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Abstract: The reverse Lucas sequence will be explored using CAS technology to determine  

divisibility, prime outputs, periodicity and palatable number tricks.  

 

1. Introductory Observations. 

We initially examine the role played by the graphing calculator handhelds (models VOYAGE 

200 and TI-89) when we enter the recursive sequence. See FIGURES 1-4: 

  
FIGURE 1: Sequence Mode   FIGURE 2: Entering the Sequence 

 

  
FIGURE 3: Entering the Sequence  FIGURE 4: Table Illustrated 

We note that the first ten terms in the table are 3, 1, 4, 5, 9, 14, 23, 37, 60 and 97. The calculator 

reads the second term followed by the first terms when we enter 1, 3. Hence the expected Lucas 

sequence is not generated. Instead the sequence we obtain will heretofore be classified as the 

reverse Lucas sequence. Let us examine in TABLE 1 the initial one hundred terms in the 

sequence together with their prime factorizations with prime outputs underline 
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TABLE 1: PRIME FACTORIZATIONS OF THE FIRST ONE HUNDERED TERMS IN 

THE REVERSE LUCAS SEQUENCE. 

:n  :nS  Prime Factorization of :nS  

1 3 3  

2 1 1  

3 4 22  

4 5 5  

5 9 23  

6 14 2 7  

7 23 23 

8 37 37  

9 60 22 3 5   

10 97 97  

11 157 157  

12 254 2 127  

13 411 3 137  

14 665 5 7 19   

15 1076 22 269  

16 1741 1741 

17 2817 23 313  

18 4558 2 43 53   

19 7375 35 59  

20 11933 11933  

21 19308 22 3 1609   

22 31241 7 4463  

23 50549 50549  

24 81790 2 5 8179   

25 132339 3 31 1423   

26 214129 214129  

27 346468 22 37 2341   

28 560597 560597  

29 907065 33 5 6719   

30 1467662 2 7 79 1327    

31 2374727 23 223 463   

32 3842389 19 202231  

33 6217116 22 3 379 1367    

34 10059505 5 227 8863   

35 16276621 16276621 

36 26336126 2 641 20543   

37 42612747 3 1637 8677   

38 68948873 7 181 54419   

39 111561620 22 5 5578081   
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40 180510493 180510493  

41 292072113 23 32452457  

42 472582606 2 1109 213067   

43 764654719 67 2083 5479   

44 1237237325 25 49489493  

45 2001892044 22 3 53 3147629    

46 3239129369 27 37 1786613   

47 5241021413 71 3613 20431   

48 8480150782 2 167 3607 7039    

49 13721172195 3 5 914744813   

50 22201322977 19 83 14078201   

51 35922495172 22 3371 2664083   

52 58123818149 129631 448379  

53 94046313321 23 2671 3912239   

54 152170131470 2 5 7 2173859021    

55 246216444791 23 31 345324607   

56 398386576261 398386576261 

57 644603021052 22 3 619 86780159    

58 1042989597313 1042989597313  

59 1687592618365 5 97 499 6973091    

60 2730582215678 2 118967 11476217   

61 4418174834043 3 1472724944681  

62 7148757049721 7 43 929 4967 5147     

63 11566931883764 22 487 947 6270169    

64 18715688933485 5 919 5023 810881    

65 30282620817249 33 37 401 75593351    

66 48998309750734 2 305353 80232239   

67 79280930567983 102301 774977083  

68 128279240318717 19 6751538964143  

69 207560170886700 2 22 3 5 179 8017 482123      

70 335839411205417 7 94343 508538617   

71 543399582092117 577 683 1378868287   

72 879238993297534 2 53 363581 22813919    

73 1422638575389651 3 229 1194671 1733363    

74 2301877568687185 5 460375513737437  

75 3724516144076836 22 367 2537136337927   

76 6026393712764021 271 563 156677 252101    

77 9750909856840857 23 59 103 23917 7454297     

78 15777303569604878 2 7 257 547 57727 138869      

79 25528213426445735 5 23 221984464577789   

80 41305516996050613 41305516996050613 

81 66833730422496348 22 3 5569477535208029   
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82 108139247418546961 137 269 2934340417837   

