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1 Introduction

This work covers results of an independent study conducted in spring 2022 by the

student coauthor, Pollari, under the direction of the faculty coauthor, Price. The

research question was motivated by a formula in [4, Theorem 3.6], which involves

counting the number of elements of a group that have certain orders. We provide

an exact count for the class of finite abelian groups in Section 2 (see Theorem 8).

Results on certain finite nonabelian groups are provided in Section 3. (See Theorems

9, 15, and 23, as well as Corollaries 18 and 24.)

As noted in Remark 16, deriving more precise results than the ones in Theorems 15

and 23 is impractical. However, this can be solved using technology in many cases.

The software utilized in this investigation was prepared by the student coauthor

(Pollari) in the programming language Python. The code is provided in Appendix 4.

We will reference Judson’s undergraduate algebra textbook when necessary. There

are several editions of this textbook, but we included citation information for [2],

since it is the most recent edition that the faculty coauthor (Price) taught from.

Notation 1 For a finite group  and a positive integer  ≤ ||, let  () denote

the number of elements of  whose order divides .
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We may view  as a function from {1 2     ||} to N. We consider the ques-
tion: what are the range of values for ? To motivate this question, we note that

1 = 2 for any isomorphic finite groups 1 and 2. This provides a method for

distinguishing nonisomorphic groups, which we use in Corollary 5.

More motivation for the research question is provided by formula 1, which holds for

any finite group  and prime number . See [4, Corollary 3.8] for more details.

 () ≡ ||−1 (mod ) (1)

This may remind you of Fermat’s Little Theorem (see [2, Theorem 6.13]). It is indeed

an extension of this famous result. Suppose  is a prime number and  is a positive

integer such that  - . If we set  = Z, then || =  and, by Corollary 4,

Z () = 1. Thus equation 1 reduces to 
−1 ≡ 1 (mod ), which is Fermat’s Little

Theorem.

As a consequence of formula 1, if  divides ||, then  divides  (). However,

if  - ||, then, by Lagrange’s Theorem,  contains no elements of order  and

 () = 1. In this case, equation 1 becomes 1 ≡ ||−1 (mod ), which also follows
from Fermat’s Little Theorem.

The proofs of all the results contained within are ‘elementary,’ which means they are

accessible to anyone who has completed an undergraduate course on group theory.

We conclude this introductory section with Lemma 2, which has an elementary proof

and is repeatedly used throughout the remaining sections.

Lemma 2 Suppose  is a finite group with identity . and  is an integer with

1 ≤  ≤ ||.

1. Let  () =
©
 ∈  :  = 

ª
. Then  () = | ()|

2. Suppose  is the external direct product of finite groups  and , that is,

 = ×. We have  () =  ()× () and  () =  () · ().

3. If  is abelian, then  () is a subgroup of  and  () divides ||.

Proof. (1) For  ∈ , we have  =  if and only if ord () divides  by Lagrange’s

Theorem. Thus,  () is the set of elements of whose order divides  and () =

| ()|, as claimed.
(2) By part 1, it is enough to show that  () =  () ×  (). The identity

element of  is ( ), where  is the identity element of  and  is the identity

element of .

Let  ∈  ()× () be arbitrarily chosen. Then  = ( ) for some  ∈  ()

and  ∈  (). We have 
 =  and  =  so ( )


=
¡
 

¢
= ( ). This
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implies ( ) ∈  () and  ()× () ⊆  () since  was arbitrarily chosen

in  ()× ().

Let  ∈  () be arbitrarily chosen. Then  = ( ) and  = ( ) for some

 ∈  and  ∈ . Substituting  = ( ) into  = ( ) gives
¡
 

¢
= ( ).

Thus  =  and  = , which implies  ∈  () and  ∈  (). Therefore,

 ∈  ()× () and  () ⊆  ()× () since  was arbitrarily chosen in

 (). Therefore,  () =  ()× (), as desired.

(3) We have  () 6= ∅ since  ∈  (). Let   ∈  () be arbitrarily chosen.

