mathology

Mathology Grade 2 Correlation (Number) - Alberta

Materials referenced from other grades can be found in related Mathology Activity Kits and in mathology.ca

Organizing Idea:

Quantity is measured with numbers that enable counting, labelling, comparing, and operating.

Guiding Question: How can quantity contribute to a sense of number? Learning Outcome: Students analyze quantity to 1000.				
Knowledge	Understanding	Skills \& Procedures	Grade 2 Mathology.ca and/or Activity Kit (Suggested ways to align with 2022 curriculum)	Mathology Little Books
Any number of objects in a set can be represented by a natural number. The values of the places in a four-digit natural number are thousands, hundreds, tens, and ones.	There are infinitely many natural numbers. Every digit in a natural number has a value based on its place. Each natural number is associated with exactly one point on the number line.	Represent quantities using words and natural numbers.	Link to other grades: Grade 3 Number Unit 3: Place Value 11: What's the Number? (Add representing the numbers using words.)	
		Identify the digits representing thousands, hundreds, tens, and ones based on place in a natural number.	Link to other grades: Grade 3 Number Unit 3: Place Value 11: What's the Number? (Add representing the numbers using words.)	Ways to Count
Places that have no value within a given number use zero as a placeholder. The number line is a spatial representation of quantity.		Relate a number, including zero, to its position on the number line.	Number Cluster 3: Grouping and Place Value 14: Making a Number Line (Includes numbers to 100) New Lesson to Come: Benchmarks on a Number Line Number Math Every Day 2B: Building an Open Number Line (Increase the range of numbers, placing 0 on one end and 1000 on the other, then place numbers to 1000 on the line.) 5A: Which Ten is Nearer? (Include numbers to 1000; for example, Is 832 nearer to 830 or 840 ?)	

A quantity can be skip counted in various ways according to context. Quantities of money can be skip counted in amounts that are represented by coins and bills (denominations).	A quantity can be interpreted as a composition of groups.	Decompose quantities into groups of 100s, 10 s , and 1 s .	Link to other grades: Grade 3 Number Unit 3: Place Value 9: Building Numbers 10: Representing Numbers in Different Ways	Family Fun Day (Addresses numbers to 100) Back to Batoche (Addresses numbers to 100) The Money Jar (Addresses numbers to 100) Link to other grades: Fantastic Journeys (Addresses numbers to 1000) Finding Buster (Addresses numbers to 1000) How Numbers Work (Addresses 3-digit numbers)
		Count within 1000, forward and backward by 1 s , starting at any number.	Link to other grades: Grade 3 Number Unit 1: Counting 2: Counting to 1000 4: Consolidation	Ways to Count (Addresses numbers to 100) Family Fun Day (Addresses numbers to 100) What Would You Rather? (Addresses numbers to 100) Link to other grades: Fantastic Journeys (Addresses numbers to 1000) Finding Buster (Addresses numbers to 1000) How Numbers Work (Addresses 3-digit numbers)
		Skip count by 20s, 25s, or 50 s , starting at 0 .	Number Cluster 1: Counting New Lesson to Come: Skip-Counting Forward Number Math Every Day 1A: Skip-Counting on a Hundred Chart, Skip-Counting from Any Number (Use charts that start at 101, 201, etc. and have students skip-count within 1000.)	Ways to Count (Addresses numbers to 100) Family Fun Day (Addresses numbers to 100) What Would You Rather? (Addresses numbers to 100)

