mathology

Mathology 3 Correlation (Number) - Manitoba

Curriculum Expectations	Grade 3 Mathology.ca	Mathology Little Books	Mathology Practice Workbook 3	Pearson Canada K-3 Mathematics Learning Progression
Specific Learning Outcomes 3.N.1. Say the number sequence between any two given numbers forward and backward - from 0 to 1000 by -10 s or 100 s, using any starting point - 5 s , using starting points that are multiples of 5 - 25s, using starting points that are multiples of 25 - from 0 to 1000 by - 3s, using starting points that are multiples of 3 - 4s, using starting points that are multiples of 4	Number Unit 1: Counting 3: Skip-Counting Forward and Backward Number Unit 7: Financial Literacy 34: Estimating and Counting Money	Calla's Jingle Dress Planting Seeds Sports Camp Math Makes Me Laugh How Numbers Work Finding Buster To Scaffold: What Would You Rather? Ways to Count Family Fun Day Array's Bakery The Money Jar	Unit 2 Questions 1, 2, $3,4,5,6,7,8,9,10$ (pp. 8-12) Unit 4 Question 7 (p. 20) Unit 8 Questions 1, 2, 4, 5, 10 (pp. 42-44, 47)	Big Idea: Numbers tell us how many and how much. Applying the principles of counting - Fluently skip-counts by factors of 10 (e.g., 2, 5, 10) and multiples of 10 from any given number. - Fluently skip-counts by factors of 100 (e.g., 20, 25, 50) and multiples of 100 from any given number. Big Idea: Quantities and numbers can be grouped by or partitioned into equalsized units Unitizing quantities and comparing units to the whole - Recognizes number patterns in repeated units (e.g., when skip-counting by $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$).
3.N.2. Represent and describe numbers to 1000, concretely, pictorially and symbolically.	Number Unit 1: Counting 1: Numbers All Around Us 2: Counting to 1000 4: Counting Consolidation	The Street Party Math Makes Me Laugh How Numbers Work Finding Buster Fantastic Journeys	Unit 3 Questions 1, 2, 3, 4, 10 (pp. 13-14, 16) Unit 8 Questions 5, 6, 7, 8 (pp. 44-46)	Big Idea: Numbers tell us how many and how much. Applying the principles of counting - Uses number patterns to bridge hundreds when

Pearson
Mathology 3 Integrated Curriculum Correlation - Manitoba

	Number Unit 2: Number Relationships 6: Composing and Decomposing Quantities Number Unit 3: Place Value 9: Building Numbers	To Scaffold: What Would You Rather? Ways to Count Family Fun Day Back to Batoche A Class-full of Projects The Money Jar		counting forward and backward (e.g., 399, 400, 401). Recognizing and writing numerals - Names, writes, and matches three-digit numerals to quantities. Big Idea: Numbers are related in many ways. Decomposing wholes into parts and composing wholes from parts - Composes two-digit numbers from parts (e.g., 14 and 14 is 28), and decomposes two-digit numbers into parts (e.g., 28 is 20 and 8). Big Idea: Quantities and numbers can be grouped by or partitioned into equalsized units. Unitizing quantities into ones, tens, and hundreds (place-value concepts) - Writes, reads, composes, and decomposes three-digit numbers using ones, tens, and hundreds.
3.N.3. Compare and order numbers to 1000.	Number Unit 2: Number Relationships 7: Comparing and Ordering Quantities 8: Number Relationships Consolidation	The Street Party Sports Camp Planting Seeds Math Makes Me Laugh Finding Buster Fantastic Journeys To Scaffold: What Would You Rather?	Unit 3 Questions 5, 6, 7, 8, 9, 10, 11 (pp. 1517) Unit 4 Questions 6, 8 (pp. 20-21)	Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Orders three or more quantities using sets and/or numerals.