Then  =  =  and (−1) = 
¡

¢−1

=  since  is abelian. Thus −1 ∈
 () and  () is a subgroup of  by [2, Theorem 3.10]. Therefore,  () divides

|| by Lagrange’s Theorem.

2 Finite Abelian Groups

2.1 Cyclic Groups

Theorem 3 Suppose  is a cyclic group of order  and  ∈  is a generator of .

For any  = 1 2     , we have  () = gcd ( ).

Proof. Set  =  gcd ( ). Note that
¡

¢gcd()

=  so
¡

¢
=  and  ∈  ().

Moreover, gcd ( ) is the smallest power of  that is equal to  since  is the smallest

power of  that is equal to . Thus ord
¡

¢
= gcd ( ). By part 3 of Lemma 2,

 () is a subgroup of  and  () = | ()|. Since  () contains 
, which is

an element of order gcd ( ), we can conclude that  () ≥ gcd ( ).
A subgroup of a cyclic group is cyclic (see [2, Theorem 4.3]), Thus  () is cyclic

and there is a generator  for  (). Then ord () divides  since  ∈  ().

Moreover,  () = | ()| = ord () so  () divides . By part 3 of Lemma 2,

 () divides || = . Therefore,  () is a common divisor of  and . Thus

 () ≤ gcd ( ).

Corollary 4 If  and  are integers such that  ≥ 2 and 1 ≤  ≤ , then Z () =

gcd ( ).

Corollary 5 Let  and  be positive integers such that  ≥ 2 and  ≥ 2. If

gcd () 6= 1, then Z is not isomorphic to Z × Z

Proof. Set  = gcd (). By Theorem 3, Z () = gcd () = , Z () =

gcd ( ) = , and Z
() = gcd ( ) = . By part 3 of Lemma 2, Z×Z () =

Z ()Z () = 2. If Z is isomorphic to Z×Z, then Z
() = Z×Z (),

which implies  = 2. Thus  = 1.
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Remark 6 A stronger result holds. As noted in [2, Theorem 9.10], Z is isomorphic

to Z × Z if and only if gcd () = 1.

2.2 Finite Abelian Groups

Definition 7 Let  be a finite abelian group. As noted in [2, Theorem 13.3],  is

isomorphic to a direct product of cyclic groups of prime power order, that is

 ∼= Z11 × Z22 × · · · × Z (2)

where  and 1 2      are positive integers and 1 2      are primes (not

necessarily distinct). We call 11  22       the elementary divisors of .

Theorem 8 Suppose  is a finite group with elementary divisors 11  22       .

For any positive integer  ≤ ||, we have

 () = gcd (
1
1  ) gcd (22  ) · · · gcd (  ) .

Proof. Let  be expressed as shown in equation 7. By repeatedly applying part 2

of Lemma 2, we have

 () = Z

1
1

() ·Z

2
2

() · · ·Z



() .

By Theorem 3, Z

1


() = gcd (  ) for each  = 1     . The result follows

immediately.

3 Finite Nonabelian Groups

3.1 Dihedral Groups

Recall the dihedral group of degree , denoted by , is defined to be the group

of symmetries of a regular -gon for any integer  ≥ 2. The group operation is

composition.

Theorem 9 Let  and  be integers such that  ≥ 2 and 1 ≤  ≤ .


() =

½
gcd ( ) if  is odd

gcd ( ) +  if  is even
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Proof. Let  be the set of rotational symmetries of a regular -gon (including the

identity). Let  be the set of reflection symmetries of a regular -gon (not including

the identity). The group has order 2 and is the disjoint union of  and . Note

that  is a cyclic subgroup of . It is generated by a rotation by 2 radians, so

it has order  and 
() = gcd ( ) by Theorem 3. Moreover, every element of 

has order 2.

