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Introduction
The game is very simple. A coin is repeatedly tossed until a pattern of heads or tails
occurs. (At least) two people write down a sequence of m heads or tails. Whoevers
sequence comes up first wins. Having to match a sequence adds drama to the game-much
like having to match 6 numbers in a lottery.
Example: If m=3
Say player 1 writes down HHH and player 2 writes down HTH.

If the coin comes up THHTH player 2 wins on the 5" toss.
If the coin comes up THHTTHHH player 1 wins on the 8™ toss.

The question is: How should a person bet? Or perhaps a better question is: How should a
person not bet?

We shall look at three assumptions people make about this game and show why they are
incorrect. The case of having to match a sequence of m=3 coins shall be considered. The
general case is basically the same.

Incorrect Intuition [

Given a fair coin, if flipped until we get a particular triple of heads or tails, the 8 possible
bets

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT
all have an equal chance of occurring-so it does not matter how one bets.
Let’s try a computer simulation of 100,000 of games where player 1 bets on HHH and

player 2 bets on HTH and a fair (computer) coin is flipped until either a HHH or a HTH
occurs.



e

Percent of time plaver 2 (HTH) wins i= 0.5996E80
Percent of time playver 1 (HHH) wins i=s 0.400320
o

o Simulation 1 (100,000 trials)

So it appears that HHH only wins about 40% of the time whereas HTH wins about 60%
of the time.

Fact: Not all triples are equally likely. We will prove that

P(HHH winning)=.4 and P(HTH winning)=.6
To show this we will need the number of ways to win after n coins are tossed and the
probability of each way of winning [1]. Consider the following table which lists the

number of ways for each of the 8 possible triples to occur:

Number of ways to win

Last Three | n=# of coins 3 4 5 6
Coins * tossed —

HHH 1 1 1 2
HHT 1 1 1 2
HTH 1 2 2 3
HTT 1 2 2 3
THH 1 1 2 4
THT 1 1 2 4
TTH 1 2 4 6
TTT 1 2 4 6
Probability 1 1 1 1

of each way on 8 16 32 64

of winning
Table 1

Comment 1: The numbers in tables 1 are easily seen as coming from the branches of the
corresponding tree diagram. If a branch ends with HHH or HTH that branch is closed.
Hence HHH and HTH can be viewed as absorbing states.

Comment 2: Note that the numbers for

HHH & HHT (1% and 2™ row)
HTH & HTT (3 and 4™ row)
THH & THT (5 and 6'" row)
TTH & TTT (7" and 8" row)



are the same in table 1. This occurs as each pair HH, HT, TH, and TT splits into two
triples **H and **T with equal chance (as we are assuming a fair coin).

We can see from table 1 that HTH has more ways of occurring than HHH and hence has
a higher probability of occurring.

Computing a few probabilities:

1 = (l) = .125 after 3 tosses

8
P(HHH wins)= 1 (%) +1x (%) = .1875 after 4 tosses (1)
1 * (%) + 1% (i) + 1% (%) = .21875 after 5 tosses

( 1 * (%) = .125 after 3 tosses
1 1

P(HTH wins)= 1+ (3) + 2+ (&) = .25 after 4 tosses )

1 (%) + 2% (i) + 2 * (%) = .3125 after 5 tosses

So if the game goes 4 or more tosses HTH has a higher chance of winning than HHH.
Proof that P(HHH)=.4 and P(HTH)=.6.
Define Sn to be the state vector consisting of the number of ways that

[HHH, HHT, HTH, HTT, THH, THT, TTH, TTT] 3)
can occur, where n coins have been tossed.

From table 1 we see that:
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Note that the first element of Sn represents the number of ways HHH can occur and the
third element of Sn represents the number of ways HTH can occur after n coins have
been tossed.



Right now we consider the state vector Sn with all 8 possible bets as in the general case
we would need to consider bets on any of the 8 possible triples (allowing for more than
two players and/or multiple bets per player). For our problem we will be able to reduce

our state vector to a 4-vector. We will do this shortly.

It is easy to see that the state-transition matrix M which satisfies
Su+1=MSn for n>3

is given by

000010007
00001000
01000100
101000100
00000010
00000010
00010001
-00010001-

Hence
Su+3=M"Sn for n>0

Which, as S3=[11111111]T

Snz=M" for n>0

R PR PR R R

(7) gives us the number of ways to win after n+3 coins have been flipped. As

1
on+3

P(each way n+3 coins can be flipped)=

From (7)-(8) we see
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_1_
1
P(HHH winning after n+3 coins tossed) =the first 1
element of Mn 1f, ¢ for n>0 9)
1 2n+3
P(HTH winning after n+3 coins tossed) =the third 1
element of 1
(1
Hence the 1 and 3™ elements of the column vector
_1_
1
o 1
1| 1 (10)
Z My | s
n=0 1
1
[ 1]
gives the probabilities of HHH and HTH winning respectively.
Rewriting (10) we get
1 1
1 1
o 1 o 1
1 1,11 ,1 1 (11)
— _\n A n
50,01 [1| =5 000"
n=0 1 n=0 1
1 1
1 1
where
0000.500 07
00005000
05000500
M_O.SOO 0500 (12)
"1o0000050
00000050
0005000.5
0 00.5 00 0.5




Noting the row redundancies in the matrix M as stated in Comment 2, as we are only
interested in P(HHH) and P(HTH), we can simplify our matrix M; to a 4x4 matrix as
follows:

P(HHH winning) =the first element of
(13)

[ G G

& 1> onyr
P(HTH winning) =the second element of 8 4 2
n=

where
0050
|.505 0 (14)
M0 0 0 5
05 0.5

And our state vector Sn is now the number of ways that the sequences [HHH, HTH,
THH, TTH] can occur after the coins have been tossed.

