Mathematics Success for All
Pearson Canada Research Overview
Introduction

Mathematics Success for All

Welcome to Mathematics Success for All, our research overview that has informed the development of our new family of math resources for K–9 Mathematics: Pearson Mathology.

Created with a deep understanding of Math learning and the needs of teachers, Mathology is a comprehensive math program with real-world applications that helps educators plan lessons, and engage and teach students across all skill levels. Co-developed with Canadian teachers, Mathology offers a differentiated learning program rooted in classroom reality, as well as effective teacher support. Based on an easy-to-understand Math learning progression, it combines insights from teacher interviews, focus groups, and classroom observations, with the best of pedagogical approaches and the academic research presented in this report.

Very early in the development process for Mathology, Pearson Canada surveyed the educator community in Canada to identify key research areas in Canadian mathematics that are influencing mathematics instruction (K–9) today.

This document provides an overview of the topics that these educators stated were crucial to high-quality mathematics instruction. Key quotes from research articles and reference materials are presented for each topic, and connected to the development of Mathology, to show how these ideas inform the resource.

We are confident this research overview will provide useful insight into the Canadian mathematics landscape as it exists today.
Table Of Contents

Planning and Assessment
- Balanced Math .. 5
- Why Early Math Matters 6
- Assessment 7
- Selection and Use of Quality Resources 8
- Effective Lesson Model 9
- Curriculum and Big Ideas 10
- Differentiated Instruction 11

The Math Learning Community/Environment
- Encouraging Growth Mindsets 13
- Student Talk 14
- Building a Community of Math Learners 15
- First Nations, Métis, and Inuit Learners 16
- Positive Personal and Cultural Identity 17
- Classroom Management 18

Teacher Learning
- Professional Learning 20

Early Math
- How Young Children Best Learn Math 22

Math Processes for Learning
- 21st-Century Competencies in Math 24

Home-School Connection
- Home Connection 26

Learning Tools
- Games and Manipulatives as Mathematical Thinking Tools 28
- Affordances of Technology 29

Math Content Areas
- Algebraic Thinking, Spatial Reasoning, & Proportional Reasoning 31
- Building Computational Fluency by Developing Number Sense 32
- Mental Math 33

Bibliography 34

Acknowledgements 49
Planning and Assessment
Balanced Math

In a balanced mathematics program, students are engaged in a variety of instructional approaches and learning contexts involving purposeful exploration and practice. This approach balances important concepts and strategies, and mathematical ideas, reasoning, and skills.

What the Research Says

“An important key to developmentally appropriate mathematics instruction, at any age or grade level, is achieving balance between teaching for conceptual understanding and teaching for procedural fluency. When students learn procedures without meaning, they are only memorizing discrete pieces of information that are difficult for them to remember.”
(Protheroe, 2007)

“[Students] need a balanced program of understanding, skills, and problem solving and they need a flexible set of thinking and reasoning tools they can call on to pull all of these pieces together.”
(Seeley, 2009)

“...numerous studies have shown that rote learning alone produces a narrow and brittle form of knowledge, whereby the individual can reproduce – or recite – what has been learned (and thus can pass the test) but does not necessarily understand the new information and is unable to make practical use of it.”
(Devlin, 2010)

“How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need a mathematics program that balances skills, concepts, strategies, and thinking. When students are engaged in a balanced program, they can apply their computational skills and reasoning abilities to solve real-life problems, and communicate their understanding to others.</td>
<td>Resources should encourage students to build computational skills at the same time as they develop problem-solving abilities, deepen conceptual understanding, expand their ability to communicate thinking, and demonstrate understanding.</td>
</tr>
</tbody>
</table>
Why Early Math Matters

High-quality and engaging mathematics learning at an early age allows children to develop a strong foundation upon which to build in the later years. A large body of research demonstrates a strong connection between early success in mathematics and later success in school, not only in mathematics, but also on many other indicators. This research presents a strong case for rich early experiences in mathematics.

What the Research Says

“... preschool and first grade mathematical ability are positive and highly significant predictors of mathematics achievement through age 17.”
(Watts, Duncan, Siegler, & Davis-Kean, 2014)

“The relation between early number competence and mathematics achievement was strong and significant.”
(Jordan, Kaplan, Ramineni, & Locuniak, 2009)

“A focus on establishing the foundations of mathematics knowledge early in formal schooling, then, “seems to be an essential first step for achieving equity.... Early intervention is now viewed as one key step toward ensuring a level playing field.”
(Baroody et al. cited by Bruce, Flynn, & Moss, 2012)

How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need access to resources that will engage young children and help them build a strong foundation in mathematics.</td>
<td>Resources should establish a strong foundation in mathematics in the early years to sustain learning throughout school and life.</td>
</tr>
<tr>
<td>Teachers need effective teaching strategies that will allow them to meet the diverse needs of their students.</td>
<td>Resources should help teachers identify and close learning gaps early.</td>
</tr>
<tr>
<td>When students have established a strong foundation in mathematics in the early years, they are set up for future success.</td>
<td></td>
</tr>
</tbody>
</table>

… young children require high quality, challenging, and accessible math education experiences in order to build a strong foundation for their future learning.

(Foundations for Numeracy, 2010)

“... There is good evidence that spatial reasoning experiences at an early age contribute to children’s “development of both numerical and spatial/geometrical concepts.””
(National Research Council cited by Moss, Bruce, Caswell, Flynn, & Hawes, 2016)

“… young children require high quality, challenging, and accessible math education experiences in order to build a strong foundation for their future learning.”
(Foundations for Numeracy, 2010)
Assessment

Assessment includes a wide variety of tools that allow teachers to continually observe, measure, and document a student’s learning and understanding. Teachers then use what is observed to plan for next steps.

