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(Abstract.) The laws of planetary motion were empirical laws formulated by 

Kepler in the early 1600s. They remained an enigma until the late 1600s when 

Newton derived them from his laws of motion. The derivation has great 

pedagogic value that will be appreciated by intermediate students of physics 

and the calculus.  
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From the voluminous data of Tycho Brahe (1546-1601), Johann Kepler (1571-1630) 

deduced the three laws of planetary motion: 

I. The orbit of each planet is an ellipse, with the Sun at one focus. 

II. The line from Sun to planet sweeps out area at a constant rate. 

III. The square of the period of revolution of a planet is proportional to the cube of 

its mean distance from the Sun.  

These laws, the first two published in 1609, the third in 1619, were empirical laws deduced 

from observations; they had no theoretical basis. They remained so until 1687 when Isaac 

Newton (1642-1787) formulated his laws of motion in his Principia Mathematica, and he 

derived Kepler’s laws from them in his ‘System of the World’.   

I’.  In the absence of a force, a body at rest stays at rest, and a body in motion    

stays in motion with the same speed in the same direction. 

II’. When a net force f acts on a body m, the body accelerates with acceleration a 

proportional to f and inversely to m; the II’ law is usually stated as,  𝑓 = 𝑚�⃑� 

(in vector form).  

III’. For every action, there is an equal and opposite reaction. 

IV’. (Law of gravitation) Between any two bodies m and M in the Universe, there 

exists a force of attraction F that is proportional to the masses and inversely 

proportional to the square of their separation r: 

    𝐹 = 𝐺
𝑚𝑀

𝑟2 ,   𝐺 = the constant of gravitation. 

 

What follows is an updated derivation of Kepler’s laws from Newton’s laws using vector 

calculus. 

I.  From the second law of motion and the law of gravitation: 

  �⃑� = −
𝐺𝑀

𝑟3 𝑟,⃑⃑⃑ 

⇒    �⃑� ∥ 𝑟,⃑⃑⃑   i.e.,   𝑟 × �⃑� = 0.  Then, 

 
𝑑

𝑑𝑡
(𝑟 × �⃑�) = 𝑟′ × �⃑� + 𝑟 × �⃑�′ = �⃑� × �⃑� + 𝑟 × �⃑� = 0 

⇒    𝑟 × �⃑� = ℎ⃑⃑,  a constant vector, in general, ℎ⃑⃑ ≠ 0,  i.e.,  𝑟 ∦ �⃑�; 



⇒    𝑟 ⊥ ℎ⃑⃑  for all t, so that the planet always lies in the plane through the origin ⊥ ℎ⃑⃑. Thus, 

the orbit of a planet is confined to a plane, or that the orbit is a plane curve. 

To find the equation of the orbit: 

        ℎ⃑⃑ = 𝑟 × �⃑� = 𝑟 × 𝑟′ = 𝑟�̂� × (𝑟�̂�)′ = 𝑟�̂� × (𝑟′�̂� + 𝑟�̂�′) = 𝑟𝑟′(�̂� × �̂�) + 𝑟2(�̂� × 𝑢′)̂ 

            = 𝑟2(�̂� × 𝑢′)̂. 

Then, �⃑� × ℎ⃑⃑ = −
𝐺𝑀

𝑟2 �̂� × 𝑟2(�̂� × 𝑢′)̂ = −𝐺𝑀�̂� × (�̂� × �̂�′) = −𝐺𝑀[(�̂� ∙ �̂�′)�̂� − (�̂� ∙ �̂�)�̂�′] 

                     = 𝐺𝑀�̂�′,  since  |�̂�(𝑡)| = 1 → �̂� ∙ �̂� = |�̂�|2 = 1, and �̂� ∙ �̂�′=0. 

And so,   (�⃑� × ℎ⃑⃑)
′

= �⃑�′ × ℎ⃑⃑ = �⃑� × ℎ⃑⃑ = 𝐺𝑀�̂�′. 

Integrate,      �⃑� × ℎ⃑⃑ = 𝐺𝑀�̂� + 𝑐,   𝑐  a constant vector.     