If  is odd, then 
() = 

(). By part 1 of Lemma 2,


() = 

() = gcd ( ) 

If  is even, then every reflection belongs to 
(). Thus 

() is the disjoint

union of 
() and . By part 1 of Lemma 2,


() = 

() + || = gcd ( ) + 

3.2 Symmetric Groups

Recall the symmetric group on  letters, denoted by , is defined to be the group of

permutations on the set {1 2     } for any integer  ≥ 2. We partition  following
the construction and notation of principal characteristic polynomials described in

[3]. Recall that for all  ∈ , there are disjoint cycles 1      ∈  such that

 = 1 · · ·. This expression is unique in the sense that if there are disjoint cycles
1      ∈  such that  = 1 · · · , then  =  and there is a permutation  ∈ 
such that  = () for  = 1     .

Definition 10 The cycle structure of a permutation  ∈  is an -tuple  =

(1     ) such that  is a (unique) product of disjoint 1 cycles on one letter,

2 cycles on two letters (i.e. transpositions), 3 cycles on three letters (i.e. ternary

cycles), and so on.

Remark 11 A cycle on one letter is equal to the identity. We use it for record

keeping so that every number from 1 to  gets listed in the description of  as a

product of disjoint cycles.

Notation 12 Let  denote the number of all permutations with cycle structure 

in .

Lemma 13 covers key properties about cycle structures that we use to calculate

 (). Parts 1 and 4 appear in [3]. An elementary reference for integer partitions

is [1].
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Lemma 13 Suppose  ≥ 2 is an integer and  ∈  has cycle structure  =

(1     ).

1. An integer partition of  is given by 1 + 22 + · · ·+  = .

2. The formula in part 1 induces a bijective correspondence between cycle struc-

tures on  and integer partitions on .

3. The order of any permutation with cycle structure  is lcm { : 0 6= }.
4. The number of all permutations with cycle structure  is given by formula 3.

 =
!

(111!) (222!) · · · (!)
(3)

Proof. (1) This is because all  letters are accounted for by the disjoint cycles.

(2) Cycle structures map to integer partitions by part (1). The inverse mapping takes

an integer partition to the cycle structure whose th entry is the multiplicity of  for

each , 1 ≤  ≤ .

(3) This is an easy exercise (see [2, Exercise 13, P. 75]). Note that in the cycle

decomposition, the cycles are all disjoint and each of the  cycles of length  has

order .

(4) For each  ∈ , the permutation 
−1 is obtained by renumbering the entries of

each disjoint cycle by replacing  with  (). Thus it also has cycle structure . This

gives up to ! permutations with cycle structure , but this is an overcount since the

same cycle may be expressed in different ways. For 1 ≤  ≤ , an -cycle may be

written in  different ways, depending on which letter is written first. Moreover,

the -cycles may be permuted amongst themselves in ! different ways. Formula 3

follows by multiplying the repetitions for each -cycle in the denominator.

Notation 14 For integers  and  with  ≥ 2 and 1 ≤  ≤ , we let  () de-

note the set of all  = (1     ) such that  is a cycle structure on  and

lcm { : 0 6= } = .

Theorem 15 Suppose  and  are integers with  ≥ 2 and 1 ≤  ≤ .

 () =
X

∈()
 =

X
∈()

!

(111!) (222!) · · · (!)
(4)

Proof. By parts (1), (2), and (3) of Lemma 13,

 () = ∪∈() { ∈  :  has cycle structure } .
Note that this is a union of disjoint sets. We obtain formula 4 by applying part (1)

of Lemma 2 and part (4) of Lemma 13.
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Remark 16 There is no known formula for the number of integer partitions of a

given integer . This is a historically hard problem (see [1]). Thus we have no hope

of finding the sets  () for all values of  and . An algorithm to calculate  ()

using the result in Theorem 15 is contained in the appendix. Corollary 18 provides a

formula for  (2).

Notation 17 For any integer , let b2c denote the greatest integer less than 2.

Corollary 18 Suppose  is an integer and  ≥ 2.

 (2) =

b2cX
=0

!

(− 2)! (2)!

Proof. Note that  (2) = {(− 2  0     0) : 0 ≤  ≤ b2c}. Moreover, for all
 = 0     b2c,  (− 2  0     0) = !