83 174972977841043309 174972977841043309  

84 283112225259590270 2 5 37 1223 625648549777     

85 458085203100633579 3 31 2333 14221 148463071     

86 741197428360223849 7 19 18749 297237879097    

87 1199282631460857428 22 1567 6473 29558810227    

88 1940480059821081277 3671 26903 109541 179369    

89 3139762691281938705 23 5 69772504250709749   

90 5080242751103019982 2 157 2063 4483 1749390847     

91 8220005442384958687 279677689 29390994583  

92 13300248193487978669 13300248193487978669 

93 21520253635872937356 22 3 647 2357 1175986337947     

94 34820501829360916025 25 7 283 703089385751861    

95 56340755465233853381 311 7417 3749849 6513587    

96 91161257294594769406 2 58921 773588850279143   

97 147502012759828622787 3 631 101807971 765359629    

98 238663270054423392193 238663270054423392193 

99 386165282814252014980 22 5 53 364306870579483033    

100 624828552868675407173 624828552868675407173 

 

2. Some Conjectures and Further Analysis. 

A brief perusal of the Table 1 leads us to the following true conjectures where nS  represents the 

thn  term in the sequence. 

Conjecture 1: Every third term in the sequence is even. Hence 3 6 9 12, , , ,...S S S S  are even. 

Conjecture 2: Every term that is congruent to one modulo four is divisible by three. Hence the 

terms 1 5 9 13, , , ,...S S S S  are divisible by three. 

Conjecture 3: Every term that is congruent to three modulo six is divisible by four. Hence the 

terms 3 9 15 21, , , ,...S S S S  are divisible by four which are the odd integer multiples of three. 

Conjecture 4: Every term that is congruent to four modulo five is divisible by five. Hence the 

terms 4 9 14 19, , , ,...S S S S  are divisible by five. 

Conjecture 5: Every term that is congruent to six modulo eight is divisible by seven. Hence the 

terms 6 14 22 30, , , ,...S S S S  are divisible by seven. 

Conjecture 6: Every term that is congruent to nine modulo fifteen is divisible by ten. Hence the 

terms 9 24 39 54, , , ,...S S S S  are divisible by ten. 

The Principle of Mathematical Induction or Modular Arithmetic can be utilized to establish the 

truth of these conjectures. For example, we Prove Conjecture 2. 
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We are asserting that 4 33 | .nS n −     (The symbol | means divides or is a factor of.) 

Step 1:  The statement is true for 1:n =  

Observe that 4 1 3 4 3 13 | 3 | 3 | 3 | 3S S S − −    since 3 3 1.=   (1) 

Step 2:  Assume the statement is true for :n k=      

We assume that 4 33 | .kS  −  (2) 

Step 3:  We prove that the statement is true for 1n k= +  given that the statement is assumed true 

for :n k=    

We prove that 
4 ( 1) 3 4 4 3 4 13| 3| 3|k k kS S S + −  + −  +   is true given that 4 33 | kS  −  is assumed true.  (3) 

( ) ( )

( )

4 1 4 1 4 4 3 4 2 4 2 4 1 4 3 4 2 4 1

4 3 4 2 4 3 4 2 4 3 4 2

2

2 2 3 .

k k k k k k k k k k

k k k k k k

S S S S S S S S S S

S S S S S S

 +  −   −  −  −  −  −  −  −

 −  −  −  −  −  −

= + = + + + = +  + =

+  + + =  + 
  

Clearly 4 23 | [3 ].kS  −  By the induction hypothesis (2), 4 3 4 33 | 3 | 2 .k kS S −  −→   Hence 

 4 3 4 2 4 13 | 2 3 3 | .k k kS S S −  −  + +    Hence (3) is true and thus ( ) ( 1).P k P k→ +  Note that we have 

utilized the recursion relation in The Fibonacci sequence and elementary divisibility properties. 

