mathology

Correlation of Ontario Program of Studies with Mathology Grade 6

Overall Expectation
 A1. Social-Emotional Learning (SEL) Skills and the Mathematical Processes

Mathology provides teachers with a flexible framework for Social Emotional Learning Skills, by including:

- Diverse resources in real-world contexts, so students can see themselves and others while positively engaging in mathematical activities
- Differentiated support to cope with challenges, meet students where they are and move them forward
- Learning opportunities (small group, pair, whole class), to work collaboratively on math problems, share thinking, and listen to the thinking of others
- Digital (e.g., virtual tools) and printable resources (e.g., lesson slides, line masters, and math mats), which allow students to reveal their mathematical thinking in a risk-free environment
- A variety of voices (built by and for Canadian learners) and opportunities to support local contexts (modifiable resources)

Curriculum Expectations	Grade 6 Mathology.ca	Mathology Practice Workbook 6	Pearson Canada Grades 4-6 Mathematics Learning Progression
B. Number			
B1. Number Sense demonstrate an understanding of numbers and make connections to the way numbers are used in everyday life			
Rational Numbers			
B1.1 read and represent whole numbers up to and including one million, using appropriate tools and strategies, and describe various ways they are used in everyday life	Number Unit 1: Number Relationships and Place Value 1: Representing Larger Numbers (to 1000000 and Beyond) 2: Representing Numbers in Different Forms 5. Consolidation of Number Relationships and Place Value	Unit 2 Questions 1, 2, 3 (p. 9)	Big Idea: The set of real numbers is infinite. Extending whole number understanding to the set of real numbers - Extends whole number understanding to 1000000. Decomposing and composing numbers to investigate equivalencies - Composes and decomposes whole numbers using standard and non-standard partitioning (e.g., 1000 is 10 hundreds or 100 tens). Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units

			- Writes and reads whole numbers in multiple forms (e.g., 1358; one thousand three hundred fifty-eight; $1000+300$ $+50+8)$. - Understands that the value of a digit is ten times the value of the same digit one place to the right.
B1.2 read and represent integers, using a variety of tools and strategies, including horizontal and vertical number lines	Number Unit 3: Fractions, Decimals, Percents, and Integers 19: Representing Integers 21. Consolidation of Fractions, Decimals, Percents, and Integers	Unit 7 Questions 11, 12 (pp. 49-50)	Big Idea: The set of real numbers is infinite Extending whole number understanding to the set of real numbers - Extends whole number understanding to negative numbers.
B1.3 compare and order integers, decimal numbers, and fractions, separately and in combination, in various contexts	Number Unit 3: Fractions, Decimals, Percents, and Integers 14: Comparing and Ordering Fractions 17: Comparing and Ordering Fractions and Decimals 20: Comparing and Ordering Integers 21. Consolidation of Fractions, Decimals, Percents, and Integers	Unit 7 Questions 3, 5, 6, 7, $12,13,14,15,16$ (pp. 46-47, 50-51)	Big Idea: The set of real numbers is infinite Extending whole number understanding to the set of real numbers - Extends whole number understanding to negative numbers.
Fractions, Decimals, and Percents			
B1.4 read, represent, compare, and order decimal numbers up to thousandths, in various contexts	Number Unit 3: Fractions, Decimals, Percents, and Integers 15: Representing Decimals 16: Comparing and Ordering Decimals 21. Consolidation of Fractions, Decimals, Percents, and Integers	Unit 7 Questions 6, 7, 8, 9, 15, 16 (pp. 47-48, 50-51)	Big Idea: The set of real numbers is infinite. Extending whole number understanding to the set of real numbers - Extends decimal number understanding to thousandths. Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Compares, orders, and locates decimal numbers using place-value understanding. Decomposing and composing numbers to investigate equivalencies