Choose the coordinates so that �̂� is along ℎ⃑⃑, and the planet moves in the xy-plane. Since 

both  �⃑� × ℎ⃑⃑  and  �̂�  are  ⊥ ℎ⃑⃑,  ⇒   𝑐  lies in the xy-plane; choose 𝑐 to lie along 𝑖̂  (Figure 1). 

                  

Figure 1.  Plane of orbit 

Then, (𝑟, 𝜃) are the polar coordinates of the planet, and: 

      𝑟 ∙ (�⃑� × ℎ⃑⃑) = 𝑟 ∙ (𝐺𝑀�̂� + 𝑐) = 𝐺𝑀𝑟 ∙ �̂� + 𝑟 ∙ 𝑐 

          = 𝐺𝑀𝑟�̂� ∙ �̂� + 𝑟𝑐 cos 𝜃 

          = 𝐺𝑀𝑟 + 𝑟𝑐 cos 𝜃. 

Then,  𝑟 =
𝑟∙(�⃑⃑�×ℎ⃑⃑⃑)

𝐺𝑀+𝑟𝑐 cos 𝜃
=

1

𝐺𝑀

𝑟∙(�⃑⃑�×ℎ⃑⃑⃑)

1+𝑒 cos 𝜃
, 𝑒 =

𝑐

𝐺𝑀
. 

But,   𝑟 ∙ (�⃑� × ℎ⃑⃑) = (𝑟 × �⃑�) ∙ ℎ⃑⃑ = ℎ⃑⃑ ∙ ℎ⃑⃑ = ℎ2. 

So,   𝑟 =
ℎ2/𝐺𝑀

1+𝑒 cos 𝜃
=

𝑒ℎ2/𝑐

1+𝑒 cos 𝜃
=

𝑒𝑑

1+𝑒 cos 𝜃
 ,   𝑑 =

ℎ2

𝑐
 . 



This is the polar equation of a conic section with focus at the origin and eccentricity e. (An 

alternate way to obtain the trajectory of a planet is to solve the equation of motion in polar 

coordinates, cf. Appendix.) 

         

Figure 2. Kepler’s I law 

 

II.    In polar coordinates: 

 𝑟 = [(𝑟 cos 𝜃)𝑖̂ + (𝑟 sin 𝜃)𝑗̂],   ℎ⃑⃑ = ℎ�̂� 

 ℎ⃑⃑ = 𝑟 × �⃑� = 𝑟 × 𝑟′ = [(𝑟 cos 𝜃)𝑖̂ + (𝑟 sin 𝜃)𝑗̂] × [(𝑟′ cos 𝜃 − 𝑟 sin 𝜃
𝑑𝜃

𝑑𝑡
) 𝑖̂ +

(𝑟′ sin 𝜃 + 𝑟 cos 𝜃
𝑑𝜃

𝑑𝑡
) 𝑗̂] = 𝑟2 𝑑𝜃

𝑑𝑡
�̂� 

 ⇒    ℎ = |ℎ⃑⃑| = 𝑟2 𝑑𝜃

𝑑𝑡
 .    

The element of area:   𝑑𝐴 =
1

2
𝑟2𝑑𝜃, and  

𝑑𝐴

𝑑𝑡
=

1

2
𝑟2 𝑑𝜃

𝑑𝑡
=

ℎ

2
 , constant since h is constant. 

We may restate the II Law: The line from Sun to planet sweeps out equal areas in equal 

times. 

     

                                                  Figure 3. Kepler’s II law 



From a physics point of view, the area swept out by the planet is proportional to the angular 

momentum, L, of the planet: 

            𝑑𝐴 =
1

2
|𝑟 × �⃑�𝑑𝑡| =

1

2𝑚
|𝑟 × 𝑚�⃑�|𝑑𝑡 =

1

2𝑚
𝐿𝑑𝑡 = constant. 

We note that this result is true for any central force, 𝑓 = 𝑓𝑟. 

                                        

                        Figure 4. The area swept out in terms of angular momentum 

 

III.  Kepler’s third law  

From the II law:  

𝑑𝐴

𝑑𝑡
=

1

2
ℎ, a constant, 

𝐴(𝑡) =
1

2
ℎ𝑡 + 𝐶1.   𝐴(0) = 𝜋0   →    𝐴(𝑡) =

1

2
ℎ𝑡.  