Step 4:  By The Principle of Mathematical Induction, since the statement is true for 1,n =  the 

statement must be true for 1 1 2, 2 2 3,..., . . .n n i e n= + = = + =    

The other properties can be verified similarly. When the modulus is large, it is much easier to 

employ modular arithmetic. To check for divisibility by seven, we examine the sequence modulo 

seven and secure the remainders. When we see a term of the sequence with zero remainder, we 

arrive at our desired goal. The sequence of remainders modulo seven are respectively 3, 1, 4, 5, 

2, 0, 2, 2, 4, 6, 3, 2, 5, 0, 5, 5, 3, 1, …. We notice that the sixth, fourteenth, twenty-second and 

thirtieth terms are divisible by seven and the pattern continues. Once the sequence of remainders 

enters with successive terms of 3 and 1, we know that the period modulo that integer has been 

completed. Here the sequence of remainders modulo seven has a period of length sixteen as can 

easily be viewed. The VOYAGE 200 displays this in FIGURES 5-8:  

  
FIGURE 5: Entering the Sequence  FIGURE 6: Table Displayed 

  
FIGURE 7: Table Displayed  FIGURE 8: Table Displayed  



6 
 

We are asserting the following congruences are valid: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3 3 mod 7 , 1 1 mod 7 , 4 4 mod 7 , 5 5 mod 7 , 9 2 mod 7 ,14 0 mod 7 ,

23 2 mod 7 ,37 2 mod 7 ,60 4 mod 7 , 97 6 mod 7 , 157 3 mod 7 ,254 2 mod 7 ,

411 5 mod 7 ,665 0 mod 7 ,1076 5 mod 7 , 1741 5 mod 7 , 2817 3 mod 7 ,4558 1 mod 7 ,....

     

     

     

 

We notice that the prime 11 does not occur as a factor of any term of the reverse Lucas sequence. 

This is immediate from modular arithmetic; for the sequence of remainders modulo eleven are 

respectively 3, 1, 4, 5, 9, 3, 1, … and the sequence of remainders recycles after five terms which 

is the length of the period modulo eleven. This can be seen below using congruences: 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 mod11 , 1 1 mod11 , 4 4 mod11 , 5 5 mod11 , 9 9 mod11 ,14 3 mod11 , 23 1 mod11 ,....             

Also see FIGURES 9-10 using the VOYAGE 200 screen captures. 

  
FIGURE 9: Entering the Sequence  FIGURE 10: Table Displayed 

Determining the length of the period of a prime as well as when the prime enters the sequence as 

a factor (if it does) is best achieved by resorting to modular arithmetic and technology. 

The least common multiple greatly enhances obtaining the entry points of divisibility of a term in 

the sequence and the length of the period modulo the term for composite integer indices. For 

example, if one desires to determine the entry point for the composite integer 12 as a factor of 

the terms of the sequence and the length of the period modulo 12, we note that  3,4 12.=  We 

utilize  ,a b  as the standard notation for the least common multiple (lcm) of two non-negative 

integers a and b. The reader can easily check that the sequence of remainders modulo four is 

respectively 3, 1, 0, 1, 1, 2, 3, 1,  …. The length of the period modulo four for this sequence is 

six. Now since the sequence of remainders modulo three is respectively 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 

… , we see that the length of the period modulo three is eight. We note that ( )3 0 mod3  (3 and 

0 have the same remainder of 0 upon division by three). 

Now  6,8 24.=  Hence the length of the period modulo twelve for this sequence is 24. This is 

indeed the case. The reader can check that the sequence of remainders modulo 24 is respectively 

3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, …. 
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Observe that since the first, fifth, ninth and thirteenth terms are divisible by three while the third, 

ninth, fifteenth and twenty-first terms are divisible by four, it is immediate that the ninth term is 

divisible by twelve (since it is divisible by the relatively prime pair of term integers 3 and 4) 

which is the least common multiple of three and four. The next three terms that are divisible by 

twelve are hence the twenty-first, the thirty-third and the forty-fifth. 

On the other hand, no term of the sequence is divisible by twenty-two; for an integer to be 

divisible by twenty-two, the integer must be divisible by both 2 and 11. We have seen that no 

term in the sequence is divisible by 11. No term of the sequence is divisible by eight; for the 

sequence of remainders modulo eight are respectively 3, 1, 4, 5, 1, 6, 7, 5, 4, 1, 5, 6, 3, 1, … and 

recycles after twelve terms so that none of the remainders is ever 0.        

No term of the sequence is likewise divisible by twenty-eight; for a term to be divisible by 

twenty-eight, the term would have to divisible by both four and seven. We note that 

3 9 15 21, , , ,...S S S S  which are odd numbered terms are divisible by four while the even numbered 

terms 6 14 22 30, , , ,...S S S S   are divisible by seven which yields no possible intersection; for no term 

number can be both even and odd. 