What the Research Says

“... student self-assessment, defined as a dynamic process in which students self-monitor, self-evaluate, and identify correctives to learn, is a critical skill that enhances student motivation and achievement.”
(McMillan & Hearn, 2009)

“Assessment should guide teaching. It should be continuous and provide information about the ‘zone of proximal development.’”
(Storeygard, Hamm, & Fosnot, 2010)

“The most powerful single modification that enhances achievement is feedback.”
(Marzano, Pickering, & Pollock, 2001)

“... formative assessment helps to guide students to make improvements during the course of learning. It also informs teachers as to how to support individual students or to alter classroom instruction.”
(Suurtamm, 2010)

“Because too many culturally different students are not scoring well when evaluated, it is important that teachers create and use tests and assessments that are culturally responsive.”
(Ford, 2010)

How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need tools to help them assess students and suggestions on how they can use the information gained to respond to students’ learning needs. When students experience high-quality, meaningful assessment practices, including processes that support self-assessment, they are consistently and appropriately supported throughout their mathematical learning journey.</td>
<td>Resources, such as teacher instructional materials and assessment tools, should address all facets of assessment that can be employed across the mathematics curriculum: assessment of learning (e.g., summative evaluation), assessment as learning (e.g., teacher feedback and student self-reflection), and assessment for learning (e.g., ongoing data to inform instruction). As much as possible, criteria should be co-constructed with students. Resources should provide in-the-moment tools and supports to help teachers observe and recognize students’ strategies and thinking, understand what they see or hear, and then choose the appropriate next steps.</td>
</tr>
</tbody>
</table>

Why Early Math Matters

Teachers need access to resources that will engage young children and help them build a strong foundation in mathematics.

Teachers need effective teaching strategies that will allow them to meet the diverse needs of their students.

When students have established a strong foundation in mathematics in the early years, they are set up for future success.

Resources should establish a strong foundation in mathematics in the early years to sustain learning throughout school and life.

Resources should help teachers identify and close learning gaps early.
Selection and Use of Quality Resources

Quality resources reflect the current research and provide all students with an entry point for learning. These resources help educators better understand mathematical content and pedagogy, thus enhancing their teaching practices.

What the Research Says

“Architects wish to design beautiful buildings and environments, but they must also apply many foundational principles of engineering and adhere to structural principles. If they do not, their buildings, however beautiful they may be, will not stand. Similarly, a teacher seeks to design lessons that stimulate students and entice them to learn – lessons that are sometimes a beauty to behold. But if the lessons are not based in the science of pedagogy, they, like poorly constructed buildings, will fail.”

(Stanovich & Stanovich, 2003)

“Efforts to develop textbooks and other instructional materials should include research into how teachers can understand and use those materials effectively.”

(National Research Council, 2001)

“Appropriate tasks have at least three features … students see the task as an interesting problem … the tasks must connect with where students are … [and] the tasks must engage student in thinking about important mathematics.”

(Hiebert et al., 1997)

“Teacher support: Do support materials have the potential to enhance the quality of mathematics instruction?”

(Tarr, Reys, Barker, & Billstein, 2006)

How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need resources that support their understanding of mathematical concepts, differentiated instruction, and their teaching practices. When resources provide engaging and meaningful tasks and are designed to meet the needs of all learners, teachers can effectively support students’ mathematical learning.</td>
<td>Resources should effectively address the learning needs of all students; they should support a range of instructional approaches and ways of learning. Resources should be engaging, accessible, and user-friendly.</td>
</tr>
</tbody>
</table>
Effective Lesson Model

A flexible lesson model allows for various teaching approaches and ensures that teaching is intentional and effective. It allows educators to shift and respond to a child's needs.

What the Research Says

“... the phases of the lesson plan structure emerge from a multitude of decisions made about the curriculum learning expectations, student experiences and interests, task development, and assessment tools.”

(Van de Walle, Karp, Bay-Williams, McGarvey, & Folk, 2015)

“Frameworks for effective teaching to support children's conceptual understanding also emphasize the need for tasks that are mathematically challenging and significant.”

(Askew et al., 1997)

“Students learn from the kind of work they do during class, and the tasks they are asked to complete determines the kind of work they do.”

(Hiebert et al., 1997)

“The success with which a teacher conducts a lesson is often thought to depend on the effectiveness with which the lesson was planned.”

(Richards, 1998)

“The selection of a problem for the problem solving activity... is extremely critical for teachers when they plan a lesson.”

(Takahashi, 2006)

How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need opportunities to incorporate problem-solving tasks and consolidation techniques into their mathematics teaching to allow students to develop a deeper understanding of the mathematics involved. When students are given opportunities to solve problems and consolidate their learning, they develop deeper conceptual understanding and become better thinkers and communicators.</td>
<td>Resources should provide a lesson model with a flexible and adaptable structure. Resources should provide opportunities for students to solve rich problems and consolidate learning before moving on to new concepts.</td>
</tr>
</tbody>
</table>
Curriculum and Big Ideas

Big ideas of the curriculum help facilitate mathematical understanding by focusing on key concepts and processes/competencies. When educators frame content around big ideas, they are often able to encompass content from other strands and make crucial connections between mathematical concepts.

What the Research Says

“Big ideas ‘invite students to look beyond surface features of procedures and concepts and see diverse aspects of knowledge as having the same underlying structure.’”

