math logy

Correlation of Northwest Territories Program of Studies with Mathology Grade 4 (Number)

Curriculum Expectations	Grade 4 Mathology.ca	Mathology Practice Workbook 4	Pearson Canada Grades 4-6 Mathematics Learning Progression
General Outcome Develop number sense.			
Specific Outcomes 1. Represent and describe whole numbers to 10000 , pictorially and symbolically.	Number Unit 1: Number Relationships and Place Value 1: Representing Numbers to 10000 2: Composing and Decomposing Larger Numbers 6: Consolidation of Number Relationships and Place Value	Unit 2 Questions 1, 2, 3, 4, 5, 6, 7, 8, 9, 15 (pp. 8-11, 13)	Big Idea: Numbers are related in many ways. Decomposing and composing numbers to investigate equivalencies - Composes and decomposes whole numbers using standard and non-standard partitioning (e.g., 1000 is 10 hundreds or 100 tens). Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units - Writes and reads whole numbers in multiple forms (e.g., 1358; one thousand three hundred fifty-eight; $1000+300+50+$ 8). - Understands that the value of a digit is ten times the value of the digit one place to the right.
2. Compare and order numbers to 10000.	Number Unit 1: Number Relationships and Place Value 4: Comparing and Ordering Numbers 6: Consolidation of Number Relationships and Place Value	Unit 2 Questions 10, 11, 12, 16 (pp. 11-13)	Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Compares, orders, and locates whole numbers based on place-value understanding and records using <, =, > symbols.

Mathology 4 Curriculum Correlation - Northwest Territories

3. Demonstrate an understanding of addition of numbers with answers to 10000 and their corresponding subtractions (limited to 3 - and 4digit numerals) by: - using personal strategies for adding and subtracting - estimating sums and differences - solving problems involving addition and subtraction.	Number Unit 2: Fluency with Addition and Subtraction 7: Estimating Sums and Differences 8: Modelling Addition and Subtraction 9: Adding and Subtracting Larger Numbers 10: Using Mental Math to Add and Subtract 11: Creating and Solving Problems 12: Consolidation of Fluency with Addition and Subtraction	Unit 3 Questions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (pp. 14-20) Unit 14 Questions 2, 9 (pp. 91, 95)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Investigating number and arithmetic properties - Recognizes and generates equivalent numerical expressions using commutative and associative properties. - Understands operation relationships (e.g., inverse relationship between multiplication/division, addition/subtraction). - Understands the identity of operations (e.g., $5+0=5 ; 7 \times 1=7$). Developing conceptual meaning of operations - Models and develops meaning for whole number computation to four digits. Developing fluency of operations - Estimates the result of whole number operations using contextually relevant strategies (e.g., How many buses are needed to take the Grade 8 classes to the museum?). - Solves whole number computation using efficient strategies (e.g., mental computation, algorithms, calculating cost of transactions and change owing, saving money to make a purchase).
4. Apply the properties of 0 and 1 for multiplication and the property of 1 for division.	Number Unit 5: Fluency with Multiplication and Division Facts 24: Strategies for Multiplication 27: Strategies for Division 29: Consolidation of Fluency with Multiplication and Division Facts	Unit 15 Questions 1, 11 (pp. 99, 103)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Investigating number and arithmetic properties - Understands the identity of operations (e.g., $5+0=5 ; 7 \times 1=7$).

