mathology

Correlation of Saskatchewan Program of Studies with Mathology Grade 4 (Number)

Curriculum Expectations	Grade 4 Mathology.ca	Mathology Practice Workbook 4	Pearson Canada Grades 4-6 Mathematics Learning Progression
Goals: Number Sense, Logical Thinking, Mathematical Attitude			
Outcomes N4.1 Demonstrate an understanding of whole numbers to 10000 (pictorially, physically, orally, in writing, and symbolically) by: - representing - describing - comparing two numbers - ordering three or more numbers.	Number Unit 1: Number Relationships and Place Value 1: Representing Numbers to 10000 2: Composing and Decomposing Larger Numbers 4: Comparing and Ordering Numbers 6: Consolidation of Number Relationships and Place Value	Unit 2 Questions $1,2,3,4,5,6,7$, $8,9,10,11,12,15,16$ (pp. 8-13)	Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Compares, orders, and locates whole numbers based on place-value understanding and records using <, =, > symbols. Decomposing and composing numbers to investigate equivalencies - Composes and decomposes whole numbers using standard and non-standard partitioning (e.g., 1000 is 10 hundreds or 100 tens). Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units - Writes and reads whole numbers in multiple forms (e.g., 1358; one thousand three hundred fifty-eight; $1000+300+50+8$). - Understands that the value of a digit is ten times the value of the same digit one place to the right.
N4.2 Demonstrate an understanding of addition of whole numbers with answers to 10000 and their corresponding subtractions (limited to 3- and 4-digit numerals) by:	Number Unit 2: Fluency with Addition and Subtraction 7: Estimating Sums and Differences 8: Modelling Addition and Subtraction	Unit 3 Questions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (pp. 14-20) Unit 14 Questions 2, 9 (pp. 91, 95)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Investigating number and arithmetic properties - Recognizes and generates equivalent

Pearson

- using personal strategies for adding and subtracting - estimating sums and differences - solving problems involving addition and subtraction.	9: Adding and Subtracting Larger Numbers 10: Using Mental Math to Add and Subtract 11: Creating and Solving Problems 12: Consolidation of Fluency with Addition and Subtraction		numerical expressions using commutative and associative properties. - Understands operation relationships (e.g., inverse relationship between multiplication/division, addition/subtraction). - Understands the identity of operations (e.g., $5+0=5 ; 7 \times 1=7$). Developing conceptual meaning of operations - Models and develops meaning for whole number computation to four digits. Developing fluency of operations - Estimates the result of whole number operations using contextually relevant strategies (e.g., How many buses are needed to take the Grade 8 classes to the museum?). - Solves whole number computation using efficient strategies (e.g., mental computation, algorithms, calculating cost of transactions and change owing, saving money to make a purchase).
N4.3 Demonstrate an understanding of multiplication of whole numbers (limited to numbers less than or equal to 10) by: - applying mental mathematics strategies - explaining the results of multiplying by 0 and 1.	Number Unit 5: Fluency with Multiplication and Division Facts 24: Strategies for Multiplication 25: Solving Multiplication Problems 26: Relating Multiplication and Division 27: Strategies for Division 29: Consolidation of Fluency with Multiplication and Division Facts Patterning Unit 1: Patterns and Relations 4: Investigating Number Relationships	Unit 15 Questions 1, 2, 3, 4, 11 (pp. 99-100, 103)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Investigating number and arithmetic properties - Recognizes and generates equivalent numerical expressions using commutative and associative properties. - Understands operational relationships (e.g., inverse relationship between multiplication/division, addition/subtraction). - Understands the identity of operations (e.g., $5+0=5 ; 7 \times 1=7)$ Developing fluency of operations - Fluently recalls multiplication and division facts to 100.

Goals: Number Sense, Logical Thinking, Mathematical Attitude, Spatial Sense

Outcomes

N4.4 Demonstrate an understanding of multiplication
(2- or 3-digit by 1-digit) by:

- using personal strategies for multiplication with and without concrete materials
- using arrays to represent multiplication
- connecting concrete representations to symbolic representations
- estimating products
- solving problems.

N4.5 Demonstrate an

 understanding of division (1digit divisor and up to 2-digit dividend) to solve problems by:- using personal strategies for dividing with and without concrete materials
- estimating quotients
- explaining the results of dividing by 1
- solving problems involving division of whole numbers
- relating division to multiplication.

