${ }_{\text {marson }}^{\text {Pathology }}$

Mathology 2 Correlation (Number) - Ontario

Overall Expectation

A1. Social-Emotional Learning (SEL) Skills and the Mathematical Processes

Mathology provides teachers with a flexible framework to support the development of students' Social-Emotional Learning:

- By using diverse resources that represent a variety of students in real-world contexts, students can see themselves and others while positively engaging in mathematics
- By providing differentiated support that allows students to cope with challenges, start at a level that works for them, and build from there
- By providing students with opportunities to learn by way of different approaches, through the use of digital (e.g., virtual tools) and print resources (e.g., laminated student cards and math mats), allowing students to reveal their mathematical thinking in a risk-free environment.
- By providing students with a variety of learning opportunities (small group, pair, whole class), to work collaboratively on math problems, share their own thinking, and listen to the thinking of others
- By including a variety of voices (built by and for Canadian learners) and opportunities to support local contexts (modifiable resources)

Curriculum Expectations 2020
Overall Expectation B1. Number Sense: demonstra
Specific Expectation Whole Numbers
B1.1 read, represent,_compose, and decompose whole numbers up to and including 200, using a

Specific Expectation

Whole Numbers

Mathology Grade 2 Activity Kit
Mathology Little Books
ons to the way numbers are used in everyday life

Teacher Cards

Number Cluster 2: Number Relationships 1 11: Number Relationships 1 Consolidation

Number Cluster 3: Grouping and Place Value

12: Building Numbers to 100
13: Making a Number Line
15: Building Numbers to 200
16: Grouping and Place Value Consolidation (Revision 2020)

Number Cluster 5: Number Relationships 2

What Would You Rather? Ways to Count
Back to Batoche The Great Dogsled Race

To Scaffold:

 Paddling the RiverA Family Cookout
At the Corn Farm How Many Is Too Many?

Pearson Canada K-3 Mathematics Learning Progression

Big idea: Numbers tell us how many and how much.
Recognizing and writing numerals

- Names, writes, and matches two-digit numerals to quantities.
- Names, writes, and matches three-digit numerals to quantities.
Unitizing quantities into ones, tens, and hundreds (place-value concepts)
- Writes, reads, composes, and decomposes twodigit numbers as units of tens and leftover ones.

	23: Benchmarks on a Number Line (Revision 2020) 25: Composing and Decomposing Numbers to 200 Number Cluster 9: Financial Literacy 45: Earning Money Number Math Every Day Cards 1A: Skip-Counting on a Hundred Chart 1A: Skip-Counting from Any Number 1B: Skip-Counting with Actions 2A: Show Me in Different Ways 2A: Guess My Number 2B: Math Commander 2B: Building an Open Number Line 3A: Adding Ten 3B: Describe Me 5A: Building Numbers 5B: How Many Ways?	Fantastic Journeys Finding Buster Math Makes Me Laugh The Street Party Sports Camp	- Writes, reads, composes, and decomposes three-digit numbers using ones, tens, and hundreds.
B1.2 compare and order whole numbers up to and including 200, in various contexts	Teacher Cards Number Cluster 2: Number Relationships 1 6: Comparing Quantities 7: Ordering Quantities 8: Comparing and Ordering Numbers to 200 11: Number Relationships 1 Consolidation Number Cluster 5: Number Relationships 2 23: Benchmarks on a Number Line	What Would You Rather?	Big Idea: Numbers are related in many ways.
		Back to Batoche The Great Dogsled Race Family Fun Day To Scaffold: Paddling the River A Family Cookout To Extend Fantastic Journeys	Comparing and ordering quantities (multitude or magnitude) - Compares and order quantities and written numbers using benchmarks. - Orders three or more quantities using sets and/or numerals.
B1.3 estimate the number of objects in collections of up to 200 and verify their estimates by counting	Teacher Cards Number Cluster 2: Number Relationships 1 10: Estimating with Benchmarks	What Would You Rather? Ways to Count To Scaffold: At the Corn Farm A Family Cookout To Extend Fantastic Journeys	Big Idea: Numbers are related in many ways.
			Estimating quantities and numbers - Uses relevant benchmarks (e.g., multiples of 10) to compare and estimate quantities.
B1.4 count to 200 , including by $20 \mathrm{~s}, 25 \mathrm{~s}$, and 50 s , using a variety of tools and strategies	Teacher Cards Number Cluster 1: Counting 1: Bridging Tens 2: Skip-Counting Forward	What Would You Rather? Ways to Count Family Fun Day A Class-full of Projects	Big Idea: Numbers tell us how many and how much.
			Applying the principles of counting