Mathology 3 Integrated Curriculum Correlation - Manitoba

$$
2 \mid \text { Page }
$$

	Number Unit 3: Place Value 9: Building Numbers 10: Representing Numbers in Different Ways	Ways to Count Family Fun Day Back to Batoche A Class-full of Projects The Money Jar		Big Idea: Quantities and numbers can be grouped by or partitioned into equalsized units. Unitizing quantities into ones, tens, and hundreds (place-value concepts) - Writes, reads, composes, and decomposes three-digit numbers using ones, tens, and hundreds.
3.N.4. Estimate quantities less than 1000 using referents.	Number Unit 2: Number Relationships 5: Estimating Quantities	Math Makes Me Laugh The Street Party Sports Camp Planting Seeds Finding Buster Fantastic Journeys To Scaffold: What Would You Rather? Ways to Count Family Fun Day Back to Batoche A Class-full of Projects The Money Jar	N/A	Big Idea: Numbers are related in many ways. Estimating quantities and numbers - Uses relevant benchmarks (e.g., multiples of 10) to compare and estimate quantities. - Estimates large quantities using visual strategies (e.g., arrays).
3.N.5. Illustrate, concretely and pictorially, the meaning of place value for numerals to 1000 .	Number Unit 3: Place Value 9: Building Numbers 10: Representing Numbers in Different Ways 11: What's the Number? 13: Place Value Consolidation Number Unit 7: Financial Literacy	The Street Party Math Makes Me Laugh How Numbers Work Finding Buster To Scaffold: Back to Batoche A Class-full of Projects The Money Jar What Would You Rather? The Great Dogsled Race	Unit 4 Questions 1, 2, $\begin{aligned} & 3,4,5,6,7,8,9,10 \\ & \text { (pp. 18-22) } \end{aligned}$	Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Orders three or more quantities using sets and/or numerals. Big Idea: Quantities and numbers can be grouped by or partitioned into equalsized units.

	35: Investigating Equality with Money			Unitizing quantities into ones, tens, and hundreds (place-value concepts) - Writes, reads, composes, and decomposes three-digit numbers using ones, tens, and hundreds.
3.N.6. Describe and apply mental mathematics strategies for adding two 2digit numerals, such as - adding from left to right - taking one addend to the nearest multiple of ten and then compensating - using doubles	Number Unit 5: Addition and Subtraction 22: Using Mental Math to Add and Subtract	Calla's Jingle Dress The Street Party Sports Camp Planting Seeds Math Makes Me Laugh	Unit 5 Questions 1, 2, 3 (pp. 25-26)	Big Idea: Quantities and numbers can be added and subtracted to determine how many or how much. Developing conceptual meaning of addition and subtraction - Relates addition and subtraction as inverse operations. Developing fluency of addition and subtraction computation - Develops efficient mental strategies and algorithms to solve equations with multidigit numbers. Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Understanding equality and inequality, building on generalized properties of numbers and operations - Decomposes and combines numbers in equations to make them easier to solve (e.g., $8+5=3+5+5$).

3.N.7. Describe and apply mental mathematics strategies for subtracting two 2-digit numerals, such as - taking the subtrahend to the nearest multiple of ten and then compensating - thinking of addition - using doubles	Number Unit 5: Addition and Subtraction 22: Using Mental Math to Add and Subtract	The Street Party Sports Camp Planting Seeds Math Makes Me Laugh	Unit 5 Questions 1, 2, 3, 11 (pp. 25-26, 30)	Big Idea: Quantities and numbers can be added and subtracted to determine how many or how much. Developing conceptual meaning of addition and subtraction - Relates addition and subtraction as inverse operations. Developing fluency of addition and subtraction computation - Develops efficient mental strategies and algorithms to solve equations with multidigit numbers. Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Understanding equality and inequality, building on generalized properties of numbers and operations - Decomposes and combines numbers in equations to make them easier to solve (e.g., $8+5=3+5+5$).
3.N.8. Apply estimation strategies to predict sums and differences of two 2digit numerals in a problem-solving context.	Number Unit 5: Addition and Subtraction 20: Estimating Sums and Differences	Math Makes Me Laugh Calla's Jingle Dress The Street Party Sports Camp Planting Seeds	Unit 5 Question 2 (p. 26)	Big Idea: Quantities and numbers can be added and subtracted to determine how many or how much. Developing conceptual meaning of addition and subtraction - Models and symbolizes addition and subtraction problem types (i.e., join,