Number Unit 6: Multiplying \quad Unit 18 Questions 1, 3, 4, 5, 7, 9 and Dividing Larger Numbers

30: Exploring Strategies for
Multiplying
31: Estimating Products
35: Consolidation of
Multiplying and Dividing
Larger Numbers

Number Unit 5: Fluency with
Multiplication and Division

Facts

27: Strategies for Division
29: Consolidation of Fluency with Multiplication and
Division Facts

Number Unit 6: Multiplying

and Dividing Larger Numbers
32: Exploring Strategies for Dividing
33: Estimating Quotients
34: Dividing with Remainders
35: Consolidation of
Multiplying and Dividing
Larger Numbers

Big Idea: Quantities and numbers can be operated on to determine how many and

 how much.Developing conceptual meaning of operations

- Models and develops meaning for whole number computation to four digits

Developing fluency of operations

- Estimates the result of whole number operations using contextually relevant strategies (e.g., How many buses are needed to take the Grade 8 classes to the museum?).
- Solves whole number computation using efficient strategies (e.g., mental computation, algorithms, calculating cost of transactions and change owing, saving money to make a purchase).

Big Idea: Quantities and numbers can be

 operated on to determine how many and how much.Investigating number and arithmetic

properties

Understands operation relationships (e.g. inverse relationship between multiplication/division, addition/subtraction) - Understands the identity of operations (e.g., $5+0=5 ; 7 \times 1=7$).
Developing conceptual meaning of operations

- Models and develops meaning for whole number computation to four digits Developing fluency of operations
- Estimates the results of whole number operations using contextually relevant strategies (e.g., How many buses are needed to take the Grade 8 classes to the museum?).
- Solves whole number computation using efficient strategies (e.g., mental computation,

			algorithms, calculating cost of transactions and change owing, saving money to make a purchase).
N4.6 Demonstrate an understanding of fractions less than or equal to one by using concrete and pictorial representations to: - name and record fractions for the parts of a whole or a set - compare and order fractions - model and explain that for different wholes, two identical fractions may not represent the same quantity - provide examples of where fractions are used.	Number Unit 3: Fractions 13: What Are Fractions? 14: Counting by Unit Fractions 15: Exploring Different Representations of Fractions 17: Exploring Equivalence in Fractions 18: Comparing and Ordering Fractions 19: Consolidation of Fractions	Unit 8 Questions 1, 2, 8, 9, 10, 11, 12, 13 (pp. 50-51, 53-55)	Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Compares, orders, and locates fractions with the same numerator or denominator using reasoning (e.g., $\frac{3}{5}>\frac{3}{6}$ because fifths are larger parts). Estimating quantities and numbers - Estimates the size and magnitude of fractions by comparing to benchmarks. Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Partitioning quantities to form fractions - Partitions fractional parts into smaller fractional parts (e.g., partitions halves into thirds to create sixths). - Uses models to describe, name, and count forward and backward by unit fractions. - Explains that two equivalent fractions represent the same part of a whole, but not necessarily equal quantities (e.g., $\frac{1}{2}$ of a set of 12 and $\frac{1}{2}$ of a set of 6 are equal fractions, but unequal quantities).
N4.7 Demonstrate an understanding of decimal numbers in tenths and hundredths (pictorially, orally, in writing, and symbolically) by: - describing - representing - relating to fractions.	Number Unit 4: Decimals 20: Exploring Tenths 21: Exploring Hundredths 23: Consolidation of Decimals	Unit 9 Questions 1, 2, 3, 4, 5, 6, 7, $8,9,10,12,15,18$ (fractions and decimals only) (pp. 56-62)	Big Idea: The set of real numbers is infinite. Extending whole number understanding to the set of real numbers - Explores decimal fractions to tenths (e.g., 0.1, $0.5,0.8$) and hundredths (e.g., 0.42, 0.05 , 0.90). Big Idea: Numbers are related in many ways. Estimating quantities and numbers