Pearson

	3: Skip-Counting Flexibly 4: Skip-Counting Backward 5: Counting Consolidation Number Cluster 3: Grouping and Place Value 13: Making a Number Line 14: Grouping to Count 16: Grouping and Place Value Consolidation Number Cluster 5: Number Relationships 2 24: Jumping on the Number Line 26: Number Relationships 2 Consolidation Number Math Every Day Cards 1A: Skip-Counting on a Hundred Chart 1A: Skip-Counting from Any Number 1B: Skip-Counting with Actions 3A: Adding Ten 3B: Thinking Tens 8A: Counting Equal Groups to Find How Many 8A: I Spy 8B: How Many Blocks? 8B: How Many Ways? 9: Collections of Coins	The Best Birthday The Money Jar To Scaffold: On Safari! Paddling the River How Many Is Too Many? To Extend: Finding Buster How Numbers Work Math Makes Me Laugh Planting Seeds Calla's Jingle Dress	- Says the number name sequences forward and backward from a given number. - Uses number patterns to bridge tens when counting forward and backward (e.g., 39, 40, 41). - Fluently skip-counts by factors of 10 (e.g., 2, 5, 10) and multiples of 10 from any given number. - Uses number patterns to bridge hundreds when counting forward and backward (e.g., 399, 400, 401). - Fluently skip-counts by factors of 100 (e.g., 20, 25,50) and multiples of 100 from any given number.
B1.5 describe what makes a number even or odd	Teacher Cards Number Cluster 2: Number Relationships 1	Ways to Count	Big Idea: Numbers tell us how many and how much.
Specific Expectation Fractions			
B1.6 use drawings to represent, solve, and compare the results of fair-share problems that involve sharing up to 10 items among $2,3,4$, and 6 sharers, including problems that result in whole numbers, mixed numbers, and fractional amounts	Teacher Cards Number Cluster 4: Early Fractional Thinking 17: Equal Parts 18: Comparing Fractions 1 19: Comparing Fractions 2 20: Regrouping Fractional Parts 21: Partitioning Sets 22: Early Fractional Thinking Consolidation	The Best Birthday To Extend: Hockey Homework	Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units.
			Unitizing quantities and comparing units to the whole - Partitions whole into equal-sized units and identifies the number of units and the size of, or quantity in, each unit. Partitioning quantities to form fractions - Partitions wholes into equal-sized parts to make fair shares or equal-sized groups. - Partitions wholes (e.g., intervals, sets) into equal parts and names the unit fractions.

Pearson
v. 13042022

	4B: Naming Equal Parts		
B1.7 recognize that one third and two sixths of the same whole are equal, in fair-sharing contexts	Teacher Cards 21: Partitioning Sets	To Extend: Hockey Homework	Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units.
			Partitioning quantities to form fractions - Partitions whole into equal-sized parts to make fair shares or equal-sized groups. - Partitions wholes (e.g., intervals, sets) into equal parts and names the unit fractions.
Overall Expectation B2. Operations: use knowledge of numbers and operations to solve mathematical problems encountered in everyday life			
Specific Expectation Properties and Relationships			
B2.1 use the properties of addition and subtraction, and the relationships between addition and multiplication and between subtraction and division, to solve problems and check calculations	Teacher Cards Number Cluster 6: Conceptualizing Addition and Subtraction 27: Exploring Properties 28: Solving Problems 1 29: Solving Problems 2 30: Solving Problems 3 31: Solving Problems 4 32: Conceptualizing Addition and Subtraction Consolidation Number Cluster 8: Early Multiplicative Thinking 40: Exploring Repeated Addition 41: Repeated Addition and Multiplication 42: Repeated Subtraction and Division 43: Early Multiplicative Thinking Consolidation	Array's Bakery Marbles, Alleys, Mibs, and Guli! The Great Dogsled Race To Scaffold: Canada's Oldest Sport To Extend: The Street Party Planting Seeds Sports Camp Calla's Jingle Dress	Big Idea: Quantities and numbers can be added and subtracted to determine how many or how much.
			Developing conceptual meaning of addition and subtraction - Uses symbols and equations to represent addition and subtraction situations. - Models and symbolizes addition and subtraction problem types (i.e., join, separate, part-partwhole, and compare). - Relates addition and subtraction as inverse operations. - Uses the properties of addition and subtraction to solve problems (e.g., adding or subtracting 0, commutativity of addition).
			Big Idea: Quantities and numbers can be grouped by, and partitioned into, units to determine how many or how much.
			Developing conceptual meaning of multiplication and division - Uses repeated addition of groups to solve problems. - Models and symbolizes equal sharing and grouping division problems, and relates them to subtraction.