			- Composes and decomposes decimal numbers using standard and non-standard partitioning (e.g., 1.6 is 16 tenths or 0.16 tens). Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units - Understands that the value of a digit is ten times the value of the same digit one place to the right. - Understands that the value of a digit is one-tenth the value of the same digit one place to the left. - Writes and reads decimal numbers in multiple forms (e.g., numerals, number names, expanded form).
B1.5 round decimal numbers, both terminating and repea ting, to the nearest tenth, hundredth, or whole number, as applicable, in various contexts	Number Unit 3: Fractions, Decimals, Percents, and Integers 16: Comparing and Ordering Decimals 21. Consolidation of Fractions, Decimals, Percents, and Integers	Unit 3 Question 12 (p. 19) Unit 7 Questions 6, 16 (pp. 47, 51)	Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Provides approximate decimal values using multiple strategies (e.g., estimation, rounding, truncating).
B1.6 describe relationships and show equivalences among fractions and decimal numbers up to thousandths, using appropriate tools and drawings, in various contexts	Number Unit 3: Fractions, Decimals, Percents, and Integers 15: Representing Decimals 17: Comparing and Ordering Fractions and Decimals 21. Consolidation of Fractions, Decimals, Percents, and Integers	Unit 7 Questions 8, 9, 10, 15, 16 (pp. 48-51)	Big Idea: Numbers are related in many ways. Decomposing and composing numbers to investigate equivalencies - Models and explains the relationship between a fraction and its equivalent decimal form (e.g., $\frac{2}{5}=\frac{4}{10}=0.4$). - Models and explains the relationships among fractions, decimals, and percents. - Translates flexibly between representations. Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units - Uses fractions with denominators of 10 to develop decimal fraction understanding and notation (e.g., fivetenths is $\frac{5}{10}$ or 0.5). - Understands that the value of a digit is ten times the value of the same digit one place to the right. - Understands that the value of a digit is one-tenth the value of the same digit one place to the left.

B2. Operations

use knowledge of numbers and operations to solve mathematical problems encountered in everyday life
Properties and Relationships

B2.1 use the properties of operations, and the relationships between operations, to solve problems involving whole numbers, decimal numbers, fractions, ratios, rates, and whole number percents, including those requiring multiple steps or multiple operations

Number Unit 2: Fluency with Whole Numbers
 6: Solving Problems with
 Whole Numbers
 7: Estimating Reasonableness of Solutions

8: The Order of Operations
9: Mental Math Strategies
10: Unit Rates
11: Exploring Ratios
12. Consolidation of Fluency
with Whole Numbers

Number Unit 4: Operations
with Fractions, Decimals, and Percents
22: Multiplying Decimals by 1Digit Numbers
24: Dividing Decimals by 1-
Digit Numbers
25: Dividing 3-Digit Whole
Numbers by Decimal Tenths
26: Adding and Subtracting
Decimals
27: Adding and Subtracting Fractions
28: Multiplying and Dividing
Whole Numbers by Proper
Fractions
29: Using Mental Math to
Calculate Percents
30. Consolidation of

Operations with Fractions
Decimals, and Percents

> Unit 3 Questions 1, 2, 3, 4,
> $5,6,7,8,9,10,11,12,13$,
> 14 (pp. $15-20$)
> Unit 8 Questions 1, 2, 3, 4,
> $5,6,7,13$ (pp. $52-55,58$)

Unit 12 Questions 1, 2, 3, 4, $5,6,7,8,9,10,11,12,13$, 14 (pp. 81-87)

Big Idea: Numbers are related in many ways. Using ratios, rates, proportions, and percents creates a relationship between quantities

- Demonstrates multiplicative reasoning by applying unit rates in whole number contexts (e.g., If she earns $\$ 12$ per hour, how much will she earn for 5 hours of work?).
- Understands the concept of ratio as a relationship between two quantities (e.g., 3 wins to 2 losses).
- Understands and applies the concept of unit rates (e.g., If 3 kg is $\$ 5$, how much is 1 kg or how many kg for $\$ 1$?).
- Understands and applies the concept of percentage as a rate per 100 (e.g., calculating sales tax, tips, or discounts) Big Idea: Quantities and numbers can be operated on to determine how many and how much.
Developing conceptual meaning of operations
- Extends whole number computation models to larger numbers.
- Demonstrates an understanding of decimal number computation through modelling and flexible strategies. Developing fluency of operations
- Solves whole number computation using efficient strategies (e.g., mental computation, algorithms, calculating cost of transactions and change owing, saving money to make a purchase).
- Solves decimal number computation using efficient
strategies.