			- Estimates the location of decimals and fractions on a number line. Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units - Uses fractions with denominators of 10 to develop decimal fraction understanding and notation (e.g., five-tenths is $\frac{5}{10}$ or 0.5). - Counts forwards and backwards by decimal units (e.g., 0.1, 0.2, ... 0.9, 1.0). - Understands that the value of a digit is ten times the value of the same digit one place to the right. - Understands that the value of a digit is onetenth the value of the same digit one place to the left. - Writes and reads decimal numbers in multiple forms (e.g., numerals, number names, expanded form).
N4.8 Demonstrate an understanding of addition and subtraction of decimals limited to hundredths (concretely, pictorially, and symbolically) by: - using compatible numbers - estimating sums and differences - using mental math strategies - solving problems.	Number Unit 7: Operations with Fractions and Decimals 36: Estimating Sums and Differences with Decimals 37: Adding and Subtracting Decimals 38: Using Mental Math to Add and Subtract Decimals 39: Consolidation of Operations with Fractions and Decimals	Unit 11 Questions 1, 2, 3, 4, 5, 6, 7, 8, 9, 12 (pp. 69-74) Unit 14 Questions 1, 9 (pp. 90-91, 95)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Demonstrates an understanding of decimal number computation through modelling and flexible strategies. Developing fluency of operations - Estimates sums and differences of decimal numbers (e.g., calculating cost of transactions involving dollars and cents). - Solves decimal number computation using efficient strategies.

mathology

Correlation of Saskatchewan Program of Studies with Mathology Grade 4 (Patterns and Relations)

Curriculum Expectations	Grade 4 Mathology.ca	Mathology Practice Workbook 4	Pearson Canada Grades 4-6 Mathematics Learning Progression
Goals: Number Sense, Logical Thinking, Mathematical Attitude, Spatial Sense			
Outcomes P4.1 Demonstrate an understanding of patterns and relations by: - identifying and describing patterns and relations in a chart, table, or diagram - reproducing patterns and relations in a chart, table, or diagram using manipulatives - creating charts, tables, or diagrams to represent patterns and relations - solving problems involving patterns and relations.	Patterning Unit 1: Patterns and Relations 2: Investigating Increasing and Decreasing Patterns 3: Representing Patterns 4: Investigating Number Relationships 5: Sorting in Venn Diagrams and Carroll Diagrams 6: Consolidation of Patterns and Relations	Unit 1 Questions 1, 3, 4, 5, 6, 7, 8, 12 (pp. 2-5, 7)	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically. Representing patterns, relations, and functions - Describes, generates, extends, translates, and corrects number and shape patterns that follow a predetermined rule. - Uses multiple approaches to model situations involving repetition (i.e., repeating patterns) and change (i.e., increasing/decreasing patterns) (e.g., using objects, tables, graphs, symbols, loops and nested loops in coding). Generalizing and analyzing patterns, relations, and functions - Explains the rule for numeric patterns including the starting point and change (e.g., given: $16,22,28,34$, Start at 16 and add 6 each time). - Describes numeric and shape patterns using words and numbers.
P4.2 Demonstrate an understanding of equations involving symbols to represent an unknown value by: - writing an equation to represent a problem - solving one-step equations.	Patterning Unit 2: Variables and Equations 7: Using Symbols 8: Solving Equations Concretely 9: Solving Addition and Subtraction Equations	Unit 17 Questions 1, 2, 3, 4, 5, 6, 7, 11 (pp. 111-114, 116)	Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Understanding equality and inequality, building on generalized properties of numbers and operations - Expresses a one-step mathematical problem as an equation using a symbol or letter to represent an unknown number (e.g., Sena had some tokens and used four. She has seven left: $\square-4=7$).

mathology

Correlation of Saskatchewan Program of Studies with Mathology Grade 4
 (Shape and Space)