The reason for this follows directly from comment 2 as follows:

We can see from our original state vector Sn=number of ways that [HHH, HHT, HTH,
HTT, THH, THT, TTH, TTT] can occur that the number of ways that

HHH & HHT

HTH & HTT

THH & THT

TTH & TTT
can occur are the same. Hence the sequences HHT, HTT, THT, and TTT are redundant to
calculating the number of ways HHH and HTH can occur. So we can reduce our state
vector Sn to the 4x1 vector [HHH, HTH, THH, TTH] and our state vector Sn to the 4x1
vector [HHH, HTH, THH, TTH] and our state transition matrix to the corresponding 4x4
matrix Ma.

Before computing Y., ,(M,)™ and deriving our chances of winning, let’s use (13)-(14) to
compute the probability of winning with HHH and HTH in 3, 4,..., 10 tosses

Coin Tosses P(HHH) P(HTH)
3 125 125

4 .0625 125

5 03125 0625

6 .03125 046875
7 03125 046875
8 .0234375 0390625




017578125 029296875

10 .0146484375 0234375

Table 2
Now we can clearly see that P(HTH)>P(HHH) once more than three coins are tossed.

To show P(HHH)=.4 and P(HTH)=.6 we need to compute

Z(Mz)" (15)
n=0
A standard result from matrix theory [2] is that
o 1.2 0.4 0.80.8
n_ (7 -1_1081612 1.2 (16)
Z(MZ =U=M)" =104 08 1.6 16
=0 0.8 1.6 1.2 3.2

(The sum must converge as we are dealing with probabilities).

By (13) and (16)
P(HHH winning) =the first element of 1.2 0.4 0.80.8][1 4
& 1108 1.6 1.2 1.2]|1| _|.6 (17)
P(HTH winning) =the second element of 8104 0.8 1.6 1.6]|1 .55
0.8 1.6 1.2 3.2111 .85

Thus we have proved that P(HHH)=.4 is a far worse bet than P(HTH)=.6 and hence the
assumption that each triple has the same probability is incorrect.

We shall now consider the mean length of time it takes to win. This leads to
Incorrect Intuition I1
As P(HTH)>P(HHH) the mean time to victory for HTH must be shorter.

To compute the mean number of coin flips until victory we need to compute

" 8(3.84 6.88 8.96 12.16 3.98 (18)

o 1 5.12 3.84 5.28 6.88][1 2.64
%Z(MZ)n «(n+3) 1 _ 11528 896 8.32 10.72 1 _ |416
6.88 12.16 10.72 21.12111 6.36

n=0 1



The n+3 term comes from the fact that our first chance of winning occurs after 3 tosses.
So we cannot have the number of tosses being 0, 1, or 2. Again, simplifying the lhs of
(18) is a standard result from linear algebra [2].

The mean number of flips until HHH and HTH occur are the first and second elements of
(18) divided by their corresponding probabilities, hence:

Mean number of flips until

HHH occurs=2.64/P(HHH)=2.64/.4=6.6 tosses

(19)
HTH occurs=4.16/P(HTH)=4.16/.6=6.93333 tosses

Mean length of game =6.6*(.4)+(6.9333333)*(.6)=6.8 tosses

Hence, although HHH has a smaller chance of winning, if it wins it wins, on average,
faster.

A simulation of 100,000 runs of the game backs up our result.

Percent of time player 2 (HTH) win= i=s 0.529430
Mean time till HTH wins i= 6.942001
Percent of time player 1 (HHH) win= i=s 0.400510
Mean time till HHH wins i= 6.6802382
il

Simulation 2 (100,000 trials)

It can be shown in a similar fashion that the standard deviation of a typical game is
approximately 4.6 tosses.

All the above work was based on the assumption that we were dealing with a fair coin.
But what if P(H)>.5? This leads to

Incorrect Intuition 111

Surely if P(H)>.5 then P(HHH)>P(HTH). However, as there are more ways for HTH to
occur than HHH, even if P(H)>.5 we can still get P(HTH)>P(HHH).

Example: Using similar analysis as above, if we let P(H)=.55 we get P(HTH)=.559 vs
P(HHH)=.441. Still a sizeable advantage for HTH-over a 10% advantage.

By experimentation we would need P(H) to be about .62 to have P(HHH)=P(HTH).

Summary



The above results can be extended to the case of sequences of length more than 3 to show
results such as P(HTHT)>P(HHHH). Another way to consider this problem would be as a
runs test. After all, betting on HTHT seems to be betting on the fact that the coin is fair
whereas betting on HHHH seems to betting on an assumption that the coin is not fair.
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