(Baroody, Feil, & Johnson, 2009)

“Much research indicates that children from diverse backgrounds can learn mathematics if it is organized into big coherent chunks and if children have opportunity and time to understand each domain deeply…”

(Ontario Ministry of Education, 2003)

“How one understands Big Ideas, mathematics is no longer seen as a set of disconnected concepts, skills, and facts. Rather, mathematics becomes a coherent set of ideas.”

(Charles, 2005)

Implications for Teachers and Students

Teachers need resources that are organized around the big ideas of mathematics to allow students to explore mathematical concepts in depth and to make connections between the concepts.

When resources are organized around the big ideas, students are able to develop an understanding of the connections between mathematical concepts and procedures.

Implications for Resource Development

Resources should cluster curriculum outcomes/expectations around the big ideas of mathematics, and provide tools for teaching and learning that align closely with the Pearson Canada Mathematics Learning Progression, allowing students to make connections instead of seeing mathematics as compartmentalized sets of disconnected ideas.
Differentiated Instruction

Differentiated instruction allows teachers to meet students where they are, and to help students progress from one understanding to another. It strives to meet the diverse needs of every student by matching different strategies to different student needs and strengths. Differentiation personalizes the learning process so that every child has the best chance of success.

What the Research Says

“Today’s classrooms are filled with learners whose strengths are as diverse as their needs. In order to teach all students effectively ... teachers must have an extensive repertoire of strategies.”

(Literacy and Numeracy Secretariat, Ontario Ministry of Education, 2008)

“Students are more likely to be successful if the assessment system encompasses a broad spectrum of abilities and modes of expression.”

(Benjamin, 2006)

“Differentiated instruction is at least as important for students with significantly higher ability as for students with significantly lower ability.”

(Lawrence-Brown, 2004)

“... when instruction is culturally responsive, teachers modify their teaching styles to accommodate and affirm learning styles.”

(Ford, 2010)

“Differentiated instruction is based on the idea that because students differ significantly in their strengths, interests, learning styles, and readiness to learn, it is necessary to adapt instruction to suit these differing characteristics.”

(Ontario Ministry of Education, 2013)

How This Informs Mathology

Implications for Teachers and Students

Teachers need to differentiate instruction and assessment to meet the diverse needs of their students and to help them learn efficiently in various ways.

When students are taught according to their needs and strengths, learning is maximized.

Implications for Resource Development

Resources should provide suggestions on how instruction and assessment can be differentiated to support the different learning needs and strengths of students in a diverse classroom.
The Math Learning Community/Environment

Implications for Teachers and Students

Teachers need to build on their students' natural inquisitiveness to motivate and enhance student learning. When students have positive and engaging mathematics experiences, they develop positive attitudes toward mathematics and gain confidence in their ability to do mathematics.

Implications for Resource Development

Resources should be challenging and engaging, supporting student success in mathematics and leading to a positive attitude. Resources should have multiple entry points to meet learners where they are, building confidence in their ability to learn mathematics.

What the Research Says

How This Informs Mathology

The Math Learning Community/Environment

Encouraging Growth Mindsets
Encouraging Growth Mindsets

When students and teachers embrace a growth mindset, they believe that success is determined not by innate ability, but by persistence through challenges. From this perspective, mistakes are viewed as opportunities for learning and growth. Encouraging a growth mindset increases a student’s motivation, confidence, and academic performance.

What the Research Says

“This growth mindset is based on the belief that your basic qualities are things you can cultivate through your efforts. Although people may differ in every which way – in their initial talent and aptitudes, interests, or temperaments – everyone can change and grow through application and experience.”
(Dweck, 2006)

“It is never too early to nurture the growth of a positive disposition towards mathematics, and improve the relationship that children have with mathematics content and processes.”
(Colgan, 2014)

“The new evidence from brain research tells us that everyone, with the right teaching and messages, can be successful in math, and everyone can achieve at the highest levels in school ... Although I am not saying that everyone is born with the same brain, I am saying that there is no such thing as a "math brain" or a "math gift," as many believe. No one is born knowing math, and no one is born lacking the ability to learn math.”
(Boaler, 2016b)

“When anxiety is regulated or reframed, students often see a marked increase in their math performance.”
(Maloney & Beilock, 2012)

“Young children have a natural inquisitiveness about mathematics, and teachers can build on this inquisitiveness to help students develop the positive attitudes that often occur when one understands and makes sense of a topic.”
(Ontario Ministry of Education, 2003)

How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need to build on their students’ natural inquisitiveness to motivate and enhance student learning. When students have positive and engaging mathematics experiences, they develop positive attitudes toward mathematics and gain confidence in their ability to do mathematics.</td>
<td>Resources should be challenging and engaging, supporting student success in mathematics and leading to a positive attitude. Resources should have multiple entry points to meet learners where they are, building confidence in their ability to learn mathematics.</td>
</tr>
</tbody>
</table>
Student Talk

Meaningful learning can occur when students are engaged in purposeful discussions about mathematics. These discussions provide students with an exposure to a variety of strategies, and with opportunities to consolidate their thinking as they communicate about mathematical ideas. Math talk provides students with opportunities to think critically, collaborate with others, and acquire meaningful mathematical learning.