In working with the first one thousand counting integers, I found that within the length of the 

period, if there are factors that enter the sequence, such factors enter the sequence either once, 

twice or four times. For example, the prime 19 enters the sequence once (at the fourteenth term) 

within its period of length eighteen modulo nineteen. The prime 7 enters the sequence twice (at 

the sixth and fourteenth terms) within its period of length sixteen modulo seven. Meanwhile the 

prime 5 enters the sequence four times (at the fourth, ninth, fourteenth and nineteenth terms) 

within its period of length twenty modulo five.   

We present TABLE 2 which represents the divisibility and periodicity patterns for the first one 

hundred terms in the sequence: 

TABLE 2: DIVISIBILITY AND PERIODICITY IN THE REVERSE LUCAS SEQUENCE 

TABLE FOR THE FIRST FIFTY INTEGERS 

:n  Length of Period in :nZ  Values of nS  when n  is a Factor: 

1 --- ALL 

2 3 
3 6 9 12, , , ,...S S S S  

3 8 
1 5 9 13, , , ,...S S S S  

4 6 
3 9 15 21, , , ,...S S S S  

5 20 
4 9 14 19, , , ,...S S S S  
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6 24 
9 21 33 45, , , ,...S S S S  

7 16 
6 14 22 30, , , ,...S S S S  

8 12 NONE 

9 24 
5 17 29 41, , , ,...S S S S  

10 60 
9 24 39 54, , , ,...S S S S  

11 5 NONE 

12 24 
9 21 33 45, , , ,...S S S S  

13 28 NONE 

14 48 
6 30 54 78, , , ,...S S S S  

15 40 
9 29 49 69, , , ,...S S S S  

16 24 NONE 

17 36 NONE 

18 24 NONE 

19 18 
14 32 50 68, , , ,...S S S S  

20 60 
9 39 69 99, , , ,...S S S S  

21 16 NONE 

22 15 NONE 

23 48 
7 31 55 79, , , ,...S S S S  

24 24 NONE 

25 100 
19 44 69 94, , , ,...S S S S  

26 84 NONE 

27 72 
29 65 101 137, , , ,...S S S S  
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28 48 NONE 

29 14 NONE 

30 120 
9 69 129 189, , , ,...S S S S  

31 30 
25 55 85 115, , , ,...S S S S  

32 48 NONE 

33 40 NONE 

34 36 NONE 

35 80 
14 54 94 134, , , ,...S S S S  

36 24 NONE 

37 76 
8 27 46 65, , , ,...S S S S  

38 18 NONE 

39 56 NONE 

40 60 NONE 

41 40 NONE 

42 48 NONE 

43 88 
18 62 106 150, , , ,...S S S S  

44 30 NONE 

45 120 
29 89 149 209, , , ,...S S S S  

46 48 NONE 

47 32 NONE 

48 24 NONE 

49 112 
46 102 158 214, , , ,...S S S S  

50 300 
69 144 219 294, , , ,...S S S S  
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In TABLE 3, we show the divisibility and periodicity patterns for all primes less than five 

hundred with regards to this sequence. 

TABLE 3: TABLE OF DIVISIBILITY AND PERIODICITY FOR THE REVERSE 

LUCAS SEQUENCE OF PRIMES 500.  

:p  Length of Period in :pZ  Values of 
pS  where p  is a Factor: 

2 3 
3 6 9 12, , , ,...S S S S  

3 8 
1 5 9 13, , , ,...S S S S  

5 20 
4 9 14 19, , , ,...S S S S  

7 16 
6 14 22 30, , , ,...S S S S  

11 5 NONE 

13 28 NONE 

17 36 NONE 

19 18 
14 32 50 68, , , ,...S S S S  

23 48 
7 31 55 79, , , ,...S S S S  

29 14 NONE 

31 30 
25 55 85 115, , , ,...S S S S  

37 76 
8 27 46 65, , , ,...S S S S  

41 40 NONE 

43 88 
18 62 106 150, , , ,...S S S S  

47 32 NONE 

53 108 
18 45 72 99, , , ,...S S S S  

59 58 
19 77 135 193, , , ,...S S S S  

61 60 NONE 
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67 136 
43 111 179 247, , , ,...S S S S  