𝐴 = area of ellipse, 𝑇 = period of orbit 

𝐴(𝑇) =
1

2
ℎ𝑇   →    𝑇 =

2𝐴

ℎ
=

2𝜋𝑎𝑏

ℎ
 .  

From the I law:  

ℎ2

𝐺𝑀
= 𝑒𝑑,   𝑎 =

𝑒𝑑

1−𝑒2
   →    𝑒𝑑 = 𝑎(1 − 𝑒2).  Also, 1 − 𝑒2 =

𝑏2

𝑎2
.  Hence,   

ℎ2

𝐺𝑀
= 𝑒𝑑 =

𝑏2

𝑎2 .  

∴    𝑇2 =
4𝜋2𝑎2𝑏2

ℎ2
= 4𝜋2𝑎2𝑏2 𝑎

𝐺𝑀𝑏2
=

4𝜋2

𝐺𝑀
𝑎3.  

We need to show that the mean distance from Sun to planet over one period is equal to the 

semimajor axis a of the ellipse.  



To this end, take an arbitrary ellipse  

  
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1,   𝑐2 = 𝑎2 − 𝑏2. 

The distance from Sun to planet, FP, is:  

𝑑(𝑥, 𝑦) = 𝐹𝑃 = √(𝑥 − 𝑐)2 + (𝑦 − 0)2 = √𝑥2 − 2𝑐𝑥 + 𝑐2 + 𝑏2 −
𝑏2

𝑎2 𝑥2  

  = √(1 −
𝑏2

𝑎2
) 𝑥2 − 2𝑐𝑥 + 𝑎2 =

1

𝑎
√𝑐2𝑥2 − 2𝑐𝑎2𝑥 + 𝑎4  

  =
1

𝑎
√(𝑐𝑥 − 𝑎2)2 .    𝑑 =

𝑎2−𝑐𝑥

𝑎
 , since 𝑎2 > 𝑐𝑥.  

Then,  𝑑 =
1

2𝑎
∫

𝑎2−𝑐𝑥

𝑎
𝑑𝑥

𝑎

−𝑎
=

1

2𝑎2 [𝑎2𝑥 −
𝑐𝑥2

2
]

𝑎
−𝑎

=
1

2𝑎2 [ 𝑎3 −
𝑐𝑎2

2
− (−𝑎3 −

𝑐𝑎2

2
)] = 𝑎, 

i.e., the mean distance from one focus F to a point P on the ellipse is the semimajor axis a.  

From the physics point of view, the gravitational force provides the centripetal force on the 

planet in a circular orbit with mean radius, 𝑟 = 𝑎:  

                
𝐺𝑚𝑀

𝑟2 = 𝑚
𝑣2

𝑟
   →    𝑣2 =

𝐺𝑀

𝑟
 .  

Also, in a circular orbit: 

𝑣 =
2𝜋𝑟

𝑇
   →    𝑣2 =

4𝜋2𝑟2

𝑇2 .  

And,     𝑇2 =  
4𝜋2

𝐺𝑀
𝑟3 =   

4𝜋2

𝐺𝑀
𝑎3. 

        

Figure 5. Kepler’s III Law, 𝑇2 𝑣𝑠. 𝑎3 



 

Gravitational field due to a spherically distributed mass. One of Newton’s motivations for 

developing calculus was to prove that the gravitational field outside a solid sphere is the 

same as if the mass of the sphere were concentrated at its center. We will show that the 

gravitational field at a distance r from the center of a uniform spherical shell of mass M 

and radius R is: 

  �⃑� = −
𝐺𝑀

𝑟2 �̂�,   𝑟 > 𝑅 

and  �⃑� = 0,             𝑟 < 𝑅. 

For a solid sphere, we consider it to consist of a continuous set of spherical shells. Since 

the field due to each shell is the same as if its mass was concentrated at the center of the 

shell, the field due to the entire solid is as if the entire mass were concentrated at its center: 

  �⃑� = −
𝐺𝑀

𝑟2 �̂�,   𝑟 > 𝑅. 