			Big Idea: Patterns and relations can be represented with symbols, equations, and expressions.
			Understanding equality and inequality, building on generalized properties of numbers and operations - Investigates addition and subtraction as inverse operations. - Explores properties of addition and subtraction (e.g., adding or subtracting 0 , commutativity of addition).
Specific Expectation Math Facts			
B2.2 recall and demonstrate addition facts for numbers up to 20 , and related subtraction facts	Teacher Cards Number Cluster 7: Operational Fluency 33: Using Doubles 34: Fluency with 20 35: Mastering Addition and Subtraction Facts 37: Operational Fluency Consolidation	Array's Bakery Marbles, Alleys, Mibs, and Guli! A Class-full of Projects The Money Jar The Great Dogsled Race What Would You Rather?	Big Idea: Quantities and numbers can be added and subtracted to determine how many or how much.
			Developing fluency of addition and subtraction computation - Fluently adds and subtracts with quantities to 10. - Fluently recalls complements to 10 (e.g., $6+4 ; 7$ +3). - Extends known sums and differences to solve other equations (e.g., using $5+5$ to add $5+6$). - Fluently adds and subtracts with quantities to 20.
	Number Cluster 9: Financial Literacy	To Scaffold:	
	46: Spending Money	That's 10! Buy 1-Get 1	
	Number Math Every Day Cards 6: What Math Do You See?	Canada's Oldest Sport	
	6: What Could the Story Be? 7A: Doubles and Near-Doubles	To Extend: The Street Party	
	7A: I Have... I Need...	Planting Seeds	
	7B: Hungry Bird 7B: Make 10 Sequences	Sports Camp Calla's Jingle Dress	
Specific Expectation Mental Math			
B2.3 use mental math strategies, including estimation, to add and subtract whole numbers	Teacher Cards Number Cluster 7: Operational Fluency	Marbles, Alleys, Mibs, and Guli! A Class-full of Projects The Money Jar	Big Idea: Quantities and numbers can be added and subtracted to determine how many or how much.

that add up to no more than 50 and explain the strategies used	35: Mastering Addition and Subtraction Facts 36: Multi-Digit Fluency Number Math Every Day Cards 7A: Doubles and Near-Doubles	The Great Dogsled Race To Scaffold Hockey Time Canada's Oldest Sport To Extend How Numbers Work	Developing fluency of addition and subtraction - Develops efficient mental strategies and algorithms to solve equations with multi-digit numbers. - Estimates sums and differences of multi-digit numbers.
Specific Expectation Addition and Subtraction			
B2.4 use objects, diagrams, and equations to represent, describe, and solve situations involving addition and subtraction of whole numbers that add up to no more than 100	Teacher Cards Number Cluster 6: Conceptualizing Addition and Subtraction 27: Exploring Properties 28: Solving Problems 1 29: Solving Problems 2 30: Solving Problems 3 31: Solving Problems 4 32: Conceptualizing Addition and Subtraction Consolidation Number Cluster 7: Operational Fluency 36: Multi-Digit Fluency Number Cluster 9: Financial Literacy 48: Saving Regularly Number Math Every Day Cards 5B: What's the Unknown Part? 6: What Math Do You See? 6: What Could the Story Be? 7A: I Have... I Need... 7B: Hungry Bird	Array's Bakery Marbles, Alleys, Mibs, and Guli! The Great Dogsled Race To Scaffold: Canada's Oldest Sport To Extend: The Street Party Planting Seeds Calla's Jingle Dress Sports Camp	Big Idea: Quantities and numbers can be added and subtracted to determine how many or how much. Developing conceptual meaning of addition and subtraction - Uses symbols and equations to represent addition and subtraction situations. - Models and symbolizes addition and subtraction problem types (i.e., join, separate, part-partwhole, and compare). Developing fluency of addition and subtraction - Extends known sums and differences to solve other equations (e.g., using $5+5$ to add $5+6$). - Fluently adds and subtracts with quantities to 20. - Develops efficient mental math strategies and algorithms to solve equations with multi-digit numbers.
Specific Expectation Multiplication and Division			
B2.5 represent multiplication as repeated equal groups, including groups of one half and one	Teacher Cards Number Cluster 8: Early Multiplicative Thinking	Array's Bakery Marbles, Alleys, Mibs, and Guli!	Big Idea: Numbers tell us how many and how much.