71 70 
47 117 187 257, , , ,...S S S S  

73 148 NONE 

79 78 
30 108 186 264, , , ,...S S S S  

83 168 
50 134 218 302, , , ,...S S S S  

89 44 NONE 

97 196 
10 59 108 157, , , ,...S S S S  

101 50 NONE 

103 208 
77 181 285 389, , , ,...S S S S  

107 72 NONE 

109 108 NONE 

113 76 NONE 

127 256 
12 140 268 396, , , ,...S S S S  

131 130 
122 252 382 512, , , ,...S S S S  

137 276 
13 82 151 220, , , ,...S S S S  

139 46 NONE 

149 148 NONE 

151 50 NONE 

157 316 
11 90 169 248, , , ,...S S S S  

163 328 
113 277 441 605, , , ,...S S S S  

167 336 
48 216 384 552, , , ,...S S S S  

173 348 NONE 
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179 178 
69 247 425 603, , , ,...S S S S  

181 90 
38 128 218 308, , , ,...S S S S  

191 190 
123 313 503 693, , , ,...S S S S  

193 388 NONE 

197 396 NONE 

199 22 NONE 

211 42 NONE 

223 448 
31 255 479 703, , , ,...S S S S  

227 456 
34 262 490 718, , , ,...S S S S  

229 114 
73 187 301 415, , , ,...S S S S  

233 52 NONE 

239 238 
138 376 614 852, , , ,...S S S S  

241 240 NONE 

251 250 
113 363 613 863, , , ,...S S S S  

257 516 
78 207 336 465, , , ,...S S S S  

263 176 NONE 

269 268 
15 82 149 216, , , ,...S S S S  

271 270 
76 346 616 886, , , ,...S S S S  

277 556 NONE 

281 56 NONE 

283 568 
94 378 662 946, , , ,...S S S S  

293 588 NONE 
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307 88 NONE 

311 310 
95 405 715 1025, , , ,...S S S S  

313 628 
17 174 331 488, , , ,...S S S S  

317 636 
144 303 462 621, , , ,...S S S S  

331 110 NONE 

337 676 NONE 

347 232 NONE 

349 174 NONE 

353 236 NONE 

359 358 
108 466 824 1182, , , ,...S S S S  

367 736 
75 443 811 1179, , , ,...S S S S  

373 748 NONE 

379 378 
33 411 789 1167, , , ,...S S S S  

383 768 
293 677 1061 1445, , , ,...S S S S  

389 388 NONE 

397 796 
166 365 564 763, , , ,...S S S S  

401 200 
65 265 465 665, , , ,...S S S S  

409 408 NONE 

419 418 
257 675 1093 1511, , , ,...S S S S  

421 84 NONE 

431 430 
320 750 1180 1610, , , ,...S S S S  

433 868 
200 417 634 851, , , ,...S S S S  
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439 438 
372 810 1248 1686, , , ,...S S S S  

443 888 
269 713 1157 1601, , , ,...S S S S  

449 448 
212 436 660 884, , , ,...S S S S  

457 916 NONE 

461 46 NONE 

463 928 
31 495 959 1423, , , ,...S S S S  

467 936 
195 663 1131 1599, , , ,...S S S S  

479 478 
190 668 1146 1624, , , ,...S S S S  

487 976 
63 551 1039 1527, , , ,...S S S S  

491 490 
350 840 1330 1820, , , ,...S S S S  

499 498 
59 557 1055 1553, , , ,...S S S S  

 

3. Palatable Number Tricks Associated With The Reverse Lucas Sequence. 

 In light of the fact that the Reverse Lucas Sequence is a Fibonacci-style sequence (with the 

exception of the initial two terms, but follows the Fibonacci recursion rule), all of the palatable 

number tricks that work for the Fibonacci sequence likewise hold for this sequence including the 

following: 

a. If one considers the sum of any ten consecutive terms in the sequence, forms the sum and  

divides the sum by eleven, then the quotient will always be the seventh term in the sequence. 