5. Describe and apply mental mathematics strategies to determine basic multiplication facts to 9×9 and related division facts.	Number Unit 5: Fluency with Multiplication and Division Facts 24: Strategies for Multiplication 25: Solving Multiplication Problems 26: Relating Multiplication and Division 27: Strategies for Division 29: Consolidation of Fluency with Multiplication and Division Facts Patterning Unit 1: Patterns and Relations 4: Investigating Number Relationships	Unit 15 Questions 1, 2, 3, 4, 11 (pp. 99-100, 103)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Investigating number and arithmetic properties - Recognizes and generates equivalent numerical expressions using commutative and associative properties. - Understands operational relationships (e.g., inverse relationship between multiplication/division, addition/subtraction). Developing fluency of operations - Fluently recalls multiplication and division facts to 100.
6. Demonstrate an understanding of multiplication (2- or 3-digit by 1-digit) to solve problems by: - using personal strategies for multiplication with and without concrete materials - using arrays to represent multiplication - connecting concrete representations to symbolic representations - estimating products - applying the distributive property.	Number Unit 6: Multiplying and Dividing Larger Numbers 30: Exploring Strategies for Multiplying 31: Estimating Products 35: Consolidation of Multiplying and Dividing Larger Numbers	Unit 18 Questions 1, 3, 4, 5, 7, 9, 10 (pp. 117-120)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Models and develops meaning for whole number computation to four digits. Developing fluency of operations - Estimates the result of whole number operations using contextually relevant strategies (e.g., How many buses are needed to take the Grade 8 classes to the museum?). - Solves whole number computation using efficient strategies (e.g., mental computation, algorithms, calculating cost of transactions and change owing, saving money to make a purchase).

7. Demonstrate an understanding of division (1-digit divisor and up to 2-digit dividend) to solve problems by: - using personal strategies for dividing with and without concrete materials - estimating quotients - relating division to multiplication.	Number Unit 5: Fluency with Multiplication and Division Facts 26: Relating Multiplication and Division 27: Strategies for Division 29: Consolidation of Fluency with Multiplication and Division Facts Number Unit 6: Multiplying and Dividing Larger Numbers 32: Exploring Strategies for Dividing 33: Estimating Quotients 34: Dividing with Remainders 35: Consolidation of Multiplying and Dividing Larger Numbers	Unit 18 Questions $1,4,5,8,9,11$, 12, 13, 14 (pp. 117-122)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Models and develops meaning for whole number computation to four digits. Developing fluency of operations - Estimates the results of whole number operations using contextually relevant strategies (e.g., How many buses are needed to take the Grade 8 classes to the museum?). - Solves whole number computation using efficient strategies (e.g., mental computation, algorithms, calculating cost of transactions and change owing, saving money to make a purchase).
8. Demonstrate an understanding of fractions less than or equal to one by using concrete, pictorial and symbolic representations to: - name and record fractions for the parts of a whole or a set - compare and order fractions - model and explain that for different wholes, two identical fractions may not represent the same quantity - provide examples of where fractions are used.	Number Unit 3: Fractions 13: What Are Fractions? 14: Counting by Unit Fractions 15: Exploring Different Representations of Fractions 17: Exploring Equivalence in Fractions 18: Comparing and Ordering Fractions 19: Consolidation of Fractions	Unit 8 Questions 1, 2, 8, $9,10,11$, 12, 13 (pp. 50-51, 53-55)	Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Compares, orders, and locates fractions with the same numerator or denominator using reasoning (e.g., $\frac{3}{5}>\frac{3}{6}$ because fifths are larger parts). Estimating quantities and numbers - Estimates the size and magnitude of fractions by comparing to benchmarks. Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Partitioning quantities to form fractions - Partitions fractional parts into smaller fractional parts (e.g., partitions halves into thirds to create sixths). - Uses models to describe, name, and count forward and backward by unit fractions.

