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Introduction 
 
The game is very simple. A coin is repeatedly tossed until a pattern of heads or tails 
occurs. (At least) two people write down a sequence of m heads or tails. Whoevers 
sequence comes up first wins. Having to match a sequence adds drama to the game-much 
like having to match 6 numbers in a lottery. 
 
Example: If m=3 
 
Say player 1 writes down HHH and player 2 writes down HTH. 
 
If the coin comes up THHTH player 2 wins on the 5th toss. 
If the coin comes up THHTTHHH player 1 wins on the 8th toss. 
 
The question is: How should a person bet? Or perhaps a better question is: How should a 
person not bet? 
 
We shall look at three assumptions people make about this game and show why they are 
incorrect. The case of having to match a sequence of m=3 coins shall be considered. The 
general case is basically the same. 
 
 

Incorrect Intuition I 
 

Given a fair coin, if flipped until we get a particular triple of heads or tails, the 8 possible 
bets 
 

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT 
 

all have an equal chance of occurring-so it does not matter how one bets. 
 
Let’s try a computer simulation of 100,000 of games where player 1 bets on HHH and 
player 2 bets on HTH and a fair (computer) coin is flipped until either a HHH or a HTH 
occurs. 

 



 
Simulation 1 (100,000 trials) 

 
So it appears that HHH only wins about 40% of the time whereas HTH wins about 60% 
of the time. 
 
Fact: Not all triples are equally likely. We will prove that 
 

P(HHH winning)=.4 and P(HTH winning)=.6 
 

To show this we will need the number of ways to win after n coins are tossed and the 
probability of each way of winning [1]. Consider the following table which lists the 
number of ways for each of the 8 possible triples to occur: 

 
Number of ways to win 

 
Last Three 

Coins ꜜ 
n=# of coins 

tossed → 
3 4 5 6 

HHH  1 1 1 2 
HHT  1 1 1 2 
HTH  1 2 2 3 
HTT  1 2 2 3 
THH  1 1 2 4 
THT  1 1 2 4 
TTH  1 2 4 6 
TTT  1 2 4 6 

Probability 
of each way 
of winning 

1
2𝑛𝑛

 
1
8

 
1

16
 

1
32

 
1

64
 

 
Table 1 

 
Comment 1: The numbers in tables 1 are easily seen as coming from the branches of the 
corresponding tree diagram. If a branch ends with HHH or HTH that branch is closed. 
Hence HHH and HTH can be viewed as absorbing states. 
 
Comment 2: Note that the numbers for 
 

HHH & HHT (1st and 2nd row) 
HTH & HTT (3rd and 4th row) 
THH & THT (5th and 6th row) 
TTH & TTT (7th and 8th row) 



are the same in table 1. This occurs as each pair HH, HT, TH, and TT splits into two 
triples **H and **T with equal chance (as we are assuming a fair coin). 

 
We can see from table 1 that HTH has more ways of occurring than HHH and hence has 
a higher probability of occurring. 

 
Computing a few probabilities: 
 

P(HHH wins)=

⎩
⎪
⎨

⎪
⎧ 1 ∗ �1

8
� = .125 after 3 tosses

1 ∗ �1
8
� + 1 ∗ � 1

16
� = .1875 after 4 tosses

1 ∗ �1
8
� + 1 ∗ � 1

16
� + 1 ∗ � 1

32
� = .21875 after 5 tosses

 

 
 

(1) 
 
 
 

 

P(HTH wins)=

⎩
⎪
⎨

⎪
⎧ 1 ∗ �1

8
� = .125 after 3 tosses

1 ∗ �1
8
� + 2 ∗ � 1

16
� = .25 after 4 tosses

1 ∗ �1
8
� + 2 ∗ � 1

16
� + 2 ∗ � 1

32
� = .3125 after 5 tosses

 

 
 

(2) 

 
So if the game goes 4 or more tosses HTH has a higher chance of winning than HHH. 
 
Proof that P(HHH)=.4 and P(HTH)=.6. 
 
Define Sn to be the state vector consisting of the number of ways that  
 

[HHH, HHT, HTH, HTT, THH, THT, TTH, TTT] (3) 
 
can occur, where n coins have been tossed. 
 