		How Many Is Too Many? To Extend: Hockey Homework Planting Seeds Calla's Jingle Dress Sports Camp	- Models and solves equal sharing problems to 10. - Groups objects into $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s . - Models and solves equal sharing problems to 100. - Models and solve equal grouping problems to 100. - Models and symbolizes equal sharing and grouping division problems and relates them to subtraction.

mathólogy

Mathology 2 Correlation (Patterning and Algebra) - Ontario

Curriculum Expectations 2020	Mathology Grade 2 Activity Kit	Mathology Little Books	Pearson Canada K-3 Mathematics Learning Progression
Overall Expectation Patterns and Relationships: identify, describe, extend, create, and make predictions about a variety or patterns, including those found in real-life contexts.			
Specific Expectation Patterns			
C1.1 identify and describe a variety of patterns involving geometric designs, including patterns found in real-life contexts	Teacher Cards Patterning and Algebra Cluster 2: Increasing/Decreasing Patterns 13: Solving Problems Patterning and Algebra Math Every Day Card 1: Repeating Patterns Around Us	The Best Surprise Pattern Quest To Scaffold: Midnight and Snowfall To Extend: Namir's Marvellous Masterpieces	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically.
C1.2 create and translate patterns using various representations, including shapes and numbers	Teacher Cards Patterning and Algebra Cluster 1: Repeating Patterns 1: Exploring Patterns 4: Combining Attributes Patterning and Algebra Cluster 2: Increasing/Decreasing Patterns 10: Reproducing Patterns 11: Creating Patterns Patterning and Algebra Math Every Day Cards 1: Show Another Way 2A: How Many Can We Make? 2B: Making Increasing Patterns 2B: Making Decreasing Patterns	The Best Surprise Pattern Quest	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically.
		To Extend: Namir's Marvellous Masterpieces	Identifying, reproducing, extending, and creating patterns that repeat - Represents the same pattern in different ways (i.e., translating to different symbols, objects, sounds, actions). - Recognizes, extends, and creates repeating patterns based on two or more attributes (e.g., shape and orientation).

C1.3 determine pattern rules and use them to

 extend patterns, make and justify predictions, and identify missing elements in patterns represented with shapes and numbers
Teacher Card

Patterning and Algebra Cluster 1: Repeating

Patterns

2: Extending and Predicting
3: Errors and Missing Elements
4: Combining Attributes
5: Repeating Patterns Consolidation

Patterning and Algebra Cluster 2:

Increasing/Decreasing Patterns

6: Increasing Patterns 1
7: Increasing Patterns 2
8: Decreasing Patterns
9: Extending Patterns
12: Errors and Missing Terms
13: Solving Problems
15: Increasing/Decreasing Patterns Consolidation

Patterning and Algebra Math Every Day Cards

2A: How Many Can We Make?
2A: Error Hunt
2B: Making Increasing Patterns
2B: Making Decreasing Pattern

Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically.

Representing and generalizing

increasing/decreasing patterns

Identifies and extends non-numeric
increasing/decreasing patterns (e.g., jump-clap jump-clap-clap; jump-clap-clap-clap, etc.). Identifies and extends familiar number patterns and makes connections to addition (e.g., skipcounting by $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$).
Identifies, reproduces, and extends increasing/ decreasing patterns concretely, pictorially, and numerically using repeated addition or
subtraction.
Extends number patterns and finds missing elements (e.g., 1, 3, 5, _, 9, ...).
Creates an increasing/decreasing pattern
(concretely, pictorially, and/or numerically) and explains the pattern rule

C1.4 create and describe patterns to illustrate relationships among whole numbers up to 100.	Teacher Cards Patterning and Algebra Cluster 2: Increasing/Decreasing Patterns 14: Patterns in Number Relationships Link to Other Strands: Teacher Cards Number Cluster 1: Counting 2: Skip-Counting Forward 3: Skip-Counting Flexibly 4: Skip-Counting Backward 5: Counting Consolidation Number Cluster 8: Early Multiplicative Thinking 40: Exploring Repeated Addition 41: Repeated Addition and Multiplication 43: Early Multiplicative Thinking Consolidation Number Math Every Day Cards 1A: Skip-Counting on a Hundred Chart 1B: Skip-Counting with Actions 8A: I Spy 8B: How Many Blocks? 8B: How Many Ways?	The Best Surprise Pattern Quest To Extend: Namir's Marvellous Masterpieces	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically.
			Representing and generalizing increasing/decreasing patterns
			- Creates an increasing/decreasing pattern
			(concretely, pictorially, and/or numerically) and
			explains the pattern rule.
Overall Expectation Equations and Inequalities: demonstrate an understanding of variables, expressions, equalities, and inequalities, and apply this understanding in various contexts			
Specific Expectation Variables			
C2.1 identify when symbols are being used as variables, and describe how they are being used	Teacher Cards Patterning and Algebra Cluster 3: Equality and Inequality 18: Exploring Number Sentences Patterning and Algebra Math Every Day Card 3B: What's Missing?	Kokum's Bannock	Big Idea: Quantities and numbers can be added and subtracted to determine how many or how much.
			Developing conceptual meaning of addition and subtraction - Uses symbols and equations to represent addition and subtraction situations.
			Big Idea: Patterns and relations can be represented with symbols, equations, and expressions.
			Using symbols, unknowns, and variables to represent mathematical relations