What the Research Says

“Mathematics educators nationwide agree that student engagement in meaningful mathematical discourse has a positive effect on their mathematical understanding as they increase the connections between ideas and representations.”
(Garcia, 2011)

“Research tells us that student interaction – through classroom discussion and other forms of interactive participation – is foundational to deep understanding and related student achievement.”
(Bruce, 2007)

“Productive talk promotes ... conceptual understanding: It can be useful in helping students build individual mental connections, and it is the core activity of a community of learners who together are trying to make sense of mathematical truths.”
(Chapin, O’Connor, & Anderson, 2009)

“Social interaction provides us with the opportunity to use others as resources, to share our ideas with others, and to participate in the joint construction of knowledge.”
(Smith & Stein, 2011)

“How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need resources that provide suggestions on how to establish a learning community where “talking mathematics” is valued and routine.</td>
<td>Resources should offer frequent opportunities for teachers and students to engage in meaningful mathematical discourse.</td>
</tr>
<tr>
<td>Teachers need support in understanding how talk can reflect and extend students’ understanding of mathematical concepts.</td>
<td></td>
</tr>
<tr>
<td>When students are part of a community where “talking mathematics” is valued, they have opportunities to share ideas, critique others’ reasoning, and increase their own mathematical understanding.</td>
<td></td>
</tr>
</tbody>
</table>
Building a Community of Math Learners

Building a community of Math learners involves creating an inclusive learning environment where all students feel safe to explore and take mathematical risks. Teachers and students work collaboratively and learn from each other, thus creating a supportive learning environment.

What the Research Says

“An engaging and encouraging climate for children’s early encounters with mathematics develops their confidence in their ability to understand and use mathematics.”
(National Council of Teachers of Mathematics, 2013)

“Knowledge about early mathematics learners and the mathematics for teaching can help educators create a rich environment and guide students to attain strong conceptual understandings, positive attitudes and self-efficacy.”
(Ontario Ministry of Education, 2011)

“Learning mathematics in a community of practice ... foster[s] mindful, strategic learning by engaging students in collaborative forms of inquiry.”
(Goos, 2004)

“The classroom culture we create ... needs to be one where questioning and deep thinking are valued, mistakes are seen as useful, all students contribute and their suggestions are valued, being stuck is seen as honourable and students learn from shared discussion with the teacher ... and peers.”
(Pennant, 2013)

Teachers can foster mathematical understanding by providing a safe space for taking mathematical risks, allowing for exploration, and promoting collaborative learning.
(Suurtamm, Quigley, & Lazarus, 2015)

How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need resources that support the creation of a classroom culture where respectful questioning and valuing of one another’s mistakes and misconceptions are part of the learning process.</td>
<td>Resources should support the creation of a classroom environment in which curiosity, risk-taking, cooperative learning, and self-confidence are fostered and celebrated.</td>
</tr>
<tr>
<td>When students are part of an engaging and encouraging classroom environment, they feel safe to explore their ideas and they develop confidence in their ability to make sense of mathematics.</td>
<td></td>
</tr>
</tbody>
</table>
First Nations, Métis, and Inuit Learners

Today's classroom should foster a mathematics community where First Nations, Métis, and Inuit learners feel meaningfully engaged and respected and where the rich history and cultures of its learners are honoured.

What the Research Says

An educational environment that honours the culture, language and world view of the Aboriginal student is critical. (Toulouse, 2008)

“There is a need in contemporary education to understand how to provide Indigenous students with a meaningful connection to their learning.” (Beatty & Blair, 2015)

“All children have the right to be taught in an inclusive environment that is safe and caring, respects diversity and the rights of persons, and provides equitable opportunities for success.” (Alberta Teachers’ Association, 2010)

“One of the most readily implemented ways to begin teaching Mathematics in a First Peoples context is to establish meaningful connections for students between mathematics skills and ‘content’ and First Peoples themes and topics.” (First Nations Education Steering Committee, 2011)

“Culturally relevant ethnomathematical and ethnoscientific curricula connect students with their heritage.” (Barta, Jette’, & Wiseman, 2003)

How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need access to resources with content that establishes meaningful connections to Indigenous students’ heritage and honours their culture. When students are given opportunities to engage in culturally responsive activities involving Indigenous themes and topics, they feel more connected to their heritage.</td>
<td>Resources should provide support for teachers to develop meaningful and culturally responsive content that connects students with their heritage, and allow the development of meaningful relationships in the classroom. Resources should be developed in collaboration with elders and other Indigenous community members.</td>
</tr>
</tbody>
</table>
Positive Personal and Cultural Identity

Today’s classroom should foster a mathematics community where students of different backgrounds and cultures are respected and appreciated. It is important that all students are treated equally, and that they feel safe and included in the learning environment.

What the Research Says

> Exposing students to the contributions of members of their own and other cultures can help them gain confidence, self-esteem, and a sense of belonging, as well as respect for the mathematical thinking of all cultures.

(Wiest, 2001)

> “The learning of mathematics is important for all children and this is especially true in Canada’s First Nation communities as they begin to re-establish their self-government and self-determination.”

(Borden, 2010)

> “Educators who are from different cultural perspectives than those present in the families and communities of the children they teach may render it difficult to “see” the cultural identities shaping the behaviors and achievement of their students.”

(Gilliard & Moore, 2006)

> “Family activities such as gardening, sewing, scheduling, cooking, and playing games are mathematical resources available to students and teachers to support mathematics learning of children.”

(Civil, 2007)

> “Students learn that numerical systems can be very different yet possess many strikingly similar, vital mathematical principles.”

(Zaslavsky, 2001)

How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need resources that support the creation of an educational environment that honours students’ cultures, fosters cross-cultural understanding, and respects all learners. When mathematics instruction is approached in a culturally meaningful way, teachers see themselves as co-learners and students can connect mathematics to their daily lives, and feel respected, included, and equal.</td>
<td>Resources should strive to approach mathematics instruction in a culturally meaningful and enriching way so that all learners feel included and respected.</td>
</tr>
</tbody>
</table>
Classroom Management

Classroom management is foundational to teaching and ensures that all students have an equal opportunity to learn. The implementation of these classroom management strategies keeps students meaningfully occupied, allowing teachers to work with those who require additional support.

