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(Abstract.) Some ancient problems in geometry came down to us as 

impossible constructions by straightedge and compass: the doubling of the 

cube, the trisection of an angle, the squaring of the circle, and the 

construction of certain regular polygons. They have only been solved in the 

19th Century by the invention of new mathematics. We can state:  A 

geometric construction is possible iff the process occurs in a field whose 

dimension over the rational field is a power of 2, i.e., 2𝑘. And, a regular 

polygon of n sides is constructible iff 

                            𝑛 = 2𝑘 ∙ 𝑝1𝑝2 ∙∙∙ 𝑝𝑚, 

where k and m are non-negative integers, and the 𝑝𝑚s are of the form 

                                 𝑝𝑚 = 22𝑚
+ 1. 

  

Since ancient times some problems in geometry have come down to us from the Greeks as 

impossible constructions: the doubling of the cube, the trisection of an angle, the squaring 

of the circle, and the construction of certain regular polygons. But they remained enigmas 

until the invention of new mathematics in the 19th Century. Now, we have solved these 

problems completely by merging geometry with other areas of study, such as algebra, 

trigonometry, and analysis, under the unifying thread of number theory.  

A favorite demonstration by Euclid in The Elements, ~300 BC, was to construct figures  

just using an unmarked straightedge and compass. His first problems were to construct an 

equilateral triangle of given side and how to bisect a given length. 
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                               Figure 1. Equilateral triangle and bisect a line segment 

 

Other familiar problems were: 

    Bisect an angle 

    Construct an isosceles triangle of given base and side 

    Construct a 30-60-90 degree triangle 

    Construct a parallel to a given line 

    Construct a perpendicular to a given line through a point on or off the line. 

And then there are the famous problems of antiquity, first considered by the Greeks, which 

are important, not only for their practical value, but also for the creative and challenging 

ideas they presented. 

 



 

                                    Figure 2. Three famous problems of antiquity 

 

A fourth famous problem is a regular polygon of n sides. For what values of n is this 

constructible? 

                                                  

                                                     Figure 3. The regular n – gon 

 

These problems date from 500 BC. 

(1) Legend has it that Athens, beset by a serious plague, sent a delegation to the oracle 

of Apollo at Delos for advice. The delegation was told to double the cubical altar 

to Apollo. Unfortunately, they doubled each side, thereby increased the volume by 

a factor of 8; and the plague got worse. It was called the Delian problem. 

(2) We know less about the other problems. How they arose may have been something 

like this. It is easy to divide a line segment to any number of parts, and just as easy 

to bisect an angle. It is natural to try to trisect an angle. 



 

                                           
                                    Figure 4. Trisecting a line segment 

 

(3) Squaring a rectangle is straightforward.  

                                 
ABCD rectangle, 𝐴𝐷 < 𝐴𝐵. Circle DE, center A. Circle AFB, center M. EF⊥ 𝐴𝐵. 

⊿𝐴𝐹𝐵~⊿𝐴𝐸𝐹  ⇒  
𝐴𝐸

𝐴𝐹
=

𝐴𝐹

𝐴𝐵
  ⇒ 𝐴𝐹2 = 𝐴𝐸 ∙ 𝐴𝐵 = 𝐴𝐷 ∙ 𝐴𝐵. 

 

Squaring a triangle is just as easy. 

                                  

From the formula 𝐴𝑟𝑒𝑎 =
1

2
𝑏ℎ, all 3 triangles have the same area. The area of a 

triangle is half that of a rectangle with the same base and altitude. So we can 

transform a triangle into a rectangle, then into a square. 

                             Figure 5. Squaring a rectangle and a triangle 

 

(4) Since the 5th C BC the only regular polygons known constructible were for 𝑛 =

3, 4, 5, 15, and their double sides; it was long thought that there were no others. It 

took 2200 years before solutions to these 4 problems were discovered. Problem 4 

was solved by Gauss in 1801; 1 and 2 by Wantzel in 1837; 3 by Lindeman in 1882. 

To answer the question: “Which constructions are possible with unmarked straightedge 

and compass?”, there is an established analytic criterion for constructability. Every 

construction problem presents certain given elements a, b, c, … and requires to find certain 

other elements 𝑥, 𝑦, 𝑧…, satisfying certain conditions. Any construction consists of a 

sequence of steps, and each step is one of the following: 

1. drawing a straight line between two points;  



2. constructing a circle with a given center and radius; 

3. finding the intersection points of two straight lines, two circles, or a straight line 

and a circle. 

Given a set of coordinate axes with a unit length and that all the given elements can be 

represented by rational numbers, we know that the sum, difference, product, and quotient 

(excluding division by 0) of two rational numbers is a rational number. In addition, finding 

the intersection points of two lines, two cicles, or a line and a circle involves only the 

extraction of square roots. To illustrate 

                               

                            Figure 6. Sums and differences of lengths are constructible 

 

                                                      

                                Figure 7. A product and ratio of lengths are constructible 

                                                    

                                        Figure 8. A square root of a length is constructible 



 

                                                

                           Figure 9. An angle is constructible if its cosine is constructible 

 

In the last figure, if 𝑐𝑜𝑠𝜃 is constructible, then the angle 𝜃 is constructible. To summarize, 

a construction with a sytaightedge and compass is possible iff the numbers which define 

the desired elements can be derived from the given elements by a finite number of rational 

operations and the extraction of square roots. A corollary of this is that if a is a constructible 

number, then a is algebraic over the rationals Q (i.e., it satisfies a polynomial equation in 

Q), and the degree of its minimal polynomial is a power of 2. 