Mathology 2 Curriculum Correlation - Ontario
v. 13042022

11 | Page

			- Uses the equal (=) symbol in equations and knows its meaning (i.e., equivalent; is the same as). - Uses placeholders (e.g., \square) for unknown values in equations.
Specific Expectation Equalities and Inequalities			
C2.2 determine what needs to be added to or subtracted from addition and subtraction expressions to make them equivalent	Teacher Cards Patterning and Algebra Cluster 3: Equality and Inequality 18: Exploring Number Sentences 21: Missing Numbers Patterning and Algebra Math Every Day Card 3B: What's Missing?	Kokum's Bannock	Big Idea: Quantities and numbers can be added and subtracted to determine how many or how much
			Developing conceptual meaning of addition and subtraction - Uses symbols and equations to represent addition and subtraction situations. - Models and symbolizes addition and subtraction problem types (i.e., join, separate, part-partwhole, and compare). - Relates addition and subtraction as inverse operations.
			Big Idea: Patterns and relations can be represented with symbols, equations, and expressions.
			Using symbols, unknowns, and variables to represent mathematical relations - Uses the equal (=) symbol in equations and knows its meaning (i.e., equivalent; is the same as). - Uses placeholders (e.g., ㅁ) for unknown values in equations. - Solves for an unknown value in a one-step addition and subtraction problem (e.g., $n+5=$ 15).
C2.3 identify and use equivalent relationships for whole numbers up to 100, in various contexts	Teacher Cards Patterning and Algebra Cluster 3: Equality and Inequality 16: Equal and Unequal Sets 17: Equal or Not Equal? 19: Exploring Number Sentences for Larger Numbers Patterning and Algebra Math Every Day Cards	Kokum's Bannock To Scaffold: Nutty and Wolfy To Extend A Week of Challenges	Big idea: Numbers are related in many ways.
			Decomposing wholes into parts and composing wholes from parts - Composes two-digit numbers from parts (e.g., 14 and 14 is 28), and decomposes two-digit numbers into parts (e.g., 28 is 20 and 8).
			Big Idea: Quantities and numbers can be added and subtracted to determine how many or how much.
)			Mathology 2 Curriculum Correlation - Ontario v. 13042022

Coding Skills			
C3.1 solve problems and create computational representations of mathematical situations by writing and executing code, including code that involves sequential and concurrent events.	Link to Other Strands: Teacher Cards	Robo	Big Idea: Objects can be located in space and viewed from multiple perspectives.
	Geometry Cluster 4: Coding 15: Coding Concurrent Events 17: Writing Code to Solve Problems 18: Coding Consolidation Geometry Math Every Day Cards 3A: Our Design 4: Code of the Day 4: Wandering Animals		Locating and mapping objects in space - Provides instructions to locate an object in the environment (e.g., listing instructions to find a hidden object in the classroom). - Describes the movement of an object from one location to another on a grid map (e.g., moving 5 squares to the left and 3 squares down).
C3.2 read and alter existing code, including code that involves sequential and concurrent events, and describe how changes to the code affect the outcomes.	Link to Other Strands: Teacher Cards Geometry Cluster 4: Coding 16: Effects of Altering Code 18: Coding Consolidation	Robo	
Overall Expectation C4. Mathematical Modelling apply the process of mathematical modelling to represent, analyse, make predictions, and provide insight into real-life situations			
Specific Expectation Mathematical Modeling			
This overall expectation has no specific expectations. Mathematical modelling is an iterative and interconnected process that is applied to various contexts, allowing students to bring in learning from other strands. Students' demonstration of the process of mathematical modelling, as they apply concepts and skills learned in other strands, is assessed and evaluated. 11: Metres or Centimetres?	Teacher Cards Patterning and Algebra Cluster 1: Repeating Patterns 2: Extending and Predicting 5: Repeating Patterns Consolidation Cluster 2: Increasing/Decreasing Patterns 9: Extending Patterns 10: Reproducing Patterns 14: Patterns in Number Relationships Link to Other Strands: Teacher Cards Number Cluster 2: Number Relationships 1		

| | 10: Estimating with Benchmarks |
| :--- | :--- | :--- |
| | Number Cluster 3: Grouping and Place Value
 13: Making a Number Line

