
©2020 Pearson Online & Blended Learning K-12 USA. All rights reserved. Questions? Call 800-382-6010

Java Programming 2

Course Summary:

The student will learn essential object-oriented programming concepts, exception handling,

recursion, generics, and important data structures in the Java Collections Framework. Advanced
topics include algorithm analysis using Big O notation, a comparison of major sorting algorithms,

and creation and traversal of a binary search tree. Lessons are accompanied by frequent
programming exercises.

Course Outline

1. Object-Oriented Thinking: Part 1 (L)
o Understand class abstraction and encapsulation

o Explain the object-oriented paradigm
o Identify class relationships

o Translate a UML class diagram into Java code
2. Object-Oriented Thinking: Part 2 (L)

o List the Java wrapper classes associated with each primitive data type
o Demonstrate the use of common methods and fields in numeric wrapper classes

o Explain autoboxing and autounboxing
o Perform calculations on very large numbers using BigInteger

3. Inheritance and Polymorphism: Part 1 (L)
o Understand inheritance

o Use the super keyword to call a superclass constructor or method
o Override methods inherited from a superclass

o Explain overriding and overloading
4. Inheritance and Polymorphism: Part 2 (L)

o Explain polymorphism, dynamic binding, declared types, and actual types
o Describe the difference between the comparison operator and the equals() method

o Store and retrieve data from an ArrayList
o Understand the protected modifier
o Explain the effect of the final keyword on classes and methods

5. Exception Handling and Text I/O: Part 1 (L)
o Understand the basics of exceptions and exception handling

o Identify different types of exceptions
o Declare, throw, and catch exceptions

o Explain the use of the finally clause
o Decide when to use exceptions

6. Exception Handling and Text I/O: Part 2 (L)
o Demonstrate how to rethrow an exception

o Understand the File class
o Handle basic keyboard input and file I/O

7. Abstract Classes and Interfaces: Part 1 (L)
o Explain the need for abstract classes and methods

©2020 Pearson Online & Blended Learning K-12 USA. All rights reserved. Questions? Call 800-382-6010

o Apply the rules for abstract classes and methods
o Identify abstract classes and methods in the Java API

8. Abstract Classes and Interfaces: Part 2 (L)
o Discuss how interfaces are used

o Demonstrate the implementation of the Comparable interface
o Discuss the differences between interfaces and abstract classes

o Explain cohesion, consistency, encapsulation, clarity, and completeness
o Contrast instance vs. static and inheritance vs. aggregation

9. Recursion (L)
o Understand the basics of recursion

o Write recursive methods
o Explain the need for recursive helper methods

o Apply recursion to a file system
o Contrast recursion and iteration

10.Generics (L)
o Explain the syntax and use of generic types

o Define a generic class
o Understand generic methods and bounded types

o Understand the syntax and implications of wildcard generic types
11.Lists, Stacks, Queues, and Priority Queues: Part 1 (L)

o Contrast important data structures in the Java Collections Framework

o Describe methods of the Collection interface
o Traverse a data structure using an Iterator and a foreach loop

o Store and retrieve information using a List
12.Lists, Stacks, Queues, and Priority Queues: Part 2 (L)

o Define a class that implements the Comparator interface
o Use static methods of the Collections class to manipulate data in a list

o Explain the operation of stacks and queues
13.Sets and Maps (L)

o Describe the differences between HashSet, LinkedHashSet, and TreeSet
o Add and retrieve data from a set

o Choose the best data structure based on a program’s requirements
14.Developing Efficient Algorithms (L)

o Explain Big O notation
o Calculate the time complexity for an algorithm or block of code

o Compare and order functions of time complexity
15.Sorting (L)

o Describe the strategy behind common sorting algorithms
o Determine the time complexity of common sorting algorithms

16.Binary Search Trees (L)
o Describe the structure of a binary search tree
o Implement a binary search tree

o Traverse a binary search tree using recursion
17.Java Programming II Course Review (L)

o Review lesson objectives and key terms
o Review textbook readings

o Utilize pretests and pretest summaries
o Explore potential careers in the field of Java programming

18.Java Programming II Final Assignment (L)