From table 1 we see that: 
 

              S3=
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⎢
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 … 

 
 
 
 

(4) 

 
Note that the first element of Sn represents the number of ways HHH can occur and the 
third element of Sn represents the number of ways HTH can occur after n coins have 
been tossed. 
 



Right now we consider the state vector Sn with all 8 possible bets as in the general case 
we would need to consider bets on any of the 8 possible triples (allowing for more than 
two players and/or multiple bets per player). For our problem we will be able to reduce 
our state vector to a 4-vector. We will do this shortly. 
 
It is easy to see that the state-transition matrix M which satisfies 
 

Sn+1=MSn for n≥3 (5) 
 
is given by 
 

M=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 0 0  0 0 1 0
0 0 0 0  0 0 1 0
0 0 0 1 0  0 0 1
0 0 0 1 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 

(6) 

 
Hence 
 

Sn+3=𝑀𝑀𝑛𝑛Sn for n≥0 (7) 
 
Which, as S3=[1 1 1 1 1 1 1 1 ]𝑇𝑇 

                                                                  

Sn+3=𝑀𝑀𝑛𝑛
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      for n≥0 

 
 
 

(7) 

 
(7) gives us the number of ways to win after n+3 coins have been flipped. As 
 

P(each way n+3 coins can be flipped)= 1
2𝑛𝑛+3

 (8) 

 
From (7)-(8) we see 
 



 
 
P(HHH winning after n+3 coins tossed) =the first 
element of 
 
P(HTH winning after n+3 coins tossed) =the third 
element of 
 

𝑀𝑀𝑛𝑛
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    for n≥0 

 
 
 
(9) 

 
Hence the 1st and 3rd elements of the column vector 
 

�𝑀𝑀𝑛𝑛
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(10) 

 
gives the probabilities of HHH and HTH winning respectively. 
 
Rewriting (10) we get 
 

1
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(11) 

 
where 
 

M1=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0  0  0  0  .5  0  0  0
0  0  0  0  .5  0  0  0
0 .5  0  0   0 .5  0  0
0 .5  0  0   0 .5  0  0
0  0  0  0   0  0 .5  0
0  0  0  0   0  0 .5  0
0  0  0 .5   0  0  0 .5
0  0  0 .5   0  0  0 .5⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 

(12) 

 



Noting the row redundancies in the matrix M1 as stated in Comment 2, as we are only 
interested in P(HHH) and P(HTH), we can simplify our matrix M1 to a 4x4 matrix as 
follows: 
 

 
P(HHH winning) =the first element of 
                            & 
P(HTH winning) =the second element of 
 

 

1
8
�(𝑀𝑀2)𝑛𝑛 �

1
1
1
1

� 
∞

𝑛𝑛=0

 

 
 
(13) 

 
where 
 

M2=�

0   0  .5   0
. 5  0  .5   0
0   0   0  .5
0  .5   0  .5

� 

 

 
(14) 

 
And our state vector Sn is now the number of ways that the sequences [HHH, HTH, 
THH, TTH] can occur after the coins have been tossed. 
 
The reason for this follows directly from comment 2 as follows: 
 
We can see from our original state vector Sn=number of ways that [HHH, HHT, HTH, 
HTT, THH, THT, TTH, TTT] can occur that the number of ways that 
 

HHH & HHT 
HTH & HTT 
THH & THT 
TTH & TTT 

can occur are the same. Hence the sequences HHT, HTT, THT, and TTT are redundant to 
calculating the number of ways HHH and HTH can occur. So we can reduce our state 
vector Sn to the 4x1 vector [HHH, HTH, THH, TTH] and our state vector Sn to the 4x1 
vector [HHH, HTH, THH, TTH] and our state transition matrix to the corresponding 4x4 
matrix M2. 
 
Before computing ∑ (𝑀𝑀2)𝑛𝑛∞

𝑛𝑛=0  and deriving our chances of winning, let’s use (13)-(14) to 
compute the probability of winning with HHH and HTH in 3, 4,…, 10 tosses 
 
Coin Tosses P(HHH) P(HTH) 
3 .125 .125 
4 .0625 .125 
5 .03125 .0625 
6 .03125 .046875 
7 .03125 .046875 
8 .0234375 .0390625 



9 .017578125 .029296875 
10 .0146484375 .0234375 

 
Table 2 

 
Now we can clearly see that P(HTH)>P(HHH) once more than three coins are tossed. 
 