Curriculum Expectations	Grade 4 Mathology.ca	Mathology Practice Workbook 4	Pearson Canada Grades 4-6 Mathematics Learning Progression
Goals: Number Sense, Logical Thinking, Mathematical Attitude			
Outcomes SS4.1 Demonstrate an understanding of time by: - reading and recording time using digital and analog clocks (including 24-hour clocks) - reading and recording calendar dates in a variety of formats.	Measurement Unit 3: Time 12: Exploring Time 13: Telling Time in One- and Five-Minute Intervals 14: Telling Time on a 24 -Hour Clock 17: Exploring Calendar Dates 18: Consolidation of Time	Unit 10 Questions 1, 2, 3, 4, 5, 6, 13 (pp. 63-65, 68)	Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons - Reads and records time (i.e., digital and analogue) and calendar dates. Understanding relationships among measured units - Understands relationship among different measures of time (e.g., seconds, minutes, hours, days, decades).
SS4.2 Demonstrate an understanding of area of regular and irregular 2-D shapes by: - recognizing that area is measured in square units - selecting and justifying referents for the units cm^{2} or m^{2} - estimating area by using referents for cm^{2} or m^{2} - determining and recording area (cm^{2} or m^{2}) - constructing different rectangles for a given area	Measurement Unit 1: Length, Perimeter, and Area 4: Estimating and Measuring Area in Square Metres 5: Estimating and Measuring Area in Square Centimetres 6: Exploring the Area of Rectangles 7: Consolidation of Length, Perimeter, and Area	Unit 16 Questions 5, 6, 7, 8, 9, 10, 11 (pp. 106-110)	Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared. Understanding attributes that can be measured, compared, and ordered - Understands area as an attribute of 2-D shapes that can be measured and compared. Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons - Develops understanding of square units (e.g., square unit, square cm , square m) to measure area of 2-D shapes.

$\left(\mathrm{cm}^{2}\right.$ or $\left.\mathrm{m}^{2}\right)$ in order to demonstrate that many different rectangles may have the same area.			
Goals: Logical Thinking, Mathematical Attitude, Spatial Sense			
Outcomes SS4.3 Demonstrate an understanding of rectangular and triangular prisms by: - identifying common attributes - comparing - constructing models.	Geometry Unit 1A: 2-D Shapes and 3-D Solids 2: Identifying and Describing Prisms 3: Constructing Models of Prisms 5: Consolidation of 2-D Shapes and 3-D Solids	Unit 5 Questions 3, 4, 14 (pp. 28-29, 34)	Big Ideas: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. Investigating geometric attributes and properties of 2-D shapes and 3-D solids - Sorts, describes, constructs, and classifies 3-D objects based on edges, faces, vertices, and angles (e.g., prisms, pyramids). Investigating 2-D shapes, 3-D solids, and their attributes through composition and decomposition - Identifies and constructs nets for 3-D objects made from triangles and rectangles.
SS4.4 Demonstrate an understanding of line symmetry by: - identifying symmetrical 2D shapes - creating symmetrical 2-D shapes - drawing one or more lines of symmetry in a 2-D shape.	Geometry Unit 1A: 2-D Shapes and 3-D Solids 4: Understanding Line Symmetry 5: Consolidation of 2-D Shapes and 3-D Solids	Unit 5 Questions 5, 6, 7, 14 (pp. 29-30, 34)	Big Ideas: 2-D shapes and 3-D solids can be transformed in many ways and analyzed for change. Exploring symmetry to analyze 2-D shapes and 3-D solids - Draws and identifies lines of symmetry (i.e., vertical, horizontal, diagonal, oblique) in 2-D shapes and designs.

mathology

Correlation of Saskatchewan Program of Studies with Mathology Grade 4 (Statistics and Probability)

Curriculum Expectations	Grade 4 Mathology.ca	Mathology Practice Workbook 4	Pearson Canada Grades 4-6 Mathematics Learning Progression
Goals: Number Sense, Logical Thinking, Mathematical Attitude, Spatial Sense			
Outcomes SP4.1 Demonstrate an understanding of many-to-one correspondence by: - comparing correspondences on graphs - justifying the use of many-to-one correspondences - interpreting data shown using a many-to-one correspondence - creating bar graphs and pictographs using many-to-one correspondence.	Data Management Unit 1A: Data Management 1: Interpreting and Drawing Pictographs 2: Interpreting and Drawing Bar Graphs 3: Comparing Graphs 4: Consolidation of Data Management	Unit 12 Questions 1, 2, 3, 9 (pp. 77-79, 83)	Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. Creating graphical displays of collected data - Represents data graphically using many-to-one correspondence with appropriate scales and intervals (e.g., each symbol on pictograph represents 10 people). Reading and interpreting data displays and analyzing variability - Reads and interprets data displays using many-toone correspondence. Drawing conclusions by making inferences and justifying decisions based on data collected. - Draws conclusions based on data presented.

Unit 7: Coding Not required, but recommended
Unit 14: Financial Literacy Not required, but recommended

Pearson