				of addition). Developing fluency of addition and subtraction computation - Develops efficient mental strategies and algorithms to solve equations with multidigit numbers. - Estimates sums and differences of multi-digit numbers. - Fluently recalls complements to 100 (e.g., 64 $+36 ; 73+27)$.
3.N.10. Apply mental mathematics to determine addition facts and related subtraction facts to $18(9+9)$. Recall of addition and related subtraction facts is expected by the end of Grade 3.	Number Unit 5: Addition and Subtraction 23: Mastering Addition and Subtraction Facts	Calla's Jingle Dress The Street Party Sports Camp Planting Seeds Math Makes Me Laugh To Scaffold: Array's Bakery Marbles, Alleys, Mibs, and Guli! A Class-full of Projects The Money Jar The Great Dogsled Race Kokum's Bannock	N/A	Big Idea: Quantities and numbers can be added and subtracted to determine how many or how much. Developing conceptual meaning of addition and subtraction - Uses properties of addition and subtraction to solve problems (e.g., adding or subtracting 0 , commutativity of addition). Developing fluency of addition and subtraction computation - Fluently adds and subtracts with quantities to 20 .
3.N.11. Demonstrate an understanding of multiplication to 5×5 by - representing and explaining multiplication using equal grouping and arrays - creating and solving problems in context that involve multiplication	Number Unit 6: Multiplication and Division 27: Exploring Multiplication 29: Relating Multiplication and Division 30: Properties of Multiplication	Calla's Jingle Dress Sports Camp Planting Seeds	Unit 16 Questions 1, 2, $3,4,5,6,7,8 a, 9,10$, 11 (pp. 96-101)	Big Idea: Quantities and numbers can be grouped by, or partitioned into units to determine how many or how much. Developing conceptual meaning of multiplication

Mathology 3 Integrated Curriculum Correlation - Manitoba
Pearson

- modelling multiplication using concrete and visual representations, and recording the process symbolically - relating multiplication to repeated addition - relating multiplication to division.	31: Creating and Solving Problems 32: Building Fluency: The Games Room 33: Multiplication and Division Consolidation		and division -

				- Models and symbolizes equal sharing and grouping division problems and relates them to subtraction.
3.N.13. Demonstrate an understanding of fractions by - explaining that a fraction represents a portion of a whole divided into equal parts - describing situations in which fractions are used - comparing fractions of the same whole with like denominators.	Number Unit 4: Fractions 14: Exploring Equal Parts 15: Comparing Fractions 1 16: Comparing Fractions 2 18: Fractions Consolidation	Hockey Homework	Unit 12 Questions 1, 2, 3, 4, 5, 6, 13a (pp. 70-72, 75)	Big Idea: Quantities and numbers can be grouped by or partitioned into equalsized units. Partitioning quantities to form fractions - Partitions wholes into equalsized parts to make fair shares or equal groups. - Partitions wholes (e.g., intervals, sets) into equal parts and names the unit fractions. - Relates the size of parts to the number of equal parts in a whole (e.g., a whole cut into 2 equal pieces has larger parts than a whole cut into 3 equal pieces). - Compares unit fractions to determine relative size. - Counts by unit fractions (e.g., counting by $\frac{1}{4}: \frac{1}{4}, \frac{2}{4}, \frac{3}{4}$). - Uses fraction symbols to name fractional quantities. - Compares related fractions (e.g., same numerator, same denominator, unit fractions, familiar fractions) to determine more/less or equal.

mathólogy

Mathology 3 Correlation (Patterns and Relations: Patterns) - Manitoba

Curriculum Expectations	Grade 3 Mathology.ca	Mathology Little Books	Mathology Practice Workbook 3	Pearson Canada K-3 Mathematics Learning Progression
Specific Learning Outcomes 3.PR.1. Demonstrate an understanding of increasing patterns by - describing - extending - comparing - creating patterns using manipulatives, diagrams, and numbers (to 1000).	Pattern Unit 1: Increasing and Decreasing Patterns	Namir's Marvellous Masterpieces	Unit 1 Questions 3, 4, 2. Creating Patterns 4. Identifying Errors and	