What the Research Says

“The teacher involves her students in understanding the nature of the classroom and in making it work for everyone ...”
(Tomlinson & Eidson, 2003)

“The teacher needs to imbue in students a sense of responsibility for their own learning ... the advanced social skills hence developed by students would help to make each class, single grade or combined grade, a real ‘learning community.’”
(Lataille-Démoré, 2007)

“By allowing our students to learn math content through choice, writing, peer activities, and one-on-one conferences with the teacher, we have seen rapid growth and an increase in student achievement.”
(Kytor & Waechter, 2014)

“... individual classroom teachers can have a major impact on student achievement. Of the three roles of the classroom teacher ... classroom management is arguably the foundation.”
(Marzano, Marzano, & Pickering, 2008)

“Teachers work daily to find ways to reach out to individual learners at their varied points of readiness, interest, and preferred approaches to learning.”
(Tomlinson, 2014)

How This Informs Mathology

Implications for Teachers and Students

When teachers are able to effectively manage their classrooms and meet the needs of all learners, students experience greater success.

Teachers need resources that provide suggestions for ways to encourage students to take responsibility for their own learning.

Teachers need resources that provide strategies and suggestions that allow them to meet the needs of all learners and to manage their classrooms so that effective learning and teaching can take place.

Implications for Resource Development

Resources should be developed with full consideration of practical challenges, and include suggestions for teachers regarding management of the classroom environment as well as management of materials.
Teacher Learning
Educators are lifelong learners. Professional learning can help improve teaching practices and provide new perspectives and insights. In mathematics, it is essential that professional learning focuses on mathematical content as well as on pedagogical strategies, and that resources support teachers in naming and noticing children's mathematical thinking. When new knowledge and strategies are shared, both teaching and student learning are enriched.

What the Research Says

“... gains in teachers' mathematical knowledge predicted changes in the quality of their lesson design, their mathematical agenda, and the classroom climate.”
(Copur-Gencturk, 2013)

“… mathematics teachers recognize that their own learning is never finished and continually seek to improve and enhance their mathematical knowledge ...”
(National Council of Teachers of Mathematics, 2014)

“Teachers want better insight into children's mathematical development. They want to know: ‘What does this child’s thinking tell me about what he or she understands?’”
(Lawson, 2015)

“There is no system in the world or any school in the country that is better than its teachers. Teachers are the lifeblood of the success of schools.”
(Robinson, 2013)

How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need to have access to effective professional learning that meets their specific needs and that supports their students' understanding and engagement in mathematics. When professional learning opportunities are provided for teachers, students have the best chance at success.</td>
<td>Professional learning should be foundational to the resource, and it should be concrete, targeted, sustainable, and scalable. Professional learning needs to be available to teachers through a range of delivery methods and design, including at point of use, in school-based communities of learning, and in focused programs that explore particular areas of mathematics teaching and learning.</td>
</tr>
</tbody>
</table>
Early Math

Implications for Teachers and Students

Implications for Resource Development

Teachers need to have access to effective professional learning that meets their specific needs and that supports their students' understanding and engagement in mathematics.

When professional learning opportunities are provided for teachers, students have the best chance at success.

Professional learning should be foundational to the resource, and it should be concrete, targeted, sustainable, and scalable.

Professional learning needs to be available to teachers through a range of delivery methods and design, including at point of use, in school-based communities of learning, and in focused programs that explore particular areas of mathematics teaching and learning.
How Young Children Best Learn Math

Young children construct mathematics concepts differently at different ages and developmental stages. Classroom activities need to be engaging and appealing, and build on students’ knowledge and experience to make learning relevant and meaningful.

What the Research Says

“Knowledgeable educators begin planning by carefully observing children at play or engaged in other activities in order to identify everyday mathematics.”
(Ginsburg & Ertle, 2008)

“Knowledgeable educators begin planning by carefully observing children at play or engaged in other activities in order to identify everyday mathematics.”
(Ginsburg & Ertle, 2008)

“In this playful pedagogy approach, educators are seen as collaborative learning partners who create flexible, interest-driven experiences that encourage children’s natural curiosity and “sense-making” processes.”
(Moss, Bruce, Caswell, Flynn, & Hawes, 2016)

“Young children come to school with ... some informal, yet powerful, problem-solving skills. These children have already constructed intuitive mathematical notions. We are challenged to make use of the child’s physical and social environment as motivating arenas for further quantitative reasoning and problem-solving.”
(Ontario Ministry of Education, 2003)

“Mathematics for young children should be an integrated whole. Connections—between topics, between mathematics and other subjects, and between mathematics and everyday life—should permeate children’s mathematical experiences.”
(Clements, Sarama, & DiBiase, 2004)

Implications for Teachers and Students

Teachers need to be able to combine play and engaging activities with intentional mathematics teaching and sound mathematics pedagogy.

Teachers need to be able to recognize mathematical thinking as it emerges through play and rich tasks.

When students are able to connect and apply their mathematics learning to their previous knowledge and experiences, and to communicate and explore mathematical concepts through engaging activities, they experience greater success.

Implications for Resource Development

Resources should recognize that when learning mathematics, there are multiple pathways that foster conceptual and procedural understanding and problem-solving skills; these varied approaches must be supported.

Resources should foster student learning of mathematical concepts and the development of mathematical thinking.

Resources should honour the fact that students come to class with prior knowledge.
Math Processes for Learning

Teachers need to be able to combine play and engaging activities with intentional mathematics teaching and sound mathematics pedagogy.

Teachers need to be able to recognize mathematical thinking as it emerges through play and rich tasks.