Math Facts			
B2.2 understand the divisibility rules and use them to determine whether numbers are divisible by 2 , $3,4,5,6,8,9$, and 10	Number Unit 1: Number Relationships and Place Value 3: Identifying Factors and Multiples 4: Identifying Prime and Composite Numbers 5: Consolidation of Number Relationships and Place Value Number Unit 2: Fluency with Whole Numbers 6: Solving Problems with Whole Numbers 10: Unit Rates Number Unit 4: Operations with Fractions, Decimals, and Percents 24: Dividing Decimals by 1Digit Numbers 25: Dividing 3-Digit Whole Numbers by Decimal Tenths 30. Consolidation of Operations with Decimals, Fractions, and Percents	Unit 2 Questions 11, 12, 13, 14, 15, 16 (pp. 12-14) Unit 3 Questions 6, 7, 8 (pp. 17-18) Unit 12 Questions 3, 6, 14 (pp. 82-83, 84, 87)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Investigating number and arithmetic properties - Uses reasoning and knowledge of factors to examine divisibility of numbers (by $4,8,3,6$, and 9).
Mental Math			
B2.3 use mental math strategies to calculate percents of whole numbers, including $1 \%, 5 \%, 10 \%, 15 \%$, 25%, and 50%, and explain the strategies used	Number Unit 4: Operations with Fractions, Decimals, and Percents 29: Using Mental Math to Calculate Percents	Unit 12 Questions 7, 8, 9, 10, 14 (pp. 84-85, 87)	Big Idea: Numbers are related in many ways. Decomposing and composing numbers to investigate equivalencies - Models and explains the relationships among fractions, decimals, and percents. - Translates flexibly between representations. Using ratios, rates, proportions, and percents creates a relationship between quantities

	30. Consolidation of Operations with Fractions, Decimals, and Percents		- Understands and applies the concept of percentage as a rate per 100 (e.g., calculating sales tax, tips, or discounts).
Addition and Subtraction			
B2.4 represent and solve problems involving the addition and subtraction of whole numbers and decimal numbers, using estimation and algorithms	Number Unit 2: Fluency with Whole Numbers 6: Solving Problems with Whole Numbers 7: Estimating Reasonableness of Solutions 9: Mental Math Strategies 12. Consolidation of Fluency with Whole Numbers Number Unit 4: Operations with Fractions, Decimals, and Percents 26: Adding and Subtracting Decimals 30. Consolidation of Operations with Fractions, Decimals, and Percents	Unit 8 Questions 1, 2, 3, 13 (pp. 52-53, 58) Unit 11 Question 11 (p. 78)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Extends whole number computation models to larger numbers. - Demonstrates an understanding of decimal number computation through modelling and flexible strategies. Developing fluency of operations - Estimates the result of whole number operations using contextually relevant strategies (e.g., How many buses are needed to take the Grade 8 classes to the museum?). - Solves whole number computation using efficient strategies (e.g., mental computation, algorithms, calculating cost of transactions and change owing, saving money to make a purchase). - Estimates sums and differences of decimal numbers (e.g., calculating cost of transactions involving dollars and cents). - Solves decimal number computation using efficient strategies.
B2.5 add and subtract fractions with like and unlike denominators, using appropriate tools, in various contexts	Number Unit 4: Operations with Fractions, Decimals, and Percents 27: Adding and Subtracting Fractions 30. Consolidation of Operations with Fractions, Decimals, and Percents	Unit 8 Questions 4, 5, 6, 7, 13 (pp. 54-55, 58)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Models and symbolizes fraction addition and subtraction with like denominators (e.g., $\frac{2}{5}+\frac{1}{5}$) and where one denominator is a multiple of the other (e.g., $\frac{2}{5}+\frac{3}{10}$).
Multiplication and Division			
B2.6 represent composite numbers as a product of their prime factors,	Number Unit 1: Number Relationships and Place Value 3: Identifying Factors and Multiples	Unit 2 Questions 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 (pp. 11-14)	Big Idea: Numbers are related in many ways. Decomposing and composing numbers to investigate equivalencies - Decomposes numbers into prime factors.

including through the use of factor trees	4: Identifying Prime and Composite Numbers 5. Consolidation of Number Relationships and Place Value		Big Idea: Quantities and numbers can be operated on to determine how many and how much. Investigating number and arithmetic properties - Examines and classifies whole numbers based on their properties (e.g., even/odd; prime; composite; divisible by 2, 5, 10). - Generates multiples and factors for numbers using flexible strategies. - Distinguishes between and investigates properties of prime and composite numbers (e.g., prime factorization). Developing fluency of operations - Fluently recalls multiplication and division facts to 100.
B2.7 represent and solve problems involving the multiplication of three-digit whole numbers by decimal tenths, using algorithms	Number Unit 2: Fluency with Whole Numbers 6: Solving Problems with Whole Numbers 12: Consolidation of Fluency with Whole Numbers Number Unit 4: Operations with Fractions, Decimals, and Percents 23: Multiplying 3-Digit Whole Numbers by Decimal Tenths 30: Consolidation with Fractions, Decimals, and Percents	Unit 12 Questions 1, 14 (pp. 81, 84, 87)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Understands and explains the effect of multiplying and dividing decimal numbers by powers of 10 less than one (i.e., 0.1, 0.001 , etc.). - Explores multiplication as scaling and estimates the resulting product when scaling a given number by a number less than, equal to, or greater than 1 (e.g., $\frac{1}{2} \times 12$; $5.2 \times 12 ; 0.3 \times 12$). Developing fluency of operations - Solves decimal number computation using efficient strategies.
B2.8 represent and solve problems involving the division of three-digit whole numbers by decimal tenths, using appropriate tools, strategies, and algorithms, and expressing remainders as appropriate	Number Unit 2: Fluency with Whole Numbers 6: Solving Problems with Whole Numbers 12: Consolidation of Fluency with Whole Numbers	Unit 12 Questions 3, 6, 14 (pp. 82-83, 84, 87)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Understands and explains the effect of multiplying and dividing decimal numbers by powers of 10 less than one (i.e., 0.1, 0.001, etc.). Developing fluency of operations - Solves decimal number computation using efficient strategies.