				(e.g., 1, 3, 5, \qquad , $9, \ldots$.. - Creates an increasing/decreasing pattern (concretely, pictorially, and/or numerically) and explains the pattern rule. - Generalizes and explains the rule for arithmetic patterns including the starting point and change (e.g., for 28, 32, 36 , the rule is start at 28 and add 4 each time).
3.PR.2. Demonstrate an understanding of decreasing patterns by - describing - extending - comparing - creating patterns using manipulatives, diagrams, and numbers (starting from 1000 or less).	Pattern Unit 1: Increasing and Decreasing Patterns 1: Describing and Extending Patterns 2: Representing Patterns 3: Creating Patterns 4: Identifying Errors and Missing Terms 5: Solving Problems 7: Increasing and Decreasing Patterns Consolidation	Namir's Marvellous Masterpieces To Scaffold: The Best Surprise	Unit 1 Questions 4, 7-9 (pp. 4, 6-7)	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically. Representing and generalizing increasing/decreasing patterns - Identifies and extends nonnumeric increasing/decreasing patterns (e.g., jump-clap; jump-clap-clap; jump-clap-clap-clap, etc.). - Identifies and extends familiar number patterns and makes connections to addition (e.g., skip-counting by $2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$). - Identifies, reproduces, and extends increasing/decreasing patterns concretely, pictorially, and numerically using repeated addition or subtraction. - Extends number patterns and finds missing elements

				(e.g., $1,3,5, \ldots, 9, .$.). - Creates an increasing/decreasing pattern (concretely, pictorially, and/or numerically) and explains the pattern rule. - Generalizes and explains the rule for arithmetic patterns including the starting point and change (e.g., for 28, 32, 36 , the rule is start at 28 and add 4 each time).

mathology

Mathology 3 Correlation (Patterns and Relations: Variables and Equations) - Manitoba

Curriculum Expectations	Grade 3 Mathology.ca	Mathology Little Books	Mathology Practice Workbook 3	Pearson Canada K-3 Mathematics Learning Progression
Specific Learning Outcomes 3.PR. 3 Solve one-step addition and subtraction equations involving symbols representing an unknown number.	Patterning Unit 2: Variables and Equations 8: Solving Equations Concretely 9: Strategies for Solving Equations 11: Creating Equations 12: Variables and Equation Consolidation	A Week of Challenges	Unit 7 Questions 1, 2, $\begin{aligned} & 3,4,6,7,10 \\ & \text { (pp. 37-41) } \end{aligned}$	Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Understanding equality and inequality, building on generalized properties of numbers and operations - Investigates addition and subtraction as inverse operations. - Explores properties of addition and subtraction (e.g., adding or subtracting 0 , commutativity of addition). Using symbols, unknowns, and variables to represent mathematical relations - Uses placeholders (e.g., ㅁ) for unknown values in equations. - Solves for an unknown value in a one-step addition and subtraction problem (e.g., $n+$ $5=15$).

mathology

Mathology 3 Correlation (Shape and Space: Measurement) - Manitoba

Curriculum Expectations	Grade 3 Mathology.ca	Mathology Little Books	Mathology Practice Workbook 3	Pearson Canada K-3 Mathematics Learning Progression
Specific Learning Outcomes 3.SS.1. Relate the passage of time to common activities, using non-standard and standard units (minutes, hours, days, weeks, months, years).	Measurement Unit 2: Time and Temperature 8: Measuring the Passage of Time	Goat Island	Unit 13 Questions 1, 2, 5 (pp. 76-77)	Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared. Understanding attributes that can be measured - Explores measurement of visible attributes (e.g., length, capacity, area) and nonvisible attributes (e.g., mass, time, temperature). - Uses language to describe attributes (e.g., long, tall, short, wide, heavy). Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using standard units to estimate, measure, and make comparisons - Selects and uses appropriate standard units to estimate, measure, and compare length, perimeter, area, capacity, mass, and time.

				- Uses the measurement of familiar objects as benchmarks to estimate another measure in standard units (e.g., doorknob is 1 m from the ground; room temperature is $21^{\circ} \mathrm{C}$).
3.SS.2. Relate the number of seconds to a minute, the number of minutes to an hour, and the number of days to a month in a problem-solving context.	Measurement Unit 2: Time and Temperature 9: Relationships Among Units of Time 12: Time and Temperature Consolidation	Goat Island	Unit 13 Questions 3, 4, 11 (pp. 77, 81)	Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared. Understanding attributes that can be measured - Explores measurement of visible attributes (e.g., length, capacity, area) and nonvisible attributes (e.g., mass, time, temperature). - Uses language to describe attributes (e.g., long, tall, short, wide, heavy). Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Understanding relationships among measurement units - Understands relationship of units of length ($\mathrm{mm}, \mathrm{cm}, \mathrm{m}$), mass (g, kg), capacity (mL, L), and time (e.g., seconds, minutes, hours).