 Number Cluster 4: Early Fractional Thinking
 17: Equal Parts
 18: Comparing Fractions 1
 Number Cluster 5: Number Relationships 2
 24: Jumping on the Number Line
 Number Cluster 6: Conceptualizing Addition and
 Subtraction
 28: Solving Problems 1
 29: Solving Problems 2
 30: Solving Problems 3
 31: Solving Problems 4
 Number Cluster 8: Early Multiplicative Thinking
 38: Making Equal Shares
 39: Making Equal Groups
 Number Cluster 9: Financial Literacy
 45: Earning Money
 Data Management and Probability Cluster 1:
 Data Management
 4: Creating a Survey
 6: Making Graphs 2
 8: Data Management Consolidation
 Data Management and Probability Cluster 2
 Probability and Chance
 10: Conducting Experiments
 Geometry Cluster 4: Coding
 17: Writing Code to Solve Problems |

Mathology 2 Curriculum Correlation - Ontario
v. 13042022

3: Measuring Distance Around

Measurement Cluster 2: Using Standard Units

5: Benchmarks and Estimation
8: Metres or Centimetres?

mathology

Mathology 2 Correlation (Data Management and Probability) - Ontario

Curriculum Expectations 2020	Mathology Grade 2 Activity Kit	Mathology Little Books	Pearson Canada K-3 Mathematics Learning Progression
Overall Expectation D1. Data Literacy: m			
Specific Expectation Data Collection and Organization			
D1.1 sort sets of data about people or things according to two attributes, using tables and logic diagrams, including Venn and Carroll diagrams	Teacher Cards Data Management and Probability Cluster 1: Data Management 1: Sorting Data by 2 Attributes Link to Other Strands: Teacher Cards Geometry Cluster 1: 2-D Shapes 1: Sorting 2-D Shapes	I Spy Awesome Buildings The Tailor Shop To Scaffold: What Was Here?	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically.
			Identifying, sorting, and classifying attributes and patterns mathematically (e.g., number of sides, shape, size) - Sorts a set of objects based on two attributes.
D1.2 collect data through observations, experiments, and interviews to answer questions of interest that focus on two pieces of information, and organize the data using in twoway tally tables	Teacher Cards Data Management and Probability Cluster 1: Data Management 4: Creating a Survey 7: Identifying the Mode 8: Data Management Consolidation Data Management and Probability Math Every Day Card 1A: Conducting Surveys	Big Buddy Days Marsh Watch To Scaffold: Graph It! To Extend: Welcome to the Nature Park	Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness.
			Collecting data and organizing them into categories - Collects data from simple surveys concretely (e.g., shoes, popsicle sticks) or using simple records (e.g., check marks, tallies). - Generates data by counting or measuring (e.g., linking cube tower; number of cubes or height). Limited to whole units.

Mathology 2 Curriculum Correlation - Ontario
v. 13042022

Specific Expectation

Data Visualization

. 3 display sets of data, using one-to-one correspondence, in concrete graphs, pictographs, line plots, and bar graphs with source, titles, and labels

Data Managemen

Data Managemen

5: Making Graphs 1
6: Making Graphs 2
8: Data Management Consolidation

Big Buddy Days
Marsh Watch

To Scaffold:

Graph It!

To Extend

Welcome to the Nature Park
ig Idea: Formulating questions, coilecting data, and consolidating data in visual and graphica displays help us understand, predict, and interpret situations that involve uncertainty variability, and randomness.
Creating graphical displays of collected data
Creates displays using objects or simple pictographs (may use symbol for data). Creates one-to-one displays (e.g., line plot, dot plot, bar graph)
Displays data collected in more than one way and describes the differences (e.g., bar graph, pictograph)

Specific Expectation

Data Analysis

D1.4 identify the mode(s), if any, for various data sets presented in concrete graphs, pictographs, line plots, bar graphs, and tables, and explain what this measure indicates about the data

D1.5 analyze different sets of data presented in

 various ways, including in logic diagrams, line plots, and bar graphs, by asking and answering questions about the data and drawing conclusions, then make convincing arguments and informed decisions
eacher Cards

Data Management and Probability Cluster 1:
Data Management
7: Identifying the Mode

Teacher Cards
 Data Management and Probability Cluster 1:

Data Managemen
2: Interpreting Graphs
3: Interpreting Graphs 2
5: Making Graphs 1
6: Making Graphs 2
8: Data Management Consolidation

Data Management and Probability Math Every

Day Card

1A: Reading and Interpreting Graphs

Big Buddy Days

Marsh Watch
To Scaffold:
Graph It!