			1B: Skip-Counting with Actions (Addresses skip-counting by $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s .) 1B: What's Wrong? What's Missing? (Include skipcounting by $20 \mathrm{~s}, 25 \mathrm{~s}$, and 50 s sequences.) Number Intervention 1: Skip-Counting with Objects Link to other strands: Patterning Intervention 3: Skip-Counting (Addresses skip-counting by $2 s, 5 s$, and 10s.) 4: Repeated Addition and Subtraction (Addresses repeated addition of $2 s, 5 s$, and 10s.) Link to other grades: Grade 3 Number Unit 1: Counting 3: Skip-Counting Forward and Backward (Remove skipcounting backward.)	Link to other grades: Fantastic Journeys (Addresses numbers to 1000) Finding Buster (Addresses numbers to 1000)
		Skip count by 2 s and 10 s, starting at any number.	Number Cluster 1: Counting 3: Skip-Counting Flexibly Number Math Every Day 1A: Skip-Counting on a Hundred Chart, Skip-Counting from Any Number (Use charts that start at 101, 201, etc. and have students skip-count within 1000.) 1B: Skip-Counting with Actions (Addresses skip-counting by $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s .) 1B: What's Wrong? What's Missing? (Include skipcounting by $20 \mathrm{~s}, 25 \mathrm{~s}$, and 50 s sequences.) Number Intervention 1: Skip-Counting with Objects Link to other strands: Patterning Intervention 3: Skip-Counting (Addresses skip-counting by 2s, 5s, and 10s.)	

A benchmark is a known quantity to which another quantity can be compared.	A quantity can be estimated when an exact count is not needed.	Estimate quantities using benchmarks.	Number Cluster 5: Number Relationships 2 New Lesson to Come: Benchmarks on a Number Line Link to other grades Grade 3 Number Unit 2: Number Relationships 5: Estimating Quantities 7: Comparing and Ordering Quantities Number Math Every Day 5A: Which Ten is Nearer? (Include numbers to 1000; for example, Is 832 nearer to 830 or 840 ?)	Family Fun Day Ways to Count What Would you Rather?
Words that can describe a comparison between two unequal quantities include - not equal - greater than - less than The less than sign, <, and the greater than sign, >, are used to indicate inequality between two quantities. Equality and inequality can be modelled using a balance.	Inequality is an imbalance between two quantities.	Model equality and inequality between two quantities, including with a balance.	Patterning Cluster 3: Equality and Inequality 15: Equality and Inequality: Equal and Unequal Sets (Part B involves 3 sets; have students compare 2 sets at a time.) 16: Equality and Inequality: Equal or Not Equal? 17: Equality and Inequality: Exploring Number Sentences 20: Consolidation Patterning Math Every Day 3A: Equality and Inequality: Equal or Not Equal? Patterning Intervention 5: Equality and Inequality: Exploring 10 6: Equality and Inequality: Balancing Sets	
		Compare and order natural numbers.	Link to other grades Grade 3 Number Unit 2: Number Relationships 5: Estimating Quantities 7: Comparing and Ordering Quantities	Back to Batoche The Great Dogsled Race Ways to Count
		Describe a quantity as less than, greater than, or equal to another quantity.	Link to other grades Grade 3 Number Unit 2: Number Relationships 5: Estimating Quantities 7: Comparing and Ordering Quantities	Kokum's Bannock Back to Batoche

Guiding Question: How can addition and subtraction be interpreted? Learning Outcome: Students investigate addition and subtraction within 100.				
Knowledge	Understanding	Skills \& Procedures	Grade $\mathbf{2}$ Mathology.ca and/or Activity Kit (Suggested ways to align with 2022 curriculum)	Mathology Little Books
The order in which more than two numbers are added does not affect the sum (associative property).	A sum can be composed in multiple ways.	Visualize 100 as a composition of multiples of 10 in various ways.	New Lesson to Come: Visualizing 100	
		Compose a sum in multiple ways, including with more than two addends.	Number Cluster 5: Number Relationships 2 23: Decomposing 50 (Have students use 100 counters and decompose 100 in 2 and then 3 parts.) 24: Jumping on the Number Line (Edit Line Master 64a to include numbers to 100.) Number Cluster 6: Conceptualizing Addition and Subtraction 26: Exploring Properties (Currently addresses numbers to 18; after the domino activity, extend to numbers to 100.) Number Math Every Day 5A: Building Numbers (Addresses 2 addends) 5B: How Many Ways? (Addresses 2 addends) Number Intervention 9: Making 20 Link to other strands: Patterning Math Every Day 3A: How Many Ways? (Currently addresses 2 addends, include making a number to 100 using 3 parts (addends).) 3B: Which One Doesn't Belong? (Currently addresses 2 addends; include expressions with 3 addends to 100.) Link to other grades: Grade 3 Patterning Unit 2: Variables and Equations 10: Exploring the Associative Property	Kokum's Bannock The Money Jar