	Number Unit 4: Operations with Fractions, Decimals and Percents 25: Dividing 3-Digit Whole Numbers by Decimal Tenths 30. Consolidation of Operations with Fractions, Decimals and Percents		
B2.9 multiply whole numbers by proper fractions, using appropriate tools and strategies	Number Unit 4: Operations with Fractions, Decimals, and Percents 28: Multiplying and Dividing Whole Numbers by Proper Fractions 30. Consolidation of Operations with Fractions, Decimals, and Percents	Unit 12 Questions 11, 12, 14 (pp. 86-87)	Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Partitioning quantities to form fractions - Understands the meaning of an $\frac{a}{b}$ fraction as a multiple of the unit fraction $\frac{1}{b}$ (e.g., $\frac{3}{5}=3 \times \frac{1}{5}$). - Understands the fraction $\frac{a}{b}$ as $a \div b$. - Continues to extend fraction understanding to multiple contexts (e.g., sharing, division, ratios). Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Explores multiplication as scaling and estimates the resulting product when scaling a given number by a number less than, equal to, or greater than 1 (e.g., $\frac{1}{2} \times 12$; $5.2 \times 12 ; 0.3 \times 12$).
B2.10 divide whole numbers by proper fractions, using appropriate tools and strategies	Number Unit 4: Operations with Fractions, Decimals, and Percents 28: Multiplying and Dividing Whole Numbers by Proper Fractions 30. Consolidation of Operations with Fractions, Decimals, and Percents	Unit 12 Questions 11, 13, 14 (pp. 86-87)	Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Partitioning quantities to form fractions - Understands the meaning of an $\frac{a}{b}$ fraction as a multiple of the unit fraction $\frac{1}{b}$ (e.g., $\frac{3}{5}=3 \times \frac{1}{5}$). - Understands the fraction $\frac{a}{b}$ as $a \div b$. - Continues to extend fraction understanding to multiple contexts (e.g., sharing, division, ratios).
B2.11 represent and solve problems involving the division of decimal numbers up to thousandths by whole	Number Unit 4: Operations with Fractions, Decimals, and Percents	Unit 12 Questions 3, 5, 14 (pp. 82-84, 87)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing fluency of operations

numbers up to 10 , using appropriate tools and strategies	24: Dividing Decimals by 1- Digit Numbers 30. Consolidation of Operations with Fractions, Decimals, and Percents		- Solves decimal number computation using efficient strategies.
B2.12 solve problems involving ratios, including percents and rates, using appropriate tools and strategies	Number Unit 2: Fluency with Whole Numbers 10: Unit Rates 11: Exploring Ratios 12. Consolidation of Fluency with Whole Numbers Number Unit 4: Operations with Fractions, Decimals, and Percents 29: Using Mental Math to Calculate Percents 30. Consolidation of Operations with Fractions, Decimals, and Percents	Unit 3 Questions 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 (pp. 17-20) Unit 12 Questions 7, 8, 9, 10, 14 (pp. 84-85, 87)	Big Idea: Numbers are related in many ways. Using ratios, rates, proportions, and percents creates a relationship between quantities - Demonstrates multiplicative reasoning by applying unit rates in whole number contexts (e.g., If she earns $\$ 12$ per hour, how much will she earn for 5 hours of work?). - Understands the concept of ratio as a relationship between two quantities (e.g., 3 wins to 2 losses). - Understands and applies the concept of unit rates (e.g., If 3 kg is $\$ 5$, how much is 1 kg or how many kg for $\$ 1$?). - Understands and applies the concept of percentage as a rate per 100 (e.g., calculating sales tax, tips, or discounts).