Inside, only the mass inside the radius r contributes to the field: 

  𝑀′ =
4

3
𝜋𝑟3

4

3
𝜋𝑅3

𝑀 =
𝑟3

𝑅3 𝑀   → 

  �⃑� = −
𝐺𝑀′

𝑟2 �̂� = −
𝐺𝑀𝑟3

𝑅3

𝑟2 �̂� = −
𝐺𝑀

𝑅3 𝑟,   𝑟 < 𝑅. 

                   

Figure 6. Gravitational field due to a sphere 

The results above hold whether or not the sphere has constant density 𝜌, so long as 𝜌 =

𝜌(𝑟) for spherical symmetry.  

A spherical shell of mass M and radius R consists of rings a distance x from the field point 

P. (i) Outside, 𝑟 > 𝑅. The field due to dm has magnitude 𝑑𝑔 =
𝐺𝑑𝑚

𝑠2   along s; over the ring, 



  𝑔𝑥 = − ∫
𝐺𝑑𝑚

𝑠2
cos 𝛼 = −

𝐺𝑚

𝑠2
cos 𝛼. 

 

Figure 7. Ring element of mass dm  

The shell consists of ringstrips of mass dM and area dA: 

  𝑑𝑀 = 𝑀
𝑑𝐴

𝐴
= 𝑀

(2𝜋𝑅 sin 𝜃)(𝑅𝑑𝜃)

4𝜋𝑅2 =
𝑀

2
sin 𝜃𝑑𝜃 

 →    𝑑𝑔𝑟 = −
𝐺𝑑𝑀

𝑠2 cos 𝛼 = −
𝐺𝑀 sin 𝜃𝑑𝜃

2𝑠2 cos 𝛼 

              

Figure 8. Relation between the variables 

The three variables 𝑠, 𝜃, 𝛼 are related by: 

 𝑠2 = 𝑟2 + 𝑅2 − 2𝑟𝑅 cos 𝜃   →    2𝑠𝑑𝑠 = 2𝑟𝑅 sin 𝜃𝑑𝜃; 

 𝑅2 = 𝑠2 + 𝑟2 − 2𝑠𝑟 cos 𝛼   →    cos 𝛼 =
𝑠2+𝑟2−𝑅2

2𝑠𝑟
 . 

   →    𝑑𝑔𝑟 = −
𝐺𝑀

2𝑠2

𝑠𝑑𝑠

𝑟𝑅

𝑠2+𝑟2−𝑅2

2𝑠𝑟
= −

𝐺𝑀

4𝑟2𝑅
(1 +

𝑟2−𝑅2

𝑠2 ) 𝑑𝑠. 

The field due to the entire shell is found by integrating from 𝑠 = 𝑟 − 𝑅 (𝜃 = 0) to 𝑠 = 𝑟 +

𝑅 (𝜃 = 1800), 

 𝑔𝑟 = −
𝐺𝑀

4𝑟2𝑅
∫ (1 +

𝑟2−𝑅2

𝑠2 ) 𝑑𝑠 = −
𝑟+𝑅

𝑟−𝑅

𝐺𝑀

4𝑟2𝑅
[𝑠 −

𝑟2−𝑅2

𝑠
]

𝑟 + 𝑅
𝑟 − 𝑅

= −
𝐺𝑀

𝑟2  .  

(ii) If the field point P is inside the shell (𝑟 < 𝑅), the calculation is identical except for a 

change in limits: 



 𝑔𝑟 = −
𝐺𝑀

4𝑟2𝑅
[𝑠 −

𝑟2−𝑅2

𝑠
]

𝑅 + 𝑟
𝑅 − 𝑟

= 0. 

  

Conclusions:  

• The laws of planetary motion (Kepler) are derivable from the laws of motion 

(Newton);  

• The derivation is a beautiful elegant powerful demonstration of planetary motion 

from the laws of motion using a synthesis of physics, geometry, vector analysis, 

polar coordinates, calculus, and differential equations at a level well appreciated by 

the beginning student; 

• Historically, Newton formulated his laws of motion with Kepler’s laws as guides; 

• Nowadays, we assign this problem as a weekend homework in our classes in 

intermediate physics. 