Addition and subtraction strategies for twodigit numbers include making multiples of ten and using doubles.	Addition and subtraction can represent the sum or difference of countable quantities or measurable lengths.	Recall and apply addition number facts, with addends to 10 , and related subtraction number facts.	Number Cluster 7: Operational Fluency 32: Complements of 10 33: Using Doubles 36: Consolidation Number Math Every Day 7A: Doubles and Near-Doubles 7B: Make 10 Sequences Number Intervention 3: My 10 Bracelet 4: Who Has More? 10: The Other Part of 10 13: Making 10 14: Finding Doubles Link to other strands: Patterning Intervention 5: Exploring 10 Link to other grades: Grade 3 Number Unit 5: Addition and Subtraction 23: Mastering Addition and Subtraction Facts (Include addition and subtraction facts with addends to 10.)	A Class-full of Projects Array's Bakery Marbles, Alleys, Mibs, and Guli! The Great Dogsled Race The Money Jar Family Fun Day
		Investigate strategies for addition and subtraction of two-digit numbers.	Number Cluster 7: Operational Fluency 35: Multi-Digit Fluency (Focus on strategies for estimating with two-digit numbers.)	
		Add and subtract numbers within 100.	Number Cluster 7: Operational Fluency 35: Multi-Digit Fluency	A Class-full of Projects Array's Bakery
		Verify a sum or difference using inverse operations.	Number Math Every Day 3A: Adding Ten	Marbles, Alleys, Mibs, and Guli! The Great Dogsled Race

Pearson

		Determine a missing quantity in a sum or difference, within 100, in a variety of ways.	Number Math Every Day 3A: Taking Away 10 5B: What's the Unknown Part? 7A: I Have... I Need... 7B: Hungry Bird Number Intervention 5: Adding Tens 6: Taking Away Tens	The Money Jar Family Fun Day
		Solve problems using addition and subtraction of countable quantities or measurable lengths.	Number Cluster 6: Conceptualizing Addition and Subtraction 27: Solving Problems 1 (Addresses numbers to 50) 28: Solving Problems 2 29: Solving Problems 3 30: Solving Problems 4 31: Consolidation Number Cluster 9: Financial Literacy 43: Estimating Money (Addresses cents) New Lesson to Come: Money up to \$200 44: Earning Money 45: Spending Money 46: Saving Regularly Link to other grades: Grade 3 Patterning Unit 2: Variables and Equations 10: Exploring the Associative Property Number Math Every Day 6: What Math Do You See? 6: What Could the Story Be? Number Intervention 11: Adding and Subtracting to 20 12: Solving Story Problems	Array's Bakery

Guiding Question: In what ways can parts compose a whole?

Learning Outcome: Students interpret part-whole relationships using unit fractions.

Knowledge	Understanding	Skills \& Procedures	Grade 2 Mathology.ca and/or Activity Kit (Suggested ways to align with 2022 curriculum)	Mathology Little Books
A whole can be a whole set of objects, or a whole object, that can be partitioned into a number of equal parts.	Fractions can represent part-towhole relationships. One whole can be interpreted as a number of unit fractions.	Model a unit fraction by partitioning a whole object or whole set into equal parts, limited to 10 or fewer equal parts.	Number Cluster 4: Early Fractional Thinking 17: Equal Parts (Focus on identifying unit fraction represented by number of equal parts only.) New Lesson to Come: Partitioning Sets	
		Compare different unit fractions of the same whole, limited to denominators of 10 or less.	Number Cluster 4: Early Fractional Thinking 18: Comparing Fractions 1 (Focus only on comparing different unit fractions of the same whole.) 19: Comparing Fractions 2	
designated by context. A unit fraction describes any one		Compare the same unit fractions of different wholes, limited to denominators of 10 or less.	New Lesson to Come: Comparing Unit Fractions of Different Wholes	
of the equal parts that compose a whole.		Model one whole, using a given unit fraction, limited to denominators of 10 or less.	New Lesson to Come: Modelling One Whole with Unit Fractions	

mathology

Mathology Grade 2 Correlation (Geometry) - Alberta

Organizing Idea:

Shapes are defined and related by geometric attributes.