3.SS.3. Demonstrate an understanding of measuring length (cm, m) by - selecting and justifying referents for the units cm and m - modelling and describing the relationship between the units cm and m - estimating length using referents - measuring and recording length, width, and height.	Measurement Unit 1: Length and Perimeter 1: Estimating Length 2: Relating Centimetres and Metres 3: Measuring Length	Goat Island Measurements About YOU! To Scaffold: Getting Ready for School The Discovery	Unit 6 Questions 1, 2, $\text { 3, 4, 5, } 6 \text { (pp. 31-33) }$	Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared. Understanding attributes that can be measured - Extends understanding of length to other linear measurements (e.g., height, width, distance around). Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using standard units to estimate, measure, and make comparisons - Demonstrates ways to estimate, measure, compare, and order objects by length, perimeter, area, capacity, and mass with standard units by: using an intermediary object of a known measure; using multiple copies of a unit; iterating a single unit. - Selects and uses appropriate standard units to estimate, measure, and compare length, perimeter, area, capacity, mass, and time. - Uses the measurement of familiar objects as benchmarks to estimate another measure in standard units (e.g., doorknob is 1 m from the ground; room temperature is $21^{\circ} \mathrm{C}$).

3.SS.4. Demonstrate an understanding of measuring mass (g, kg) by - selecting and justifying referents for the units g and kg - modelling and describing the relationship between the units g and kg - estimating mass using referents - measuring and recording mass	Measurement Unit 3: Area, Mass, and Capacity 15: Measuring Mass	Measurements About YOU!	Unit 17 Questions 5, 6, 7, 8 (pp. 104-106)	Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using standard units to estimate, measure, and make comparisons - Uses standard sized objects to measure (e.g., 10 centicube rod). - Demonstrates ways to estimate, measure, compare, and order objects by length, perimeter, area, capacity, and mass with standard units by: using an intermediary object of a known measure; using multiple copies of a unit; iterating a single unit. - Selects and uses appropriate standard units to estimate, measure, and compare length, perimeter, area, capacity, mass, and time. - Uses the measurement of familiar objects as benchmarks to estimate another measure in standard units (e.g., doorknob is 1 m from the ground; room temperature is $21^{\circ} \mathrm{C}$). Understanding relationships among measurement units - Understands that decomposing and rearranging does not change the measure of an object. - Understands relationship of units of length (mm, cm, m),

				mass (g, kg), capacity (mL, L), and time (e.g., seconds, minutes, hours).
3.SS.5. Demonstrate an understanding of perimeter of regular and irregular shapes by - estimating perimeter using referents for centimetre or metre - measuring and recording perimeter (cm, m) - constructing different shapes for a given perimeter (cm, m) to demonstrate that many shapes are possible for a perimeter	Measurement Unit 1: Length and Perimeter 4: Introducing Perimeter 5: Measuring Perimeter 7: Length and Perimeter Consolidation	The Bunny Challenge To Scaffold: The Discovery	Unit 6 Questions 7, 8, $\begin{aligned} & 9,10,11,12 \\ & \text { (pp. 33-36) } \end{aligned}$ Unit 17 Question 2 (p. 103)	Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared. Understanding attributes that can be measured - Understands conservation of length (e.g., a string is the same length when straight and not straight), capacity (e.g., two different shaped containers may hold the same amount), and area (e.g., two surfaces of different shapes can have the same area). - Extends understanding of length to other linear measurements (e.g., height, width, distance around). Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using nonstandard units to estimate, measure, and make comparisons - Demonstrates ways to estimate, measure, compare, and order objects by length, area, capacity, and mass with non-standard units by: using an intermediary object; using multiple copies of a unit; iterating a single unit.

| | | | Selects and uses appropriate
 non-standard units to
 estimate, measure, and
 compare length, area,
 capacity, and mass.
 - Uses non-standard units as
 referents to estimate length
 (e.g., paper clips), area (e.g.,
 square tiles), mass (e.g.,
 cubes), and capacity (e.g.,
 cups). |
| :--- | :--- | :--- | :--- | :--- |