 

Appendix: Alternate derivation of planetary orbit. 

To find   𝑟 = 𝑓(𝜃, 𝑡)   →   𝑓(𝜃).   On the x,y-plane, in terms of the moving unit vectors 

𝑢𝑟 ,̂ 𝑢𝜃 :̂  

(1)   𝑢�̂� = cos 𝜃 𝑖̂ + sin 𝜃 𝑗̂,       𝑢�̂� = − sin 𝜃𝑖̂ + cos 𝜃 𝑗̂  

(2) 
𝑑𝑢�̂�

𝑑𝜃
= 𝑢�̂� ,       

𝑑𝑢�̂�

𝑑𝜃
= −𝑢�̂�   

(3) 
𝑑𝑢�̂�

𝑑𝑡
=

𝑑𝑢�̂�

𝑑𝜃
𝜃′ = 𝜃′𝑢�̂� ,        

𝑑𝑢�̂�

𝑑𝑡
=

𝑑𝑢�̂�

𝑑𝜃
𝜃′ = −𝜃′𝑢�̂�   

𝑟 = 𝑟𝑢�̂�   

(4)   �⃑� = 𝑟′ = 𝑟′𝑢�̂� + 𝑟𝑢�̂�′ = 𝑟′𝑢�̂� + 𝑟𝜃′𝑢�̂�   

�⃑� = �⃑�′ = (𝑟′′𝑢�̂� + 𝑟′𝑢�̂�′) + (𝑟′𝜃′𝑢�̂� + 𝑟𝜃′′𝑢�̂� + 𝑟𝜃′𝑢𝜃 ′̂)  

    = (𝑟′′ − 𝑟𝜃′2)𝑢�̂� + (𝑟𝜃′′ + 2𝑟′𝜃′)𝑢�̂�  

[In 3-D space (though we won’t be needing these):  

𝑟 = 𝑟𝑢�̂� + 𝑧�̂�   

(5) �⃑� = 𝑟′ = 𝑟′𝑢�̂� + 𝑟𝜃′𝑢�̂� + 𝑧′�̂�   

 �⃑� = (𝑟′′ − 𝑟𝜃′2)𝑢�̂� + (𝑟𝜃′′ + 2𝑟′𝜃′)𝑢�̂� + 𝑧′′𝑘,̂ 



where (𝑢�̂� , 𝑢�̂�, �̂�) make a triad:   𝑢�̂� × 𝑢�̂� = 𝑘,̂   𝑢�̂� × �̂� = 𝑢�̂� ,   �̂� × 𝑢�̂� = 𝑢�̂�. ] 

The equation of motion is given by: 

(6)  �⃑� = 𝑚𝑟′′ = −
𝐺𝑚𝑀

𝑟3
𝑟    →    𝑟′′ = −

𝐺𝑚

𝑟3
𝑟,⃑⃑⃑ 

i.e., the planet is accelerated toward the Sun at all times. This ⇒    𝑟 × 𝑟′′ = 0. But,  

𝑑

𝑑𝑡
(𝑟 × 𝑟′) = 𝑟′ × 𝑟′ + 𝑟 × 𝑟′′ = 𝑟 × 𝑟′′ = 0.  

(7)   ∴    𝑟 × 𝑟′ = ℎ⃑⃑, constant   ⇒    𝑟 & �⃑�  always lie in a plane ⊥ to a fixed vector ℎ⃑⃑, i.e., 

the orbit is planar. Choose coordinates so that at 𝑡 = 0:    

(i)     𝑟 = 𝑟0,  

(ii)   𝑟′ = 0, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 

(iii)   𝜃 = 0, 

(iv)  𝑣0 = 𝑟𝜃′   because   𝑣0 = |�⃑�|𝑡=0 = |𝑟′𝑢�̂� + 𝑟𝜃′𝑢�̂�|𝑡=0 = 𝑟𝜃′. 