To show P(HHH)=.4 and P(HTH)=.6 we need to compute  
 

�(𝑀𝑀2)𝑛𝑛 
∞

𝑛𝑛=0

 
 

(15) 

 
A standard result from matrix theory [2] is that 
 

�(𝑀𝑀2)𝑛𝑛 = (𝐼𝐼 − 𝑀𝑀2)−1 = �

1.2  0.4  0.8 0 .8
0.8  1.6  1.2  1.2
0.4  0.8  1.6  1.6
0.8  1.6  1.2  3.2

� 
∞

𝑛𝑛=0

 
 

(16) 

 
(The sum must converge as we are dealing with probabilities). 
 

By (13) and (16) 
 
P(HHH winning) =the first element of 
                            & 
P(HTH winning) =the second element of 
 

1
8
�

1.2  0.4  0.8 0 .8
0.8  1.6  1.2  1.2
0.4  0.8  1.6  1.6
0.8  1.6  1.2  3.2

� �

1
1
1
1

� = �

. 4

. 6
. 55
. 85

� 
 
(17) 

 
Thus we have proved that P(HHH)=.4 is a far worse bet than P(HTH)=.6 and hence the 
assumption that each triple has the same probability is incorrect. 
 
We shall now consider the mean length of time it takes to win. This leads to 
 

Incorrect Intuition II 
 

As P(HTH)>P(HHH) the mean time to victory for HTH must be shorter. 
 
To compute the mean number of coin flips until victory we need to compute 
 

1
8
�(𝑀𝑀2)𝑛𝑛 ∗ (𝑛𝑛 + 3) �

1
1
1
1

� 
∞

𝑛𝑛=0

= 1
8
�

5.12    3.84    5.28    6.88
5.28    8.96    8.32  10.72
3.84    6.88    8.96  12.16
6.88  12.16 10.72  21.12

� �

1
1
1
1

� = �

2.64
4.16
3.98
6.36

� 
 
 
(18) 

 



The n+3 term comes from the fact that our first chance of winning occurs after 3 tosses. 
So we cannot have the number of tosses being 0, 1, or 2. Again, simplifying the lhs of 
(18) is a standard result from linear algebra [2]. 
 
The mean number of flips until HHH and HTH occur are the first and second elements of 
(18) divided by their corresponding probabilities, hence: 
 
Mean number of flips until 
 

HHH occurs=2.64/P(HHH)=2.64/.4=6.6 tosses 
 

HTH occurs=4.16/P(HTH)=4.16/.6=6.93333 tosses 
 

Mean length of game =6.6*(.4)+(6.9333333)*(.6)=6.8 tosses 

 
(19) 

 
Hence, although HHH has a smaller chance of winning, if it wins it wins, on average, 
faster. 
 
A simulation of 100,000 runs of the game backs up our result. 
 

 
Simulation 2 (100,000 trials) 

 
It can be shown in a similar fashion that the standard deviation of a typical game is 
approximately 4.6 tosses. 
 
All the above work was based on the assumption that we were dealing with a fair coin. 
But what if P(H)>.5? This leads to 
 

Incorrect Intuition III 
 

Surely if P(H)>.5 then P(HHH)>P(HTH). However, as there are more ways for HTH to 
occur than HHH, even if P(H)>.5 we can still get P(HTH)>P(HHH). 
 
Example: Using similar analysis as above, if we let P(H)=.55 we get P(HTH)=.559 vs 
P(HHH)=.441. Still a sizeable advantage for HTH-over a 10% advantage. 
 
By experimentation we would need P(H) to be about .62 to have P(HHH)=P(HTH). 
 

Summary 
 



The above results can be extended to the case of sequences of length more than 3 to show 
results such as P(HTHT)>P(HHHH). Another way to consider this problem would be as a 
runs test. After all, betting on HTHT seems to be betting on the fact that the coin is fair 
whereas betting on HHHH seems to betting on an assumption that the coin is not fair. 
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