Mathology 3 Integrated Curriculum Correlation - Manitoba

Pearson
 mathology

Mathology 3 Correlation (Shape and Space: 3-D Objects and 2-D Shapes) - Manitoba

Curriculum Expectations	Grade 3 Mathology.ca	Mathology Little Books	Mathology Practice Workbook 3	Pearson Canada K-3 Mathematics Learning Progression
Specific Learning Outcomes 3.SS.6. Describe 3-D objects according to the shape of the faces, and the number of edges and vertices.	Geometry Unit 2: 3-D Solids 6: Exploring Geometric Attributes of Solids 10: Unit 2: 3-D Solids Consolidation	WONDERful Buildings To Scaffold: I Spy Awesome Buildings	Unit 10 Questions 1, 2, $\begin{aligned} & 3,4,5,6,7,8,10 \\ & \text { (pp. } 56-59,61 \text {) } \end{aligned}$	Big Ideas: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. Investigating geometric attributes and properties of 2-D shapes and 3-D solids - Analyzes geometric attributes of 2-D shapes and 3-D solids (e.g., number of sides/edges, faces, corners). - Classifies and names 2-D shapes and 3-D solids based on common attributes. - Classifies and names 2-D shapes and 3-D solids using geometric properties (e.g., a rectangle has 4 right angles).

3.SS.7. Sort regular and irregular polygons, including: - triangles - quadrilaterals - pentagons - hexagons - octagons according to the number of sides.	Geometry Unit 1: 2-D Shapes 1: Sorting Polygons 2: What's the Sorting Rule?	Gallery Tour WONDERful Buildings To Scaffold: I Spy Awesome Buildings Sharing Our Stories	Unit 9 Questions 1, 2, 3, 4, 5, 10 (pp. 50-52, 55)	Big Ideas: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. Investigating geometric attributes and properties of 2-D shapes and 3-D solids - Analyzes geometric attributes of 2-D shapes and 3-D solids (e.g., number of sides/edges, faces, corners). - Classifies and names 2-D shapes and 3-D solids based on common attributes. - Classifies and names 2-D shapes and 3-D solids using geometric properties (e.g., a rectangle has 4 right angles).

mathology

Mathology 3 Correlation (Statistics and Probability: Data Analysis) - Manitoba

Curriculum Expectations	Grade 3 Mathology.ca	Mathology Little Books	Mathology Practice Workbook 3	Pearson Canada K-3 Mathematics Learning Progression
Specific Learning Outcomes 3.SP.1. Collect first-hand data and organize it using - tally marks - line plots - charts - lists to answer questions.	Data Management and Probability Unit 1A: Data Management 2: Interpreting Line Plots 3: Collecting Data 5: Drawing Line Plots 6: Data Management Consolidation	Welcome to The Nature Park To Scaffold: Marsh Watch Big Buddy Days	Unit 14 Questions 2, 3 (p. 85)	Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. Formulating questions to learn about groups, collections, and events by collecting relevant data - Formulates questions that can be addressed by counting collections (e.g., How many of us come to school by bus, by car, walking?) and questions that can be addressed through observation (e.g., How many people do/do not use the crosswalk?). Collecting data and organizing them into categories - Collects data by determining

				(most) categories in advance (e.g., yes/no; list of choices). - Orders categories by frequency (e.g., most to least). Creating graphical displays of collected data Creates one-to-one displays (e.g., line plot, dot plot, bar graph). Reading and interpreting data displays - Reads and interprets information from data displays (e.g., orders by frequency, compares frequencies, determines total number of data points). - Describes the shape of data in informal ways (e.g., range, spread, gaps, mode). - Critiques whether the display used is appropriate for the data collected.
3.SP.2. Construct, label, and interpret bar graphs to solve problems.	Data Management and Probability Unit 1A: Data Management 1: Interpreting Bar Graphs 4: Drawing Bar Graphs 6: Consolidation	Welcome to The Nature Park To Scaffold: Marsh Watch Big Buddy Days	Unit 14 Questions 1, 4, 5, 8a (pp. 84, 86, 88)	Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. Creating graphical displays of collected data - Creates one-to-one displays (e.g., line plot, dot plot, bar graph). Reading and interpreting data displays

			Reads and interprets information from data displays (e.g., orders by frequency, fompares
frequences, determines total			
number of data points).			
- Describes the shape of data			
in informal ways (e.g., range,			
spread, gaps, mode).			
-Critiques whether the			
display used is appropriate			
for the data collected.			

