```
Patterning
and Algebra
```


Activity 1 Assessment

Describing and Extending Patterns

Activity 1 Assessment

Describing and Extending Patterns

Activity 1 Assessment
 Describing and Extending Patterns

Number Pattern Relationships		
Recognizes pattern relationships in repeating, increasing, and decreasing patterns. Term 1 Term 2 Term 3 Term 4 "I see a relationship that shows skip-counting backward by 3 . The rule is: Start with 20 tiles and take away 3 tiles each time."	Identifies and describes linear and non-linear patterns in tables, charts, and graphs. "The graph shows a non-linear increasing pattern. The points do not lie on a straight line, and a different number is added to the term value each time."	Creates and translates repeating, increasing, and decreasing patterns using various representations. "Each of these representations shows a linear pattern that follows the pattern rule: Start at 20 and subtract 3 each time."
Observations/Documentation		

Activity 1 Assessment

Describing and Extending Patterns

Number Pattern Relationships (con't)		
Creates and translates repeating, increasing, and decreasing patterns and describes them using algebraic expressions and equations. "I created this increasing pattern. An expression for the term values is: $3 n+2$, when n is the term number. An equation for this pattern is: $v=3 n+$ 2 , where v is the term value."	Describes patterns to show relationships among whole numbers and decimals with tenths, hundredths, and thousandths. $\begin{aligned} & 3.004-0.004=3.000 \\ & 3.004-0.003=3.001 \\ & 3.004-0.002=3.002 \\ & 3.004-0.001=3.003 \\ & 3.004-0.000=3.004 \end{aligned}$ "As the number that is subtracted decreases by 0.001 , the difference increases by 0.001 ."	Fluently identifies and describes linear and nonlinear patterns and justifies choice of representation to show pattern relationships. Students raised \$180 to buy 8 games that cost $\$ 26$ each. Do they have enough money? "This is a linear pattern where $\$ 26$ dollars is added each time. I used the equation $c=26 n$ to determine the cost of n games in dollars, where $\mathrm{n}=$ $8: \mathrm{c}=26 \times 8$, which is $\$ 208$. There is not enough money to buy games for 8 classes. Only 6 classes can have a game."
Observations/Documentation		