			- Explains that two equivalent fractions represent the same part of a whole, but not necessarily equal quantities (e.g., $\frac{1}{2}$ of a set of 12 and $\frac{1}{2}$ of a set of 6 are equal fractions, but unequal quantities).
9. Represent and describe decimals (tenths and hundredths), concretely, pictorially and symbolically.	Number Unit 4: Decimals 20: Exploring Tenths 21: Exploring Hundredths 23: Consolidation of Decimals	Unit 9 Questions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18 (pp. 56-60, 62)	Big Idea: The set of real numbers is infinite. Extending whole number understanding to the set of real numbers Explores decimal fractions to tenths (e.g., $0.1,0.5,0.8$) and hundredths (e.g., 0.42 , $0.05,0.90)$. Big Idea: Numbers are related in many ways. Estimating quantities and numbers - Estimates the location of decimals and fractions on a number line. Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units - Uses fractions with denominators of 10 to develop decimal fraction understanding and notation (e.g., five-tenths is $\frac{5}{10}$ or 0.5). - Counts forwards and backwards by decimal units (e.g., 0.1, $0.2, \ldots 0.9,1.0$). - Understands that the value of a digit is ten times the value of the same digit one place to the right. - Understands that the value of a digit is one-tenth the value of the same digit one place to the left. - Writes and reads decimal numbers in multiple forms (e.g., numerals, number names, expanded form).

10. Relate decimals to fractions and fractions to decimals (to hundredths).	Number Unit 4: Decimals 20: Exploring Tenths 21: Exploring Hundredths 23: Consolidation of Decimals	Unit 9 Questions 2, 3, 15, 18 (fractions and decimals only) (pp. 57, 61-62)	Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units - Uses fractions with denominators of 10 to develop decimal fraction understanding and notation (e.g., five-tenths is $\frac{5}{10}$ or 0.5).
11. Demonstrate an understanding of addition and subtraction of decimals (limited to hundredths) by: - using personal strategies to determine sums and differences - estimating sums and differences - using mental math strategies to solve problems.	Number Unit 7: Operations with Fractions and Decimals 36: Estimating Sums and Differences with Decimals 37: Adding and Subtracting Decimals 38: Using Mental Math to Add and Subtract Decimals 39: Consolidation of Operations with Fractions and Decimals	Unit 11 Questions 1, 2, 3, 4, 5, 6, 7, 8, 9, 12 (pp. 69-74) Unit 14 Questions 1, 9 (pp. 90-91, 95)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Demonstrates an understanding of decimal number computation through modelling and flexible strategies. Developing fluency of operations - Estimates sums and differences of decimal numbers (e.g., calculating cost of transactions involving dollars and cents). - Solves decimal number computation using efficient strategies.

Pearson
 mathology

Correlation of Northwest Territories Program of Studies with Mathology Grade 4 (Patterns and Relations: Patterns)

$\left.\begin{array}{|l|l|l|l|}\hline \text { Curriculum Expectations } & \text { Grade 4 Mathology.ca } & \begin{array}{l}\text { Mathology Practice } \\ \text { Workbook 4 }\end{array} & \begin{array}{l}\text { Pearson Canada Grades 4-6 Mathematics Learning } \\ \text { Progression }\end{array} \\ \hline \begin{array}{l}\text { General Outcome } \\ \text { Use patterns to describe the world and to solve problems. }\end{array} \\ \hline \begin{array}{l}\text { Specific Outcomes } \\ \text { 1. Identify and describe patterns } \\ \text { found in tables and charts. }\end{array} & \begin{array}{l}\text { Patterning Unit 1: Patterns } \\ \text { and Relations } \\ \text { 2: Investigating Increasing and } \\ \text { Decreasing Patterns } \\ \text { 3: Representing Patterns } \\ \text { 4: Investigating Number } \\ \text { Relationships } \\ \text { 6: Consolidation of Patterns } \\ \text { and Relations }\end{array} & \begin{array}{l}\text { Unit 1 Questions 1, 3, 4, 12 } \\ \text { (pp. 2-4, 7) }\end{array} & \begin{array}{l}\text { Big Idea: Regularity and repetition form patterns } \\ \text { that can be generalized and predicted } \\ \text { mathematically. } \\ \text { Representing patterns, relations, and functions }\end{array} \\ \text { - Describes, generates, extends, translates, and } \\ \text { corrects number and shape patterns that follow a } \\ \text { predetermined rule. } \\ \text { Generalizing and analyzing patterns, relations, and } \\ \text { functions } \\ \text { - Explains the rule for numeric patterns including the } \\ \text { starting point and change (e.g., given: 16, 22, 28, 34, }\end{array}\right\}$