Guiding Question: How can shape influence perception of space? Learning Outcome: Students analyze and explain geometric attributes of shape.				
Knowledge	Understanding	Skills \& Procedures	Grade 2 Mathology.ca and/or Activity Kit (Suggested ways to align with 2022 curriculum)	Mathology Little Books
Common geometric attributes include - sides - vertices - faces or surfaces Two-dimensional shapes may have sides that are line segments. Three-dimensional shapes may have faces that are twodimensional shapes.	Shapes are defined according to geometric attributes. A shape can be visualized as a composition of other shapes.	Sort shapes according to two geometric attributes and describe the sorting rule.	Geometry Cluster 1: 2-D Shapes 1: Sorting 2-D Shapes 2: Exploring 2-D Shapes 5: Consolidation Geometry Cluster 2: 3-D Solids 6: Sorting 3-D Solids 7: 3-D Solids Around Us Geometry Math Every Day 1: Comparing Shapes 2B: Which Solid Does Not Belong? 2B: Solids Around Us Geometry Intervention 1: Sorting Shapes Using One Attribute 2: Analyzing 2-D Shapes 3: Sorting Solids 4: Attributes of Solids	I Spy Awesome Buildings Sharing Our Stories
		Relate the faces of threedimensional shapes to two-dimensional shapes.	Geometry Cluster 3: Geometric Relationships 6: Describing Solids (Intervention) Geometry Math Every Day 2A: What Do You See?	I Spy Awesome Buildings Sharing Our Stories

neman
 mathology

Mathology Grade 2 Correlation (Measurement) - Alberta

Organizing Idea:

Attributes such as length, area, volume, and angle are quantified by measurement.

Guiding Question: How can length contribute to interpretations of space? Learning Outcome: Students communicate length using units.				
Knowledge	Understanding	Skills \& Procedures	Grade 2 Mathology.ca and/or Activity Kit (Suggested ways to align with 2022 curriculum)	Mathology Little Books
Tiling is the process of measuring a length by using many copies of a unit without gaps or overlaps. Iterating is the process of measuring a length by repeating one	Length is quantified by measurement. Length is measured with equal-sized units that themselves have length. The number of units required to measure a length	Measure length with nonstandard units by tiling, iterating, or using a selfcreated measuring tool.	Measurement Cluster 1: Using Non-Standard Units 1: Measuring Length 1 (Uses tiling strategy.) 2: Measuring Length 2 (Uses iterating strategy; include use of a self-created measuring tool.) 3: Measurement Distance Around Measurement Math Every Day 1: Estimation Scavenger Hunt, Estimation Station (Remove mass, area, and capacity.) Measurement Intervention 1: Exploring Length 3: Iterating the Unit	Getting Ready for School The Discovery The Amazing Seed (1)
copy of a unit without gaps or overlaps. The unit can be chosen based on the length to be measured.	is inversely related to the size of the unit.	Compare and order measurements of different lengths measured with the same non-standard units, and explain the choice of unit.	Measurement Cluster 1: Using Non-Standard Units 2: Measuring Length 2 (Uses iterating strategy; include use of a self-created measuring tool.) 3: Measuring Distance Around Measurement Math Every Day 2: Which Unit? (Adapt to focus on use of non-standard units.)	Getting Ready for School The Discovery