When students are able to connect and apply their mathematics learning to their previous knowledge and experiences, and to communicate and explore mathematical concepts through engaging activities, they experience greater success.

Resources should recognize that when learning mathematics, there are multiple pathways that foster conceptual and procedural understanding and problem-solving skills; these varied approaches must be supported.

Resources should foster student learning of mathematical concepts and the development of mathematical thinking.

Resources should honour the fact that students come to class with prior knowledge.
21st-Century Competencies in Math

The challenges and opportunities of the 21st century require critical thinking, creativity, and problem solving; these are considered key competencies for success in the modern era.

What the Research Says

“What’s new in the 21st century is the call for education systems to emphasize and develop these competencies in explicit and intentional ways through deliberate changes in curriculum design and pedagogical practice. The goal of these changes is to prepare students to solve messy, complex problems – including problems we don’t yet know about – associated with living in a competitive, globally connected, and technologically intensive world.”

(Ontario Ministry of Education, 2016)

“What kind of learning experiences will prepare students for the demands of the twenty-first century? Research tells us that complex knowledge and skills are learned through social interaction (Vygotsky 1978; Lave and Wenger 1991).”

(Smith & Stein, 2011)

“The general mathematical processes of reasoning, representing, problem solving, connecting, and communicating are … a means both for making sense of abstract mathematics and for formulating real situations in mathematical terms – that is, for mathematizing the situations they [children] encounter.”

(National Research Council, 2009)

“How’s preparing our students to become mathematically aware, consideration needs to be given to how we might select contexts that … foster the appreciation of learning through classroom problem solving.”

(English & Gainsburg, 2016)

“Schools must be transformed in ways that will enable students to acquire the creative thinking, flexible problem solving, collaboration and innovative skills they will need to be successful in work and life.”

(Pacific Policy Research Center, 2010)

How This Informs Mathology

Implications for Teachers and Students

Teachers need resources to help them build mathematical processes into their teaching and to help their students develop 21st-century learning skills, such as collaboration and critical thinking.

Opportunities to learn and apply mathematical processes and 21st-century learning competencies allow students to develop mathematical knowledge and skills, and make sense of the world around them.

Implications for Resource Development

Resources should provide embedded opportunities for students to acquire and apply mathematical processes and 21st-century competencies – the knowledge, skills, and attitudes that they will need to thrive in today’s world.
Home-School Connection
A strong connection between school and home can help teachers and parents work together to advance the mathematical development of children. The more parents are intentionally involved in their children’s learning, the greater the opportunity for children to extend their knowledge outside the classroom.

What the Research Says

“Meaningful relationships that enhance parents’ opportunities to make important contributions to student learning are vital to the work of teachers.”
(Pushor, 2010)

“...parents, who are neither mathematics educators nor teachers can engage their children in activities that lead to actions, utterances, gestures, and other communicative acts that have something to do with logic and mathematics.”
(Anderson, 1997)

“One of the best things parents can do to improve their children’s math literacy is to regularly expose them to practical applications of math at home.”
(Kormanik, 2012)

“Parent involvement that focuses on student learning in mathematics has a tremendously positive effect.”
(Bruce, 2013)

How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need support for involving parents, caregivers, elders, and the community in students’ mathematics learning. When parents, caregivers, elders, and the community are meaningfully involved in their children’s mathematics education, children achieve more.</td>
<td>Resources should suggest opportunities for parents, caregivers, elders, and the community to become involved in their children’s mathematics education. Resources should support clear and meaningful communication with parents and caregivers.</td>
</tr>
</tbody>
</table>
Implications for Teachers and Students

Teachers need support for involving parents, caregivers, elders, and the community in students' mathematics learning. When parents, caregivers, elders, and the community are meaningfully involved in their children's mathematics education, children achieve more.

Resources should suggest opportunities for parents, caregivers, elders, and the community to become involved in their children's mathematics education.

Resources should support clear and meaningful communication with parents and caregivers.
Games and Manipulatives as Mathematical Thinking Tools

The intentional use of games and manipulatives helps support learning of mathematics by engaging students in explorations and concrete applications of mathematical concepts.

What the Research Says

“... non-traditional activities and attention-grabbing resources can spark curiosity about mathematics, improve appreciation for and interest in mathematics and contribute to understanding the relevance of mathematics in everyday life.”
(Colgan, 2014)

“... students were more engaged in discussing strategies and sharing their thinking as a result of implementing game playing. They were also more enthusiastic about doing mathematics.”
(Lach & Sakshaug, 2005)

“... discussions with students about their thinking as they play games serve as useful assessment and instructional tools.”
(MacDonald & Shumway, 2016)

“... non-traditional activities and attention-grabbing resources can spark curiosity about mathematics, improve appreciation for and interest in mathematics and contribute to understanding the relevance of mathematics in everyday life.”
(Colgan, 2014)

“If we are to make math experiential, we must present children with tactile tools with which they can learn...”
(Murray, 2001)

Implications for Teachers and Students

Teachers need access to manipulatives to allow students to explore concepts and demonstrate their thinking.

Teachers need access to games that support the development and reinforcement of specific mathematical concepts.

When students have opportunities to use manipulatives and play games, they can deepen their understanding through hands-on engaging activities.

Implications for Resource Development

Resources should provide manipulative-based tasks and games to engage students and to help them develop their own conceptual understanding.
Affordances of Technology

The integration of technology into the classroom setting can help motivate and engage students, allowing them to explore and deepen their understanding of mathematical concepts. Many technologies also have features that allow students to interact with and explore abstract mathematical concepts in ways that cannot be replicated with hands-on materials.