 

b. Suppose one consider any four consecutive terms in the Fibonacci sequence and applies the 

following three simple steps. First form the product of the first and fourth terms. Take twice the 

product of the second and third terms. Finally take the sum of the squares of the second and third 

terms in your sequence. We relate this to plane geometry and observe that a Pythagorean triple is 

obtained. 

c. We finally take the ratio of each even numbered term to the previous odd-numbered term and 

form a conjecture and then take the ratio of each odd numbered term to the previous even 

numbered term and form a conjecture. What appears to be happening to these ratios is 

remarkable. These sequence of ratios appear to be approaching the Golden Ratio! 
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Let us prove each of these assertions. The reader is invited to first gather some empirical 

evidence to see that the above conclusions are palatable. We first illustrate with two examples. 

a. Suppose the ten consecutive terms in the sequence are  5,9,14,23,37,60,97,157,254,411 .  

Using the VOYAGE 200 in FIGURES 11-12, we obtain the following: 

  
FIGURE 11: Entering The Terms and   FIGURE 12: Entering the Terms and Dividing 

Dividing the Sum by 11    Dividing the Sum by 11  

Note that 97 is the seventh term in the sequence. 

 

As a second example, suppose the ten consecutive terms in the sequence are

 3,1,4,5,9,14,23,37,60,97 .  Using the VOYAGE 200 in FIGURE 13, we obtain the following: 

 

  
FIGURE 13: Entering the Terms and Dividing the Sum by 11 

 

Note that 23 is the seventh term in the sequence. 

 

Based on the empirical evidence supported by the above examples, one might desire to venture 

the following conjecture: 

Conjecture:  The sum of any ten consecutive terms in the sequence is always divisible by 

eleven. The quotient is always the seventh term in the sequence. 
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Proof: Suppose the initial two terms in the sequence are x  and y  respectively. Then the ten 

terms of the sequence (all of whose coefficients are indeed Fibonacci numbers) comprises the 

following set: 

 , , , 2 , 2 3 , 3 5 , 5 8 , 8 13 ,13 21 , 21 34 .x y x y x y x y x y x y x y x y x y+ +   +   +   +   +   +   +   Let 

us employ the VOYAGE 200 to furnish a proof of the above assertion. See FIGURES 14-16: 

   
FIGURE 14: General Proof   FIGURE 15: General Proof 

 

 
FIGURE 16: General Proof 

Observe that 5 8x y +   constitutes the seventh term in the sequence. 

b. We now consider any four consecutive terms in the sequence. First form the product of the 

first and fourth terms. Take twice the product of the second and third terms. Finally take the sum 

of the squares of the second and third terms in your sequence. We relate this to a theorem in 

plane geometry by conjecturing based on several examples, and then substantiate our conjecture. 

Example 1:  Suppose the four terms are  5,9,14,23 .  FIGURE 17 displays our data: 

 
FIGURE 17: Four Consecutive Terms in the Sequence 

Observe that the primitive Pythagorean triplet  115,252,277 is formed. By primitive, we mean 

that no two integers in the triplet have a common factor higher than one. 



17 
 

Example 2: Suppose the four terms are  3,1,4,5 .  See FIGURE 18 for the relevant data: 

 
FIGURE 18: Four Consecutive Terms in the Sequence 

Observe that the primitive Pythagorean triplet  15,8,17  is formed which is likely recognizable 

to most readers.  

Let us prove the conjecture is true in general by considering any four consecutive terms in the 

sequence. Let the terms of this generic sequence be as follows: 

 , , , 2 .x y x y x y+ +   FIGURE 19 provides the expand key required to multiply algebraic 

expressions while FIGURES 20-23 provides out inputs and outputs: 

  
FIGURE 19: The Formal Proof  FIGURE 20: The Formal Proof 

   
FIGURE 21: The Formal Proof  FIGURE 22: The Formal Proof 

 
FIGURE 23: The Formal Proof 
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Hence we view the Pythagorean triplet  2 2 2 22 , 2 2 , 2 2 .x x y x y y x x y y+     +  +   +    

c. We finally take the ratio of each even numbered term to the previous odd-numbered term in 

the sequence and form a conjecture as well as take the ratio of each odd numbered term to the 

previous even numbered term in the sequence and form a conjecture. We see what appears to be 

happening to these ratios. In FIGURES 25-28, we consider the ratios of even numbered terms to 

the previous odd numbered terms while in FIGURES 29-32, we consider the ratios of odd 

numbered terms to the previous even numbered terms. Our MODE is APPROXIMATE as in 

FIGURE 24 and proceed on Page 2 down to 3: APPROXIMATE. 