			using objects, tables, graphs, symbols, loops and nested loops in coding). Generalizing and analyzing patterns, relations, and functions - Explains the rule for numeric patterns including the starting point and change (e.g., given: 16, 22, 28, 34, Start at 16 and add 6 each time). - Describes numeric and shape patterns using words and numbers.
3. Represent, describe and extend patterns and relationships, using charts and tables, to solve problems.	Patterning Unit 1: Patterns and Relations 2: Investigating Increasing and Decreasing Patterns 3: Representing Patterns 6: Consolidation of Patterns and Relations	Unit 1 Questions 1, 5, 12 (pp. 2, 4, 7)	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically. Representing patterns, relations, and functions - Describes, generates, extends, translates, and corrects number and shape patterns that follow a predetermined rule. Generalizing and analyzing patterns, relations, and functions - Explains the rule for numeric patterns including the starting point and change (e.g., given: $16,22,28,34$, Start at 16 and add 6 each time). - Describes numeric and shape patterns using words and numbers.
4. Identify and explain mathematical relationships, using charts and diagrams, to solve problems.	Pattern Unit 1: Patterns and Relations 4: Investigating Number Relationships 5: Sorting in Venn Diagrams and Carroll Diagrams 6: Consolidation of Patterns and Relations	Unit 1 Questions 6, 7, 8 (p. 5)	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically. Representing patterns, relations, and functions - Describes, generates, extends, translates, and corrects number and shape patterns that follow a predetermined rule. Generalizing and analyzing patterns, relations, and functions - Explains the rule for numeric patterns including the starting point and change (e.g., given: $16,22,28,34$, Start at 16 and add 6 each time). - Describes numeric and shape patterns using words and numbers.

mathology

Correlation of Northwest Territories Program of Studies with Mathology Grade 4 (Patterns and Relations: Variables and Equations)

Curriculum Expectations	Grade 4 Mathology.ca	Mathology Practice Workbook 4	Pearson Canada Grades 4-6 Mathematics Learning Progression
General Outcome Represent algebraic expressions in multiple ways.			
Specific Outcomes 5. Express a given problem as an equation in which a symbol is used to represent an unknown number.	Patterning Unit 2: Variables and Equations 7: Using Symbols 8: Solving Equations Concretely 9: Solving Addition and Subtraction Equations 11: Solving Multiplication and Division Equations 12: Using Equations to Solve Problems 13: Consolidation of Variables and Equations	Unit 17 Questions 1, 3, 4, 5, 6, 11 (pp. 111-114, 116)	Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Understanding equality and inequality, building on generalized properties of numbers and operations - Expresses a one-step mathematical problem as an equation using a symbol or letter to represent an unknown number (e.g., Sena had some tokens and used four. She has seven left: $\square-4=7$). Using variables, algebraic expressions, and equations to represent mathematical relations - Understands an unknown quantity (i.e., variable) may be represented by a symbol or letter (e.g., 13 $\square=8 ; 4 n=12$). - Flexibly uses symbols and letters to represent unknown quantities in equations (e.g., knows that 4 $+\square=7 ; 4+x=7$; and $4+y=7$ all represent the same equation with \square, x, and y representing the same value). - Interprets and writes algebraic expressions (e.g., $2 n$ means two times a number; subtracting a number from 7 can be written as $7-n$). - Understands a variable as a changing quantity (e.g., $5 s$, where s can be any value).

