+ 23+ 37 +E0+97 + 157 + 254 + 4 B+ 9+ 14+ 23+ 37+ B0 +97 + 157 + 254 + 411
1067 1067
. 1067 7 . 1067 7
ans<{1>-11 ans<1>~11
MAIN ERD EXACT ZEQ 2/89 MAIN ERD EXACT ZEQ 2/89
FIGURE 11: Entering The Termsand  FIGURE 12: Entering the Terms and Dividing
Dividing the Sum by 11 Dividing the Sum by 11

Note that 97 is the seventh term in the sequence.

As a second example, suppose the ten consecutive terms in the sequence are
{3,1,4,5,9,14,23,37,60,97}. Using the VOYAGE 200 in FIGURE 13, we obtain the following:

T 1 3| otz [t her PramIo|clem Us| |

BRI+ 1+4+53+9+14+23+37+60+97 233
253
"7 23

anst1)-11

MAIN EAD EXACT ZEQ  z/00

FIGURE 13: Entering the Terms and Dividing the Sum by 11

Note that 23 is the seventh term in the sequence.

Based on the empirical evidence supported by the above examples, one might desire to venture
the following conjecture:

Conjecture: The sum of any ten consecutive terms in the sequence is always divisible by
eleven. The quotient is always the seventh term in the sequence.
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Proof: Suppose the initial two terms in the sequence are x and y respectively. Then the ten

terms of the sequence (all of whose coefficients are indeed Fibonacci numbers) comprises the
following set:

{X, ¥, X+Y,X+2-y,2-Xx+3-y,3-X+5-y,5-x+8-y,8-x+13-y,13-x+21-y, 21- x+34- y}. Let
us employ the VOYAGE 200 to furnish a proof of the above assertion. See FIGURES 14-16:
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FIGURE 14: General Proof FIGURE 15: General Proof
| SN ANA SN e R
So-x+ 88y
=t ><1+188 ] Sow+ ey
ans%t1>-11
AN FAD AUTO ER Z4E

FIGURE 16: General Proof

Observe that 5-x+8-y constitutes the seventh term in the sequence.

b. We now consider any four consecutive terms in the sequence. First form the product of the
first and fourth terms. Take twice the product of the second and third terms. Finally take the sum
of the squares of the second and third terms in your sequence. We relate this to a theorem in
plane geometry by conjecturing based on several examples, and then substantiate our conjecture.

Example 1: Suppose the four terms are {5,9,14, 23}. FIGURE 17 displays our data:
1 b a|cate [t her [Pran o c1emn Ug| |

=523 113

2914 252
maf 4142 277
w1152 4 3522 TET2O
mo7re FEFIe
2972

FAIN FEAD EXACT EQ E/HE

FIGURE 17: Four Consecutive Terms in the Sequence

Observe that the primitive Pythagorean triplet {115,252,277} is formed. By primitive, we mean
that no two integers in the triplet have a common factor higher than one.
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Example 2: Suppose the four terms are {3,1, 4, 5}. See FIGURE 18 for the relevant data:
T [l aibra|cate [t her [PramI0|c1em Us| |

=35 15
=z 14 g
12442 17
=524 22 259
w7 za9
172

FAIN ERD ERACT *ER E/89

FIGURE 18: Four Consecutive Terms in the Sequence

Observe that the primitive Pythagorean triplet {15,8,17} is formed which is likely recognizable
to most readers.

Let us prove the conjecture is true in general by considering any four consecutive terms in the
sequence. Let the terms of this generic sequence be as follows:

{x, Y, X+Y,X+2- y}. FIGURE 19 provides the expand key required to multiply algebraic
expressions while FIGURES 20-23 provides out inputs and outputs:
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FIGURE 19: The Formal Proof
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FIGURE 21: The Formal Proof
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FIGURE 23: The Formal Proof

FIGURE 20: The Formal Proof
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FIGURE 22: The Formal Proof
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Hence we view the Pythagorean triplet {x2+2-x'y, 2-X-y+2-y°, x2+2'x-y+2-y2}.