 

  
FIGURE 24: The Approximate Mode FIGURE 25: Ratios of Successive Terms 

 

   
FIGURE 26: Ratios of Successive Terms FIGURE 27: Ratios of Successive Terms 

 

  
FIGURE 28: Ratios of Successive Terms FIGURE 29: Ratios of Successive Terms 

 

  
FIGURE 30: Ratios of Successive Terms FIGURE 31: Ratios of Successive Terms 
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FIGURE 32: Ratios of Successive Terms 

 

It appears that the ratio of the even numbered terms to the preceding odd numbered terms forms 

a monotonically increasing sequence while the ratio of the odd numbered terms to the preceding 

even numbered terms forms a monotonically decreasing sequence and both sequences are 

approaching the same number, namely 
1 5

1.61803398875!
2


+

=  Many of us will recognize 

that this constant represents The Golden Mean or The Golden Ratio. In fact, all of the number 

tricks in this section work for the Fibonacci sequence and any Fibonacci-like sequence in which 

the initial two terms may assume any value and the sequence then follows the Fibonacci 

recursion rule. Our sequence, of course, is a Fibonacci-like sequence. Let us prove that the ratio 

of successive terms in any Fibonacci-like sequence approaches the Golden Ratio constant. 

 

Proof: Let the initial two terms of the Fibonacci-like sequence be x and y respectively. Then 

the next terms are respectively

1 1, 2 , 2 3 , 3 5 , 5 8 , ... , , , ....n n n nx y x y x y x y x y F x F y F x F y− ++ +   +   +   +   +   +   

Now if we take the ratio r of two consecutive terms, we obtain  1

1

.n n

n n

F x F y
r

F x F y

+

−

 + 
=

 + 
Let us divide 

each term in the numerator and denominator by .nF  Then 

 
 

1

1 1

11 1

/ / /
.

/ / /

n

n n n n n n n n

nn n n n n n n

n

F
x y

F x F y F F x F F y F F
r

FF x F y F F x F F y F
x y

F

+

+ +

−− −

+ 
 +   + 

= = =
 +   + 

 +

  

Now  1 1 1
lim lim ,n n

n n
n n

F F
and

F F



+ −

→+ →+
= =  where   is the Golden Ratio. 

1

1

1
lim lim .

1

n

n

n n
n

n

F
x y

F x y x y
r

F x yx
x y y

F

 




 

+

→+ →+
−

 
+   +  + 

 = = = = =
+    + +     

 

Hence the ratio of consecutive terms tends to The Golden Ratio, completing the proof.  
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4. Concluding Remarks and Further Directions. 

In this paper, we explored divisibility patterns and primes in the reverse Lucas sequence which 

included securing the complete factorizations for the initial one hundred terms in the sequence. I 

have been able to secure the prime factorizations of the first four hundred seventy-five terms of 

the sequence. Determining whether an integer is prime can be achieved in polynomial time. In 

contrast, the actual factorization of large composite integers is an NP Hard problem that cannot 

be achieved in this manner; for things are growing exponentially. Factoring a large integer is 

contingent upon the second largest prime factor and if this factor contains more than thirty digits, 

it becomes a challenge for even the best machines to achieve a complete factorization. Hence 

breaking a problem into a smaller sub problem is the manner in which one needs to proceed to 

obtain additional fruitful outcomes in this endeavor and at least obtain partial factorizations 

generating small prime factors. 

In addition, in the Fibonacci sequence 1, 1, 2, 3, 5, 8, …, by the 2n term, n  appears as a factor of 

some term in the sequence. In contrast, one-third of the primes and 746 of the first one thousand 

integers never appear as factors of any term in the Lucas sequence. For the Reverse Lucas 

sequence, of the 168 primes less than 1000, 72 do not appear as factors of any term in the 

sequence and 721 of the first one thousand counting integers do not either. All three sequences 

enjoy the Fibonacci number tricks discussed in this paper and many others.   
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