Pearson

Length can be measured with non-standard units or standard units.		Compare measurements of the same length measured with different non-standard units.	Measurement Cluster 1: Using Non-Standard Units 1: Measuring Length 1	The Discovery Animal Measures (1)
		Measure length with standard units by tiling or iterating with a centimetre.	Measurement Intervention 4: Using a Centicube Ruler (Include comparing and ordering of lengths.)	
units found in nature can be used to measure length on the land.		Compare and order measurements of different lengths measured with centimetres.	Measurement Intervention 4: Using a Centicube Ruler (Include comparing and ordering of lengths.)	
Standard units, such as centimetres, can enable a common language around measurement.				
A referent is a personal or familiar representation of a known length. A common referent from the land or body parts can be used to measure length.	Length can be estimated when a measuring tool is not available.	Identify referents for a centimetre.	Measurement Cluster 2: Using Standard Units 8: Benchmarks and Estimation (Remove metre.)	
		Estimate length by visualizing the iteration of a referent for a centimetre.	Measurement Cluster 2: Using Standard Units 8: Benchmarks and Estimation (Remove metre.) Measurement Math Every Day 1: Estimation Station 2. What Am I?	Getting Ready for School
		Investigate First Nations, Métis, or Inuit use of the land in estimations of length.	New Lesson to Come: First Nations, Métis, and Inuit Use of Land to Estimate Length	

Pearson

mathology

Mathology Grade 2 Correlation (Patterns) - Alberta

Organizing Idea:

Awareness of patterns supports problem solving in various situations.

Guiding Question: How can patterns characterize change? Learning Outcome: Students explain and analyze patterns in a variety of contexts.				
Knowledge	Understanding	Skills \& Procedures	Grade 2 Mathology.ca and/or Activity Kit (Suggested ways to align with 2022 curriculum)	Mathology Little Books
Change can be an increase or a decrease in the number and size of elements. A hundreds chart is an arrangement of natural numbers that illustrates multiple patterns. Patterns can be found and created in cultural designs.	A pattern can show increasing or decreasing change. A pattern is more evident when the elements are represented, organized, aligned, or oriented in familiar ways.	Describe non-repeating patterns encountered in surroundings, including in art, architecture, cultural designs, and nature. Investigate patterns in a hundreds chart.	New Lesson to Come: Slides, Flips, and Turns in Artwork Link to other grades: Grade 1 Patterning Cluster 1: Investigating Repeating Patterns 4: Finding Patterns Patterning Intervention 3: Skip-Counting	Pattern Quest The Best Surprise

		Create and express growing patterns using sounds, objects, pictures, or actions.	Patterning Cluster 2: Increasing/Decreasing Patterns 6: Increasing Patterns 1 7: Increasing Patterns 2 10: Reproducing Patterns 11: Creating Patterns 13: Solving Problems 14: Consolidation Patterning Math Every Day 1: Show Another Way (Add a growing pattern as well.)	The Best Surprise
Attributes of elements, such as size and colour, can contribute to a pattern.	A pattern core can vary in complexity.	Create and express a repeating pattern with a pattern core of up to four elements that change by more than one attribute.	Patterning Cluster 1: Repeating Patterns 1: Exploring Patterns 2: Extending and Predicting 3: Error and Missing Elements 4: Combining Attributes 5: Consolidation Patterning Math Every Day 1: Show Another Way 1: Repeating Patterns Around Us Patterning Intervention 1: Finding the Core 2: Representing Patterns	Pattern Quest

Pearson

mathology

Mathology Grade 2 Correlation (Time) - Alberta

Organizing Idea:

Duration is described and quantified by time.

Guiding Question: How can duration support interpretation of time? Learning Outcome: Students relate duration to time.				
Knowledge	Understanding	Skills \& Procedures	Grade 2 Mathology.ca and/or Activity Kit (Suggested ways to align with 2022 curriculum)	Mathology Little Books
Events can be related to calendar dates. Duration can be described using comparative language such as longer or shorter. Duration can be measured in nonstandard units, including events, natural cycles, or personal referents. Winter counts are First Nations symbolic calendars that record oral traditions and significant events.	Time can be communicated in various ways. Duration is the measure of an amount of time from beginning to end.	Express significant events using calendar dates.	Measurement Cluster 3: Time and Temperature 13: Days and Weeks Measurement Math Every Day 3A: Calendar Questions 3B: Monthly Mix-Up	
		Describe the duration between or until significant events using comparative language.	Link to other grades: Grade 1 Measurement Cluster 3: Time and Temperature 17: Passage of Time Grade 3 Measurement Unit 2: Time and Temperature 8: Measuring the Passage of Time	Goat Island (3)
		Describe the duration of events using nonstandard units.	Measurement Cluster 3: Time and Temperature 15: Measuring Time Link to other grades: Grade 1 Measurement Cluster 3: Time and Temperature 17: Passage of Time Grade 3 Measurement Unit 2: Time and Temperature 8: Measuring the Passage of Time	Getting Ready for School Goat Island (3)
		Relate First Nations' winter counts to duration.	New Lesson to Come: First Nations Winter Counts	