What the Research Says

> These studies provide compelling evidence that computer use can have a major, positive impact on children's social, emotional, language, and cognitive development.
> (Murphy, DePasquale, & McNamara, 2003)

> "... educators are positioned to improve program quality by intentionally leveraging the potential of technology and media for the benefit of every child."
> (NAEYC and Fred Rogers Center, 2012)

> "Data analyses from our recent studies (Bruce, 2012; Bruce et al., 2011) suggest that pedagogical-technological interactivity involves 3-way interaction between teachers, students and the IWB [Interactive whiteboard], in a flexible web of exchanges."
> (Bruce & Flynn, 2012)

> "... benefits from adopting mobile technology for student instruction included their potential to be engaging for students and to support personalization of instruction to meet the needs of different students."
> (Interactive Educational Systems Design, 2013)

> "Integrating technology and mathematics instruction enables all students to engage in more complex activities at earlier levels."
> (Thach & Norman, 2008)

How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
</table>
| Teachers need access to technology to enrich instruction, to support students' explorations of mathematical concepts, to engage students, and to teach diversity in different learning styles when possible.
When students have access to technology, they can investigate and test mathematical ideas, engage in mathematical discourse with their peers and teacher, and make connections to previous mathematics learning. | Technology must be accessible, user-friendly, and student-friendly; it must support student learning, and it must be used in meaningful and enriching ways. |
Math Content Areas
Algebraic Thinking, Spatial Reasoning, & Proportional Reasoning

In mathematics, several powerful processes span specific topics or content areas. Emphasizing these processes – and providing high-quality educational experiences that support their development – supports students' long-term success in mathematics. These processes include algebraic thinking, spatial reasoning, and proportional reasoning.

What the Research Says

> “... spatial reasoning and visual affordances in low and high tech environments are key to unlocking mathematics ideas for students.”
> (Bruce, 2013)

> “When teaching is based on students' mathematical ideas and promotes their mathematical curiosity, students tend to show algebraic ways of thinking in arithmetic, geometric or measuring contexts.”
> (Bastable & Schifter, 2008)

> “The ability to think and reason proportionally is one essential factor in the development of an individual’s ability to understand and apply mathematics.”
> (Ontario Ministry of Education, 2012)

> “… the very act of learning about spatial reasoning and coming to understand its importance, and collaboratively designing tasks has had positive outcomes for students, teachers and researchers.”
> (Bruce, Sinclair, Moss, Hawes, & Caswell, 2015)

> “A rich program of quantitative reasoning spurs the development of students' conceptual and representational capacities as it connects mathematics to the world of objects and situations, measurement, and change.”
> (Smith & Thompson, 2007)

Implications for Teachers and Students

 Teachers need resources and activities that provide students with opportunities to apply proportional reasoning, algebraic thinking, and spatial reasoning, allowing students to develop a deeper understanding across all areas of mathematics. When students develop a strong sense of these processes, they are better mathematical thinkers and have a better conceptual understanding of the content they explore.

Implications for Resource Development

 Resources should provide frequent opportunities for students to solve problems using deep algebraic thinking, starting in the early years. Resources should view spatial reasoning as an additional opportunity for students to develop coding and number skills. Resources should provide students with ongoing opportunities to apply proportional reasoning and make connections across mathematical concepts.
Building Computational Fluency by Developing Number Sense

Number sense involves the deep understanding of numbers, number relationships, magnitudes, and relative values. Strong number sense leads to flexibility in comparing and working with numbers. Students who develop this flexibility and computational fluency can use efficient strategies and calculate in multiple ways with ease to obtain accurate results.

What the Research Says

Whether or not we believe that fluency requires more than the recall of math facts, research evidence points in one direction: The best way to develop fluency with numbers is to develop number sense and to work with numbers in different ways, not to blindly memorize without number sense.

(Boaler, 2015)

“Students exhibit computational fluency when they demonstrate flexibility in the computational methods they choose, understand and can explain these methods, and produce accurate answers efficiently.”
(National Council of Teachers of Mathematics, 2000)

“... students who are encouraged to use efficient mental computational strategies develop deeper understanding of number relationships.”
(Victoria State Government, Department of Education and Early Childhood Development, 2009)

“Fluency rests on a well-built mathematical foundation with three parts: an understanding of the meaning of the operations and their relationships to each other; the knowledge of a large repertoire of number relationships; and a thorough understanding of the base ten number system ...”
(Russel, 2013)

How This Informs Mathology

Implications for Teachers and Students

Teachers need resources that provide opportunities for students to work with numbers in different ways and to develop deep understandings of numbers, quantities, and relationships.

Implications for Resource Development

Resources should provide students with opportunities to develop understandings of the meaning of number quantities and relationships, the base ten number system, and operations and their relationships, to develop flexibility and fluency in working with numbers.
Mental Math

Students who practise mental math are able to make calculations in their heads. Mental math encourages fluency and automaticity, fosters deeper understanding of concepts, builds confidence, improves problem-solving skills, and helps students to reason about the mathematics they encounter in daily situations.

What the Research Says

What does it mean to know mathematics? This is a complex question, but there is strong agreement that facility with numbers and skill in problem solving play important roles. Principles and Standards for School Mathematics [2000] calls for students to be proficient with tools that include pencil and paper and technology, as well as mental techniques. I would like to make a case for raising the importance of mental math as a major component in students’ tool kits of mathematical knowledge. Mental math is often associated with the ability to do computations quickly, but in its broadest sense, mental math also involves conceptual understanding and problem solving.