c. We finally take the ratio of each even numbered term to the previous odd-numbered term in
the sequence and form a conjecture as well as take the ratio of each odd numbered term to the
previous even numbered term in the sequence and form a conjecture. We see what appears to be
happening to these ratios. In FIGURES 25-28, we consider the ratios of even numbered terms to
the previous odd numbered terms while in FIGURES 29-32, we consider the ratios of odd
numbered terms to the previous even numbered terms. Our MODE is APPROXIMATE as in
FIGURE 24 and proceed on Page 2 down to 3: APPROXIMATE.
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FIGURE 24: The Approximate Mode FIGURE 25: Ratios of Successive Terms
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FIGURE 26: Ratios of Successive Terms FIGURE 27: Ratios of Successive Terms
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FIGURE 28: Ratios of Successive Terms FIGURE 29: Ratios of Successive Terms
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FIGURE 30: Ratios of Successive Terms FIGURE 31: Ratios of Successive Terms
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FIGURE 32: Ratios of Successive Terms

It appears that the ratio of the even numbered terms to the preceding odd numbered terms forms
a monotonically increasing sequence while the ratio of the odd numbered terms to the preceding
even numbered terms forms a monotonically decreasing sequence and both sequences are

1+J§

2
that this constant represents The Golden Mean or The Golden Ratio. In fact, all of the number
tricks in this section work for the Fibonacci sequence and any Fibonacci-like sequence in which
the initial two terms may assume any value and the sequence then follows the Fibonacci
recursion rule. Our sequence, of course, is a Fibonacci-like sequence. Let us prove that the ratio
of successive terms in any Fibonacci-like sequence approaches the Golden Ratio constant.

approaching the same number, namely ¢ = ~1.61803398875! Many of us will recognize

Proof: Let the initial two terms of the Fibonacci-like sequence be x and Yy respectively. Then

the next terms are respectively
X+Y, X+2-y,2-X+3-y,3:X+5-y,5-x+8-y, ..., F ;- x+F, -y, F -x+F ,-y, ...

B X+ Fos Y | et us divide
F..-x+F -y

n

Now if we take the ratio r of two consecutive terms, we obtain r =
each term in the numerator and denominator by F.. Then
X + h -y
r_[Fn‘X—i_F”‘*'l.y]/Fn_Fn'X/Fn+Fn+1'y/Fn_ I:n
[FH.X+ F - y]/ F F_,x/IF+F y/F F

_nl oy
F y
. F., .k, 1 . .
Now lim =g and lim %:a where ¢ is the Golden Ratio.
I:n-¢-1
x+?-y 1
lim r = lim |y _xbey 1,
n—+o0 n—+o0 Fn—l X X+¢-y 1
7.X+y n y _
A ¢ ¢

Hence the ratio of consecutive terms tends to The Golden Ratio, completing the proof.
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4. Concluding Remarks and Further Directions.

In this paper, we explored divisibility patterns and primes in the reverse Lucas sequence which
included securing the complete factorizations for the initial one hundred terms in the sequence. |
have been able to secure the prime factorizations of the first four hundred seventy-five terms of
the sequence. Determining whether an integer is prime can be achieved in polynomial time. In
contrast, the actual factorization of large composite integers is an NP Hard problem that cannot
be achieved in this manner; for things are growing exponentially. Factoring a large integer is
contingent upon the second largest prime factor and if this factor contains more than thirty digits,
it becomes a challenge for even the best machines to achieve a complete factorization. Hence
breaking a problem into a smaller sub problem is the manner in which one needs to proceed to
obtain additional fruitful outcomes in this endeavor and at least obtain partial factorizations
generating small prime factors.

In addition, in the Fibonacci sequence 1, 1,2, 3, 5, 8, ..., by the n’term, n appears as a factor of
some term in the sequence. In contrast, one-third of the primes and 746 of the first one thousand
integers never appear as factors of any term in the Lucas sequence. For the Reverse Lucas
sequence, of the 168 primes less than 1000, 72 do not appear as factors of any term in the
sequence and 721 of the first one thousand counting integers do not either. All three sequences
enjoy the Fibonacci number tricks discussed in this paper and many others.

5. References.
1. Mathematica, Version 11.0, Wolfram Research, Champaign-Urbana, IL (2017).
2. Mathworld — A Wolfram Resource, Wolfram Research, Champaign-Urbana, IL (2017).

3. OEIS, The On Line Encyclopedia of Integer Sequences, Sequence A002275, The OEIS
Foundation (2017).

4. Prime Curios — The Dictionary of Prime Number Trivia, UTM, 2000-2018.

20



