Activity 2 Assessment
Measuring Length in Different Units

Investigating Length		
Identifies which metric unit (mm, cm, or m) should be used to measure the length of an object. Acm is the width of my finger. The thickness of a nickel is much less than 1 cm , so I would use millimetres to measure it."	Uses benchmarks to estimate and measure length using metric units. "The paper clip is a little more than two fingertips long, so I estimate its length to be about 2 cm . I measured to check. It was about 2.5 cm long."	Chooses an appropriate metric unit to estimate and measure lengths of objects and explains reasoning. A kangaroo can jump 750 cm in one leap. "To measure the length of the kangaroo's jump, I would use metres because I can picture the length being between 7 and 8 metre sticks long."
Observations/Documentation		

Activity 2 Assessment

Measuring Length in Different Units

Investigating Length (cont'd)		
Explains the relationships among mm, cm, m, and km and converts length measures. A kangaroo can jump 750 cm in one leap. $\begin{gathered} " 100 \mathrm{~cm}=1 \mathrm{~m} ; 750 \div 100=7.5 \\ \text { so } 750 \mathrm{~cm}=7.5 \mathrm{~m} ; \\ 1 \mathrm{~cm}=10 \mathrm{~mm} ; 750 \times 10=7500 \\ \text { so } 750 \mathrm{~cm}=7500 \mathrm{~mm} \end{gathered}$ I would give the length of the jump in metres as it is more reasonable."	Compares and orders lengths when measures are given in different units. Lengths of jumps of different animals: Rabbit: 3000 mm Red Kangaroo: 12.2 m Chipmunk: 690 cm "I would convert the lengths to metres: $3000 \mathrm{~mm}=3 \mathrm{~m}$ and $690 \mathrm{~cm}=6.9 \mathrm{~m}$. The animals ordered from longest to shortest jump: rabbit, 3 m; chipmunk, 6.9 m; red kangaroo, 12.2 m."	Flexibly uses the relationships among metric units to estimate, measure, and solve problems involving length. Dakota buys a spool of 200 m of fishing line. Dakota uses 950 cm of the line. How much line is left on the spool? "I convert 950 cm to metres. $1 \mathrm{~m}=100 \mathrm{~cm} \text { and } 950 \div 100=9.5 .$ Dakota used 9.5 m of fishing line. So, there is $200 \mathrm{~m}-9.5 \mathrm{~m}=190.5 \mathrm{~m}$ of line left on the spool."
Observations/Documentation		