6. Solve one-step equations involving a symbol to represent an unknown number.	Patterning Unit 2: Variables and Equations 8: Solving Equations Concretely 9: Solving Addition and Subtraction Equations $11:$ Solving Multiplication and Division Equations $12:$ Using Equations to Solve Problems $13:$ Consolidation of Variables and Equations	Unit 17 Questions $3,4,5,6,7$, (pp. 113-114, 116)	Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Understanding equality and inequality, building on generalized properties of numbers and operations - Determines an unknown number in simple one- step equations using different strategies (e.g., $n \times 3=$ $12 ; 13-\square=8)$. - Uses arithmetic properties to investigate and transform one-step addition and multiplication equations (e.g., $5+4=9$ and $5+a=9$ have the same structure and can be rearranged in similar ways to maintain equality: $4+5=9$ and $a+5=9)$. - Uses arithmetic properties to investigate and transform one-step subtraction and division equations (e.g., $12-5=7$ and $12-b=7$ have the same structure and can be rearranged in similar ways to maintain equality: $12-7=5$ and $12-7=b)$.

math name logy

Correlation of Northwest Territories Program of Studies with Mathology Grade 4
 (Shape and Space: Measurement)

Curriculum Expectations	Grade 4 Mathology.ca	Mathology Practice Workbook 4	Pearson Canada Grades 4-6 Mathematics Learning Progression
General Outcome Use direct and indirect measurement to solve problems.			
Specific Outcomes 1. Read and record time, using digital and analog clocks, including 24-hour clocks.	Measurement Unit 3: Time 12: Exploring Time 13: Telling Time in One- and Five-Minute Intervals 14: Telling Time on a 24 -Hour Clock 18: Consolidation of Time	Unit 10 Questions 1, 2, 3, 4, 5, 6, 13 (pp. 63-65, 68)	Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons - Reads and records time (i.e., digital and analogue) and calendar dates. Understanding relationships among measured units - Understands relationship among different measures of time (e.g., seconds, minutes, hours, days, decades).
2. Read and record calendar dates in a variety of formats.	Measurement Unit 3: Time 17: Exploring Calendar Dates 18: Consolidation of Time	N/A	Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons - Reads and records time (i.e., digital and analogue) and calendar dates. Understanding relationships among measured units - Understands relationship among different measures of time (e.g., seconds, minutes, hours, days, decades).

3. Demonstrate an
 understanding of area of regular

 and irregular 2-D shapes by:- recognizing that area is measured in square units
- selecting and justifying referents for the units cm^{2} or m^{2}
- estimating area, using referents for cm^{2} or m^{2}
- determining and recording area (cm^{2} or m^{2})
- constructing different rectangles for a given area (cm^{2} or m^{2}) in order to demonstrate that many different rectangles may have the same area.

Measurement Unit 1: Length Perimeter, and Area
 4: Estimating and Measuring Area in Square Metres
 5: Estimating and Measuring Area in Square Centimetres
 6: Exploring the Area of
 Rectangles
 7: Consolidation of Length
 Perimeter, and Area

Unit 16 Questions 5, 6, 7, 8, 9, 10, 11 (pp. 106-110)

Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared.
Understanding attributes that can be measured, compared, and ordered

- Understands area as an attribute of 2-D shapes that can be measured and
compared.

Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons

- Develops understanding of square units (e.g., square unit, square cm , square m) to measure area of 2-D shapes.

mathôlogy

Correlation of Northwest Territories Program of Studies with Mathology Grade 4 (Shape and Space: 3-D Objects and 2-D Shapes)

Curriculum Expectations	Grade 4 Mathology.ca	Mathology Practice Workbook 4	Pearson Canada Grades 4-6 Mathematics Learning Progression
General Outcome Describe the characteristics of 3-D objects and 2-D shapes, and analyze the relationships among them.			
Specific Outcomes 4. Describe and construct right rectangular and right triangular prisms.	Geometry Unit 1A: 2-D Shapes and 3-D Solids 2: Identifying and Describing Prisms 3: Constructing Models of Prisms 5: Consolidation of 2-D Shapes and 3-D Solids	Unit 5 Questions 3, 4, 14 (pp. 28-29, 34)	Big Ideas: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. Investigating geometric attributes and properties of 2-D shapes and 3-D solids - Sorts, describes, constructs, and classifies 3-D objects based on edges, faces, vertices, and angles (e.g., prisms, pyramids). Investigating 2-D shapes, 3-D solids, and their attributes through composition and decomposition - Identifies and constructs nets for 3-D objects made from triangles and rectangles.