 

Figure 9. Orbit of planet in a plane 

From (5), (6): 

(8)  𝑟′′ − 𝑟𝜃′2
= −

𝐺𝑀

𝑟2  

 (7)   →    ℎ⃑⃑ = 𝑟 × �⃑� = 𝑟𝑢�̂� × (𝑟′𝑢�̂� + 𝑟𝜃′𝑢�̂�) = 𝑟(𝑟𝜃′)𝑘.̂                          

(9)   At 𝑡 = 0:   𝑟0𝑣0 = 𝑟2𝜃′   →    𝜃′ =
𝑟0𝑣0

𝑟2
, (8) becomes   𝑟′′ =

𝑟0
2𝑣0

2

𝑟3
−

𝐺𝑀

𝑟2
   →      

(10) 𝑝
𝑑𝑝

𝑑𝑟
=

𝑟0
2𝑣0

2

𝑟3 −
𝐺𝑀

𝑟2    →    𝑝2 = −
𝑟0

2𝑣0
2

𝑟2 +
𝐺𝑀

𝑟
+ 𝐶.  

At 𝑡 = 0:   𝐶 = 𝑣0
2 −

2𝐺𝑀

𝑟0
;   (10) becomes 



(11) 𝑟′2 = 𝑣0
2 (1 −

𝑟0
2

𝑟2
) + 2𝐺𝑀 (

1

𝑟
−

1

𝑟0
). 

But, 
𝑟′

𝜃′
=

𝑑𝑟/𝑑𝑡

𝑑𝜃/𝑑𝑡
=

𝑑𝑟

𝑑𝜃
 ,  and from (9), 

(12) 
1

𝑟4 (
𝑑𝑟

𝑑𝜃
)

2

=
1

𝑟0
2 −

1

𝑟2 +
2𝐺𝑀

𝑟0
2𝑣0

2 (
1

𝑟
−

1

𝑟0
) 

     =
1

𝑟0
2 −

1

𝑟2 + 2ℎ (
1

𝑟
−

1

𝑟0
) ,   ℎ =

𝐺𝑀

𝑟0
2𝑣0

2 . 

Let   𝑢 =
1

𝑟
 ,   

𝑑𝑢

𝑑𝜃
= −

1

𝑟2

𝑑𝑟

𝑑𝜃
 ,   (

𝑑𝑢

𝑑𝜃
)

2

=
1

𝑟4
(

𝑑𝑟

𝑑𝜃
)

2

; 

(12) →    (
𝑑𝑢

𝑑𝜃
)

2

= 𝑢0
2 − 𝑢2 + 2ℎ𝑢 − 2ℎ𝑢0 = (𝑢0 − ℎ)2 − (𝑢 − ℎ)2    →    

(13)     
𝑑𝑢

𝑑𝜃
= ±√(𝑢0 − ℎ)2 − (𝑢 − ℎ)2 . 

We use (−):   𝜃′ > 0, 𝑟′ > 0,
𝑑𝑟

𝑑𝜃
=

𝑟′

𝜃′
> 0,  and  

𝑑𝑢

𝑑𝜃
= −

1

𝑟2

𝑑𝑟

𝑑𝜃
   → 

(14)  
−1

(𝑢0−ℎ)2−(𝑢−ℎ)2

𝑑𝑢

𝑑𝜃
= 1 

  𝑐𝑜𝑠−1 (
𝑢−ℎ

𝑢0−ℎ
) = 𝜃 + 𝐶′; 

when 𝜃 = 0:  𝑢 = 𝑢0, 𝑐𝑜𝑠−1(1) = 0   →    𝐶′ = 0. 

The solution is:                                                     

                         
𝑢−ℎ

𝑢0−ℎ
= cos 𝜃         

and,  
1

𝑟
= 𝑢 = ℎ − (𝑢0 − ℎ) cos 𝜃                                                   

(15) or,  𝑟 =
(1+𝑒)𝑟0

1+𝑒 cos 𝜃
 ,   𝑒 =

1

𝑟0ℎ
− 1 =

𝑟0𝑣0
2

𝐺𝑀
− 1,   

a conic section with the Sun at one focus and with eccentricity e. 
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