To Extend:

Welcome to the Nature Park

Big Idea: Formulating questions, collecting data and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty variability, and randomness.
Reading and interpreting data displays

- Describes the shape of data in informal ways (e.g., range, spread, gaps, mode).

Big Idea: Formulating questions, collecting data,

 and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty variability, and randomness.Reading and interpreting data displays

- Interprets displays by noting how many more/less than other categories.
Drawing conclusions by making inferences and justifying decisions based on data collected - Poses and answers questions about data collected and displayed

Overall Expectation

D2. Probability: describe the likelihood that events will happen, and use that information to make predictions

tation

Probability

D2.1 use mathematical language, including the terms "impossible", "possible", and "certain", to describe the likelihood of complementary events happening, and use that likelihood to make predictions and informed decisions

D2. 2 make and test predictions about the likelihood that the mode(s) of a data set from one population will be the same for data collected from a different population

Teacher Cards

Data Management and Probability Cluster 2:

Probability and Chance
9: Likelihood of Events
10: Conducting Experiments
11: Probability and Chance Consolidation

Data Management and Probability Math Every

Day Cards

1B: What's in the Bag?
1B: Word of the Day

Teacher Cards

Data Management and Probability Cluster 1:
Data Management
7: Identifying the Mode

Data Management and Probability Cluster 2:

Probability and Chance

10: Conducting Experiments
11: Probability and Chance Consolidation

To Extend
 Chance

Big Idea: Formulating questions, collecting data, nd consolidating data in visual and graphica displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness.

Using the language of chance to describe

predict events

Describes the likelihood of an event (e.g.,
impossible, unlikely, certain)
Makes predictions based on the question context, and data presented
Compares the likelihood of two events (e.g., more likely, less likely, equally likely).
Predicts the likelihood of an outcome in simple probability experiments or games
Big Idea: Formulating questions, collecting data
and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty variability, and randomness.

ce to describe and

predict events

Describes the likelihood of an event (e.g.,
impossible, unlikely, certain).
Makes predictions based on the question, context, and data presented
Compares the likelihood of two events (e.g.,
more likely, less likely, equally likely).
Predicts the likelihood of an outcome in simple probability experiments or games.

mathólogy

Mathology 2 Correlation (Geometry and Measurement) - Ontario

Curriculum Expectations 2020	Mathology Grade 2 Activity Kit	Mathology Little Books	Pearson Canada K-3 Mathematics Learning Progression
Overall Expectation E1. Geometric and Spatial Reasoning:			
Specific Expectation Geometric Reasoning			
E1.1 sort and identify two-dimensional shapes by comparing number of sides, side lengths, angles, and number of lines of symmetry	Teacher Cards Geometry Cluster 1: 2-D Shapes 1: Sorting 2-D Shapes 2: Congruent 2-D Shapes 3: Exploring 2-D Shapes 4: Symmetry in 2-D Shapes 5: 2-D Shapes Consolidation Geometry Math Every Day Cards 1: Visualizing Shapes 1: Comparing Shapes	I Spy Awesome Buildings Sharing Our Stories To Scaffold: The Tailor Shop What Was Here? Memory Book	Big Idea: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes.
			Investigating geometric attributes and properties of 2-D shapes and 3-D solids - Compares 2-D shapes and 3-D solids to find the similarities and differences. - Analyzes geometric attributes of 2-D shapes and 3-D solids (e.g., number of sides/edges, faces, corners). - Classifies and names 2-D shapes and 3-D solids based on common attributes.
			Big Idea: 2-D shapes and 3-D solids can be transformed in many ways and analyzed for change.
			Exploring symmetry to analyze 2-D shapes and 3- D solids - Physically explores symmetry of images by folding, cutting, and matching parts. - Identifies 2-D shapes and 3-D solids that have symmetry (limited to line or plane symmetry) (e.g., slicing an apple through its core). - Identifies line(s) of symmetry on regular 2-D shapes.

			Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically.
			Identifying, sorting and classifying attributes and patterns mathematically (e.g., Number of sides, shape, size) - Identifies the sorting rule used to sort sets. - Sorts a set of objects based on two attributes.
E1.2 compose and decompose two-dimensional shapes, and show that the area of a shape remains constant regardless of how its parts are rearranged	Teacher Cards Geometry Cluster 2: Geometric Relationships 6: Making Shapes 9: Covering Outlines Geometry Math Every Day Card 2A: Fill Me In!	The Discovery	Big Idea: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes.
			Investigating 2-D shapes, 3-D solids, and their attributes through composition and decomposition - Constructs and identifies new 2-D shapes and 3D solids as a composite of other 2-D shapes and 3-D solids. - Decomposes 2-D shapes and 3-D solids into other known 2-D shapes and 3-D solids. - Completes a picture outline in more than one way.
			Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons.
			Understanding relationships among measurement units - Understands that decomposing and rearranging does not change the measure of an object.
E1.3 identify congruent lengths and angles in twodimensional shapes by mentally and physically matching them, and determine if the shapes are congruent	Teacher Cards Geometry Cluster 1: 2-D Shapes 2: Congruent 2-D Shapes 5: 2-D Shapes Consolidation	Getting Ready for School	Big Idea: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes.
			Investigating geometric attributes and properties of 2-D shapes and 3-D solids
			Mathology 2 Curriculum Correlation - Ontario $\text { v. } 13042022$

			- Compares 2-D shapes and 3-D solids to find the similarities and differences. - Analyzes geometric attributes of 2-D shapes and 3-D solids (e.g., number of sides/edges, faces, corners).
			Big Idea: 2-D shapes and 3-D solids can be transformed in many ways and analyzed for change.
			Exploring 2-D shapes and 3-D solids by applying and visualizing transformations - Matches familiar 2-D shapes and 3-D solids (e.g., square, triangle, cone) in different orientations. - Identifies congruent 2-D shapes and 3-D solids through physical movement (e.g., by rotating). - Identifies congruent 2-D shapes and 3-D solids through visualizing transformations.
Specific Expectation Location and Movement			
E1.4 create and interpret simple maps of familiar places	Teacher Cards Geometry Cluster3: Location and Movement 11: Reading Maps 12: Drawing a Map Geometry Math Every Day Card 3A: Our Design 3A: Treasure Map	To Scaffold: Memory Book	Big Idea: Objects can be located in space and viewed from multiple perspectives.
			Locating and mapping objects in space - Uses relative positions to describe the location and order of objects (e.g., between, beside, next, before). - Locates objects in the environment (e.g., playground) by interpreting a m - Makes simple maps based on familiar settings.
E1.5 describe the relative positions of several objects and the movements needed to get from one object to another	Teacher Cards Geometry Cluster 3: Location and Movement 11: Reading Maps 14: Location and Movement Consolidation Geometry Math Every Day Cards 4: Wandering Animals	Robo To Scaffold: Memory Book	Big Idea: Objects can be located in space and viewed from multiple perspectives.
			Locating and mapping objects in space - Uses positional language and gesture to describe locations and movement, and give simple directions (e.g., in, on, around, right, left). - Uses relative positions to describe the location and order of objects (e.g., between, beside, next, before). - Provides instructions to locate an object in the environment (e.g., listing instructions to find a hidden object in classroom).

Mathology 2 Curriculum Correlation - Ontario
v. 13042022

Mathology 2 Curriculum Correlation - Ontario
v. 13042022

Specific Expectation

Time
E2.4 use units of time, including seconds, minutes,
Teacher Card
Measurement Cluster 3: Time
10: Measuring Duration of Events
Big Idea: Many things in our world (e.g., objects,
hours, and non-standard units, to describe the duration of various events
spaces, events) have attributes that can be spaces, events) have att

Understanding attributes that can be measured

 Explores measurement of visible attributes (e.g., length, capacity, area) and non-visible attributes (e.g., mass, time, temperature).
mathology

Mathology 2 Correlation (Financial Literacy) - Ontario

Curriculum Expectations 2020	Mathology Grade 2 Activity Kit	Mathology Little Books	Pearson Canada K-3 Mathematics Learning Progression
Overall Expectation F1. Money and Finances: demonstrate an understanding of the value of Canadian currency			
Specific Expectation Money Concepts			
F1.1 identify different ways of representing the same amount of money up to 200¢ Canadian using various combinations of coins, and up to $\$ 200$ using various combinations of $\$ 1$ and $\$ 2$ coins and $\$ 5, \$ 10, \$ 20, \$ 50$ and $\$ 100$ bills	Number Cluster 9: Financial Literacy 45: Earning Money 47: Money up to \$200 49: Financial Literacy Consolidation Number Math Every Day Cards 9: Showing Money in Different Ways	The Money Jar To Scaffold: Buy 1-Get 1	Big Idea: Numbers are related in many ways
			Decomposing wholes into parts and composing wholes from parts - Composes two-digit numbers from parts (e.g., 14 and 14 is 28) and decomposes two-digit numbers into parts (e.g., 28 is 20 and 8).
			Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units.
			Unitizing quantities into ones, tens, and hundreds (place-value concepts) - Writes, reads, composes, and decomposes threedigit numbers using ones, tens, and hundreds.