We now present the impossibility proofs for the first three problems. How is it possible to 

prove that certain problems cannot be solved? When the solution violates the constraints 

of the problem, or some other condition known to be true, when the solution is 

unacceptable, or that there is no solution. 

(1) It is impossible to construct a cube double a given cube. Let cube 1 have a side of 

length 1. Then 

𝑉1 = 𝑠3 = 1.   𝑉2 = 𝑥3 = 2𝑉1 = 2.   ⇒  𝑥3 = 2. 

Or, the polynomial  𝑓(𝑥) = 𝑥3 − 2  has root √2
3

.  Now, 𝑓(𝑥) has no rational root; 

it is irreducible; it is the minimal polynomial of  √2
3

. But the degree of this 

polynomial is 3, not a power of 2. Therefore, √2
3

 is not constructible. Thus, to 

double a cube is impossible. 

(2) It is impossible to trisect a given angle. For any 𝜃, 𝑐𝑜𝑠3𝜃 = 4𝑐𝑜𝑠4𝜃 − 3𝑐𝑜𝑠𝜃.   

Let 𝜃 = 200. Then,  𝑐𝑜𝑠600 =
1

2
= 4𝑥3 − 3𝑥,   ⇒ 𝑐𝑜𝑠200 = 𝑥  is a root of 𝑓(𝑥) =

8𝑥3 − 6𝑥 − 1.  𝑓(𝑥) has no rational roots. The minimal polynomial of x has degree 

3, not a power of 2. Therefore, 𝑥 = 𝑐𝑜𝑠200  is not constructible, and that 200 is not 

constructible. 

 

(3) It is impossible to square a circle. A circle with radius 1 has area 𝐴 = 𝜋𝑟2 = 𝜋. A   

square of equal area 𝐴 = 𝑠2 = 𝜋,  has side  𝑠 = √𝜋. 



But Lindeman showed in 1882 that 𝜋 is transcendental, i.e., not algebraic (no 

polynomial over Q where it is a root). Therefore, 𝜋 is not constructible. Thus, a 

square cannot be constructed with equal area as a circle. 

 

(4) With regards to the regular polygons, the question was something else: Which 

regular polygons are possible? For over 2000 years, the only known regular 

polygons are the triangle, square, pentagon, and their doubles. Gauss in 1801 

showed that the regular polygon of 17 sides can be constructed using a straightedge 

and compass. In fact, he showed more, for n a prime of the form  

𝑛 = 22𝑚
+ 1,   𝑚 a nonnegative integer, 

an n-gon was possible. For 𝑚 = 0, 𝑛 = 3 and for 𝑚 = 1, 𝑛 = 5; we know these are 

constructible. For 𝑚 = 2, 𝑛 = 17. Gauss showed specifically that this was 

constructible. In 1822, Magnus Paucher and independently Friedrich Richelot in 

1832 explicitly constructed 𝑛 = 257 (𝑚 = 3); in 1894, Johann Hermes 

constructed 𝑛 = 65537 (𝑚 = 4), working for 10 years on his 200-page 

manuscript.  

The number  𝑝 = 22𝑚
+ 1 is known as a Fermat prime; it is a prime number for 

𝑚 = 0,1,2,3,4. For 𝑚 = 5, 𝑝 = 4,294,967,297 = (641)(6,700,417)   and for 

𝑚 = 6, 𝑝 = 18,446,744,073,709,551,617 = 274,177 ∙ 67,280,421,310,721.    It 

is not known whether  p is prime for higher values of m. In summary, a regular n – 

gon is constructible iff n has the values given by 

  𝑛 = 2𝑘𝑝1𝑝2 … 𝑝𝑚,   𝑘, 𝑚 non-negative integers, 

to wit, for  𝑛 < 100:  

 𝑛 = 3,4,5,6,8,10,12,15,16,17,20,24,30,32,34,40,48,51,60,64,68,80,85,96. 

 Conclusions. Using a straightedge and compass alone, it is: 

1. impossible to double a cube 

2. impossible to trisect an angle 

3. impossible to square a circle 

4. impossible to construct certain regular polygons. 

• In #2, some special angles can be trisected, but not in general. 

• In #4, in antiquity, the only constructible regular polygons were the triangle, square, 

pentagon, quindecagon, and their double sides. Now, all n – gons of the form 𝑛 =

2𝑘𝑝1𝑝2 … 𝑝𝑚,  are constructible, where k, m are nonnegative integers, and 𝑝𝑚 =

22𝑚
+ 1.  In particular, 𝑛 = 17, 257, and 65537 are constructible. 

• If other instruments are allowed, one or another of these problems can be solved. 



• Today’s computer can solve all of these problems. 
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