(− 2)!2! . The result follows from
Theorem 15.

Example 19 The values of  (2) for 2 ≤  ≤ 11 are shown in the table below.
 2 3 4 5 6 7 8 9 10 11

 (2) 2 4 10 26 76 232 764 2620 9496 35696

Remark 20 As noted in the introduction, if  is a prime number and  divides ||,
then  divides  (). Therefore,  divides  () for any prime number  ≤ . In

particular,  (2) is even for all  ≥ 2.

3.3 Alternating Groups

Recall the alternating group on  letters, denoted, is the subgroup of  containing

all permutations that are the product of an even number of transpositions.

Lemma 21 Suppose  ≥ 2 is an integer and  is a permutation in  with cycle

structure  = (1     ). Then  ∈  if and only if 2+4+ · · ·+b2c is even.

Proof. The identity permutation is an element of with cycle structure ( 0     0).

Suppose  is an arbitrarily chosen element of  with cycle structure  = (1     )

such that 1 6= . For each , 1   ≤ , if 0   there are  cycles of length  in

the cycle decomposition of . We denote them by 1 2     . We can write

the cycle decomposition of  as

 =
Y
1≤
06=

12 · · ·.
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For each  , 1   ≤  and 1 ≤  ≤ , we can express  as a product of  − 1
transpositions (see [2, Proposition 5.4]). Then the cycle decomposition of  can also

be rewritten as a product of transpositions and the number of transpositions is given

by X
1≤

(− 1) =
X
1≤
 odd

(− 1) +
X
1≤
 even

(− 2) +
¡
2 + 4 + · · ·+ b2c

¢
.

Note that − 1 is even when  is odd and − 2 is even when  is even, so the first two
sums are even. Therefore,  ∈  if and only if 2 + 4 + · · ·+ b2c is even.

Notation 22 For integers  and  with  ≥ 2 and 1 ≤  ≤ , we let  () denote the

set of all  = (1     ) such that  is a cycle structure on , lcm { : 0 6= } = ,

and 2 + 4 + · · ·+ b2c is even.

Theorem 23 Suppose  and  are integers with  ≥ 2 and 1 ≤  ≤ .

1. 
() =

X
∈()

 =
X

∈()

!
(111!)(2

22!)···(!)

2. 
() =  () if and only if  is odd.

Proof. Part (1) is proved in the same way as Theorem 15. To prove part (2), it is

enough to show that  () =  () if and only if  is odd.

Assume  () 6=  () for some integer , 1 ≤  ≤ . Since  () ⊆  (), there

exists  ∈  () such that  ∈  (). This implies lcm { : 0 6= } = , and

2 + 4 + · · · + b2c is odd. The latter condition implies 2 6= 0 for some   0.

Thus  = lcm { : 0 6= } is even.
Now assume  () =  () for some integer , 1 ≤  ≤ . Let  = (1     ) be

the cycle structure whose entries are all 0 except 1 = − , and  = 1. We have

lcm
©
 : 0  

ª
= , so  ∈  () =  (). Thus 2+4+ · · ·+b2c is even. Thus

 must be odd since  = 1 and  = 0 for all  such that 1   ≤  and  6= .

Corollary 24 Suppose  is an integer and  ≥ 2.

 (2) =

b2cX
=0
 even

!

(− 2)! (2)!

Proof. Note that  (2) = {(− 2  0     0) :  is even and 0 ≤  ≤ b2c}.
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Example 25 The values of  (2) for 2 ≤  ≤ 11 are shown in the table below.

 2 3 4 5 6 7 8 9 10 11

 (2) 1 1 4 16 46 106 316 1324 5356 18316

Remark 26 As noted in the introduction, if  is a prime number and  divides ||,
then  divides  (). Therefore, 

(2) is even for all  ≥ 4 . If  is an odd prime,
then  divides 

() for all  ≥ . For example, 3 (3) = 3, 4 (3) = 9, and

5 (3) = 21.