(Seeley, 2005)

“Students learn better if mental computation is taught and performed before written algorithms (and practice throughout education), along with appropriate work with concrete materials and drawings.”
(Clements & Sarama, 2009)

“Mental mathematics is a combination of cognitive strategies that enhance flexible thinking and number sense. It is calculating mentally without the use of external memory aids.”
(Alberta Education, 2006)

“It is also significant that the integration of authentic mental math activity into an existing curriculum supported students’ development of number sense without any of the course content being sacrificed.”
(Whitacre & Nickerson, 2006)

“As students develop mental math proficiencies, they complete homework assignments faster, their confidence increases, and their overall understanding of numbers, operations, and algebraic thinking improves.”
(Olsen, 2015)

How This Informs Mathology

<table>
<thead>
<tr>
<th>Implications for Teachers and Students</th>
<th>Implications for Resource Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers need opportunities to incorporate mental math strategies and activities into their lessons to enhance computation fluency and student confidence. When students develop and apply their mental math skills, a strong foundation of computational fluency is formed and they are set up for future success.</td>
<td>Resources should provide students with ongoing opportunities to establish their mental math skills to support fluency, which builds flexibility and confidence across many areas of mathematics.</td>
</tr>
</tbody>
</table>
PLANNING AND ASSESSMENT

Balanced Math

Why Early Math Matters

Vanbilst, K., Ansari, D., Ghersi, P., & De Smet, B. (2016). Symbolic numerical magnitude processing is as important to arithmetic as phonological awareness is to reading. PLoS ONE 11(3). e0151045. doi:10.1371/journal.pone.0151045

Assessment

Selection and Use of Quality Resources

Effective Lesson Model

Curriculum and Big Ideas

Differentiated Instruction

THE MATH LEARNING COMMUNITY/ENVIRONMENT

Encouraging Growth Mindsets

Student Talk

Building a Community of Math Learners

First Nations, Métis, and Inuit Learners

Positive Personal and Cultural Identity

Classroom Management

TEACHER LEARNING

Professional Learning

National Council of Teachers of Mathematics. (2014). *Principles to actions: Ensuring mathematical success for all.* Available at www.nctm.org/PLA/

EARLY MATH

How Young Children Best Learn Math

MATH PROCESSES FOR LEARNING

21st-Century Competencies in Math

HOME-SCHOOL CONNECTION

Home Connection

LEARNING TOOLS

Games and Manipulatives as Mathematical Thinking Tools

Affordances of Technology

MATH CONTENT AREAS

Algebraic Thinking, Spatial Reasoning, & Proportional Reasoning

Building Computational Fluency by Developing Number Sense

Mental Math

Acknowledgements

The Pearson Canada Research Overview document was created, researched, and reviewed by the educator community across Canada.

Agawa, Pamala Curriculum Coordinator, First Nation, Métis and Inuit Education, ON
Altenberg, Jennifer Métis Educator, SK
Ansari, Daniel Professor, Department of Psychology, Western University, ON
Auger, Marianne Curriculum Consultant, ON
Ball, Sandra Surrey School District +36, BC
Beatty, Ruth Faculty of Education, Lakehead University, ON
Bernard, Kyla Mi’kmaw Kina’matnewey, NS
Brooks, Towana Curriculum Advisor, First Nation, Métis and Inuit Education, ON
Burden, Lois Newfoundland and Labrador English School District, NL
Burdess, Alicia Grande Prairie and District Catholic Schools, AB
Campbell, Karen Mathematics Consultant, SK
Carter, Jennifer School District +22, Vernon, BC
Cave, Phyllis Early Years Consultant, ON
Costello, David Elementary Numeracy Leader, PE
Darroch, Amber Horizon School Division +67, AB
Davis, Garry Mathematics Consultant, SK
Decoste, David Mathematics Consultant, AB
Flynn, Tara Trent University School of Education and Professional Learning, ON
Hantelmann, Lori Jane Math Coordinator, SK
Haworth, Michael School District +19, Revelstoke, BC
Irwin, Laura Edmonton Catholic School District, AB
Jackson, Helen Greater St. Albert Catholic School Board, AB
Johnston, Edwin Elementary Math, Science, and Innovation Leader, PE
Kay, Laura Halton District School Board, ON
Laliberte, Cornelia Coordinator, First Nations, Métis and Inuit Education, SK
Leslie, Tamara Edmonton Catholic Schools, AB
Luciw, Larysa Edmonton Catholic Schools, AB
Malo, Sylvia Elementary Math Consultant, AB
McGarvey, Lynn PhD, University of Alberta, AB
McKillop, David Mathematics Consultant, NS
McMurtry, Shannon Winnipeg School Division, MB
Moher, Laurie Numeracy Consultant, ON
Norton, Amanda Regina Catholic School Division, SK
Novakowski, Janice Richmond School District, BC
Oldridge, Matthew Peel District School Board, ON

Mental Math
Acknowledgements

Pigeon, Ann Thames Valley District School Board, ON
Postnikoff, Maureen School District #20, Kootenay-Columbia, BC
Sinclair, Nathalie Simon Fraser University, BC
Schmidt, Julie Edmonton Catholic Schools, AB
So, Jonathan Peel District School Board, ON
Soletsky, Ulana Numeracy/Math Consultant, AB
Sprat, Diana Greater Saskatoon Catholic Schools, SK
Strangway, Lynn Toronto District School Board, ON
Torney, Jennipher Toronto Catholic District School Board, ON
Tyssen, Kimberley School District #22, BC
Vandesande, Deborah School District #22, BC
Varty, Gerry Education Consultant, AB
Vause, Lyn Education Consultant, ON
Weight, Wendy Education Consultant, MB
Wiebe, Jerrold Pembina Trails School Division, MB
Zorzetto, Amy Hamilton-Wentworth District School Board, ON