mathology

Correlation of Northwest Territories Program of Studies with Mathology Grade 4
 (Shape and Space: Transformations)

Curriculum Expectations	Grade 4 Mathology.ca	Mathology Practice Workbook 4	Pearson Canada Grades 4-6 Mathematics Learning Progression
General Outcome Describe and analyze position and motion of objects and shapes.			
Specific Outcomes 5. Describe an understanding of congruency, concretely and pictorially.	Geometry Unit 1A: 2-D Shapes and 3-D Solids 1: Exploring Congruence 5: Consolidation of 2-D Shapes and 3-D Solids	Unit 5 Questions 1, 2, 14 (pp. 27, 34)	Big Ideas: 2-D shapes and 3-D solids can be transformed in many ways and analyzed for change. Exploring 2-D shapes and 3-D solids by applying and visualizing transformations - Demonstrates an understanding of congruency (i.e., same side lengths and angles).
6. Demonstrate an understanding of line symmetry by: - identifying symmetrical 2-D shapes - creating symmetrical 2D shapes - drawing one or more lines of symmetry in a 2D shape.	Geometry Unit 1A: 2-D Shapes and 3-D Solids 4: Understanding Line Symmetry 5: Consolidation of 2-D Shapes and 3-D Solids	Unit 5 Questions 5, 6, 7, 14 (pp. 29-30, 34)	Big Ideas: 2-D shapes and 3-D solids can be transformed in many ways and analyzed for change. Exploring symmetry to analyze 2-D shapes and 3-D solids - Draws and identifies lines of symmetry (i.e., vertical, horizontal, diagonal, oblique) in 2-D shapes and designs.

mathology

Correlation of Northwest Territories Program of Studies with Mathology Grade 4 (Statistics and Probability: Data Analysis)

$\left.\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Curriculum } \\ \text { Expectations }\end{array} & \text { Grade 4 Mathology.ca } & \begin{array}{l}\text { Mathology Practice } \\ \text { Workbook 4 }\end{array} & \begin{array}{l}\text { Pearson Canada Grades 4-6 Mathematics Learning } \\ \text { Progression }\end{array} \\ \hline \begin{array}{l}\text { General Outcome } \\ \text { Collect, display and analyze data to solve problems. }\end{array} \\ \hline \begin{array}{l}\text { Specific Outcomes } \\ \text { 1. Demonstrate an } \\ \text { understanding of } \\ \text { many-to-one } \\ \text { correspondence. }\end{array} & \begin{array}{l}\text { Data Management Unit 1A: Data } \\ \text { Management } \\ \text { 1: Interpreting and Drawing } \\ \text { Pictographs } \\ \text { 2: Interpreting and Drawing Bar } \\ \text { Graphs }\end{array} & \begin{array}{l}\text { Unit 12 Questions 1, 2, 3, 9 } \\ \text { (pp. 77-79, 83) }\end{array} & \begin{array}{l}\text { Big Idea: Formulating questions, collecting data, and } \\ \text { consolidating data in visual and graphical displays help us } \\ \text { understand, predict, and interpret situations that involve } \\ \text { uncertainty, variability, and randomness. } \\ \text { Reading and interpreting data displays and analyzing } \\ \text { variability }\end{array} \\ \text { 3: Comparing Graphs } \\ \text { 4: Consolidation of Data Management }\end{array}\right] \begin{array}{l}\text { - Reads and interprets data displays using many-to-one } \\ \text { correspondence. }\end{array}\right\}$

Unit 7: Coding Not required, but recommended
Unit 14: Financial Literacy Not required, but recommended