4 Appendix: Python Code

Remark 27 The following Python code calculates  () for any integers  and 

with  ≥ 2 and 1 ≤  ≤ .

from math import factorial

def getFactors(a): # generate factors of the input

answer = []

for alpha in range(1, a + 1):

if a % alpha == 0:

answer.append(alpha)

return answer

def getPartitions(q):

# generate partitions of n, courtesy of

# https://jeromekelleher.net/category/combinatorics.html

a = [0 for i in range(q + 1)]

r = 1

y = q - 1

while r != 0:

x = a[r - 1] + 1

r -= 1

while 2 * x <= y:

a[r] = x

y -= x

r += 1

l = r + 1

while x <= y:

a[r] = x

a[l] = y

yield a[:r + 2]
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x += 1

y -= 1

a[r] = x + y

y = x + y - 1

yield a[:r + 1]

n = int(input("Symmetric group on how many letters? "))

graphInput = input("Do you want to see a graph? ")

infoInput = input("Do you want to see detailed information regarding "

f"H_{{S_{{{n}}}}}(k)? ")

tableInput = input("Do you want to see an output table, "

"pre-formatted for LaTeX? ")

graphMode = True if graphInput.casefold() == "yes" else False

infoMode = True if infoInput.casefold() == "yes" else False

tableMode = True if tableInput.casefold() == "yes" else False

if graphMode:

import matplotlib.pyplot as plotter

# Package that allows us to plot data in Python.

graph = {} # This will be our map between k and O_Sn(k).

for k in range(1, factorial(n) + 1): # 1 <= k <= |G|

# We’ll filter our partitions for ones that only contain factors.

factorsAndPartitions = []

for currentPartition in getPartitions(n):

works = 0 # This is the number of summands that are factors of k.

for checkPartition in currentPartition:

if checkPartition in getFactors(k):

works += 1

# If all the numbers are factors of k...

if works == len(currentPartition):

# Put it in the list of working partitions.

factorsAndPartitions.append(currentPartition)

# This will be the list of factors and partitions,

# but represented as cycle structures.

cycleStructures = []

for currFactorPartition in factorsAndPartitions:

# Empty cycle structures, which we’ll later

# fill with the proper elements.

cycleStructures.append([])
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for currStructure in range(len(cycleStructures)):

for structureIndex in range(n):

# Fill the empty cycle structure

cycleStructures[currStructure].append\

(factorsAndPartitions[currStructure].count\

(structureIndex + 1))

O_Sn = 0

for currStructure in cycleStructures:

currentPFunction = factorial(n) # The numerator from [3]

for currLength in range(1, n + 1):

# Divide by first factor in the denominator from [3]

currentPFunction /= currLength **\

currStructure[currLength - 1]

# Divide by second factor in the denominator from [3]

currentPFunction /= factorial(currStructure[currLength - 1])

O_Sn += currentPFunction

graph.update({k: round(O_Sn)})

if infoMode:

print("k:", k)

print(f"\t Partitions that only contain factors "

"as summands: {factorsAndPartitions}")

print(f"\t Represented as cycle structures: {cycleStructures}")

print(f"\t O_{{S_{{{n}}}}}({k}) = {round(O_Sn)}")

if graphMode: # This plots the data if we want to.

plotter.plot(graph.keys(), graph.values())

plotter.title(f"Number of elements of $S_{{{n}}}$ whose "

"order divides $k$")

plotter.ylabel(f"$O_{{S{{{n}}}}}(k)$")

plotter.xlabel("$k$")

plotter.show()

if tableMode: # This formats the LaTeX if we want a table.

print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"

"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")

print("Copy and paste into a LaTeX compiler:")

print("\\begin{tabular}{|c|c|} \\hline")

print(f"\t $k$ & $O_{{S_{{{n}}}}}(k)$ \\\\ \\hline")

for keys in graph:

print(f"\t {keys} & {graph[keys]} \\\\ \\hline")

print("\\end{tabular}", end = "")
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