Pearson

| Time can be
 described using
 standard units such
 as days or minutes. | Duration is
 quantified by
 measurement. | Describe the relationship
 between days, weeks,
 months, and years. | Measurement Cluster 3: Time and Temperature
 13: Days and Weeks
 14: Months in a Year | Goat Island (3) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | Measurement Intervention
 5: Months of the Year | | |

nemann
 mathology

Mathology Grade 2 Correlation (Statistics) - Alberta

Organizing Idea:

The science of collecting, analyzing, visualizing, and interpreting data can inform understanding and decision making.

Guiding Question: How can data inform representation? Learning Outcome: Students relate data to a variety of re				
Knowledge	Understanding Data can be collected to answer questions.	Skills \& Procedures	Grade 2 Mathology.ca and/or Activity Kit (Suggested ways to align with 2022 curriculum)	Mathology Little Books
Data can be collected by asking questions.		Generate questions for a specific investigation within the learning environment.	Data Cluster 1: Data Management 3: Creating a Survey 6: Consolidation	Marsh Watch
First-hand data is data collected by the person using the data.		Collect first-hand data by questioning people within the learning environment.	Data Cluster 1: Data Management 3: Creating a Survey Data Math Every Day 1: Conducting Surveys	Marsh Watch Big Buddy Days
Data can be recorded using tally marks, words, or counts. Data can be expressed through First Nations, Métis, or Inuit stories.	Data can be represented in various ways.	Record data in a table.	Data Cluster 1: Data Management 3: Creating a Survey (Have students record collected data in a table.) 6: Consolidation	Marsh Watch Big Buddy Days
		Construct graphs to represent data.	Data Cluster 1: Data Management 4: Making Graphs 1 5: Making Graphs 2 6: Consolidation	Marsh Watch Big Buddy Days
		Interpret graphs to answer questions.	Data Cluster 1: Data Management 1: Interpreting Graphs 1 Data Intervention 1: Interpreting Pictographs	Marsh Watch Big Buddy Days

Pearson

A graph includes				
features such as				
$\bullet \quad$ a title				
$\bullet \quad$ a legend				
\bullet			Compare the features of pictographs, dot plots, and bar graphs.	Data Cluster 1: Data Management 2: Interpreting Graphs 2 6: Consolidation
Data can be represented with graphs such as - pictographs - bar graphs - dot plots				Match

mathology

Mathology Grade 2 Correlation (Financial Literacy) - Alberta

Organizing Idea:

Informed financial decision making contributes to the well-being of individuals, groups, and communities.

```
Guiding Question: How does decision making influence money management?
Learning Outcome: Students relate money and decision making.
```

Knowledge	Understanding	Skills \& Procedures	Grade 2 Mathology.ca and/or Activity Kit	Mathology Little Books
Decisions about money include how much to - spend - save - share	Managing money involves making decisions.	Distinguish between a paying job and volunteer work.	Number Cluster 9: Financial Literacy 44: Earning Money	
Individuals can have a limited amount of money to spend.	Decisions related to money are based on needs and wants.			

Money spent on one item means less money for other items or activities.		Describe how money can be divided for different purposes.	Number Cluster 9: Financial Literacy 44: Earning Money 45: Spending Money	
Individuals can save money for an item, an event, or the future.			The Money Jar	
Individuals can donate Regularly money through charities, organizations, and agencies to help others or support a cause.		Practise making money- related decisions in a variety of contexts.	Number Cluster 9: Financial Literacy 44: Earning Money 45: Spending Money 46: Saving Regularly	
Money can be earned in exchange for work that is done or goods and services that are provided.				
Responsible decision making involves spending money on needs before wants.				

Pearson