C. Algebra			
C. 1 Patterns and Relationships identify, describe, extend, create, and make predictions about a variety of patterns, including those found in real-life contexts			
Patterns			
C1.1 identify and describe repeating, growing, and shrinking patterns, including patterns found in real-life contexts, and specify which growing patterns are linear	Patterning Unit 1: Patterning 1: Investigating Patterns and Relationships in Tables and Graphs 2: Solving Problems 3: Representing Patterns in Different Ways 4. Consolidation of Patterning	Unit 1 Questions 1, 2, 3, 4, 5, 7, 8 (pp. 2-8)	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically. Representing patterns, relations, and functions - Represents a numeric or shape pattern using a table of values by pairing the term value with a term number. - Represents a mathematical context or problem with expressions and equations using variables to represent unknowns. Generalizing and analyzing patterns, relations, and functions - Explains the rule for numeric patterns including the starting point and change (e.g., given: 16, 22, 28, $34, \ldots$. Start at 16 and add 6 each time). - Describes numeric and shape patterns using words and numbers. - Predicts the value of a given element in a numeric or shape pattern using pattern rules. - Describes the relationship between two numeric patterns (e.g., for every 4 steps, she travels 3 metres).
C1.2 create and translate repeating, growing, and shrinking patterns using various representations, including tables of values and graphs, and, for linear growing patterns, algebraic expressions and equations	Patterning Unit 1: Patterning 1: Investigating Patterns and Relationships in Tables and Graphs 2: Solving Problems 3: Representing Patterns in Different Ways 4. Consolidation of Patterning Patterning Unit 2: Variables and Equations 5: Investigating Algebraic Expressions	Unit 1 Questions 1, 2, 3, 5, 6, 7, 8 (pp. 2-8)	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically. Representing patterns, relations, and functions -Represents a numeric or shape pattern using a table of values by pairing the term value with a term number. - Represents a mathematical context or problem with expressions and equations using variables to represent unknowns. Generalizing and analyzing patterns, relations, and functions - Explains the rule for numeric patterns including the starting point and change (e.g., given: 16, 22, 28, $34, \ldots$. Start at 16 and add 6 each time). - Describes numeric and shape patterns using words and numbers.

	7: Representing Generalizations in Patterns 10. Consolidation of Variables and Equations		- Predicts the value of a given element in a numeric or shape pattern using pattern rules. - Describes the relationship between two numeric patterns (e.g., for every 4 steps, she travels 3 metres). Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Using variables, algebraic expressions, and equations to represent mathematical relations

			Using variables, algebraic expressions, and equations to represent mathematical relations - Interprets and writes algebraic expressions (e.g., $2 n$ means two times a number; subtracting a number from 7 can be written as $7-n$). - Understands a variable as a changing quantity (e.g., $5 s$, where s can be any value). - Writes two-variable equations to describe a relationship (e.g., $5 s=t$). - Uses expressions and equations with variables to represent generalized relations and algorithms (e.g., $P=$ $2 l+2 w$).
C1.4 create and describe patterns to illustrate relationships among whole numbers and decimal numbers	Patterning Unit 1: Patterning 2: Solving Problems 4. Consolidation of Patterning	N/A	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically. Representing patterns, relations, and functions - Represents a numeric or shape pattern using a table of values by pairing the term value with a term number. - Represents a mathematical context or problem with expressions and equations using variables to represent unknowns. Generalizing and analyzing patterns, relations, and functions - Explains the rule for numeric patterns including the starting point and change (e.g., given: 16, 22, 28, 34, Start at 16 and add 6 each time). - Describes numeric and shape patterns using words and numbers. - Predicts the value of a given element in a numeric or shape pattern using pattern rules. - Describes the relationship between two numeric patterns (e.g., for every 4 steps, she travels 3 metres).
C. 2 Equations and Inequalities demonstrate an understanding of variables, expressions, equalities, and inequalities, and apply this understanding in various contexts			
Variables and Expressions			
C2.1 add monomials with a degree of 1 that involve whole numbers, using tools	Patterning Unit 2: Variables and Equations 5: Investigating Algebraic Expressions	Unit 14 Questions 1, 2, 3 (pp. 96-97)	Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Using variables, algebraic expressions, and equations to represent mathematical relations

	10. Consolidation of Variables and Equations		- Interprets and writes algebraic expressions (e.g., $2 n$ means two times a number; subtracting a number from 7 can be written as $7-n$). - Understands a variable as a changing quantity (e.g., $5 s$, where s can be any value). - Writes two-variable equations to describe a relationship (e.g., $5 s=t$). - Uses expressions and equations with variables to represent generalized relations and algorithms (e.g., $P=$ $2 l+2 w$).
C2.2 evaluate algebraic expressions that involve whole numbers and decimal tenths	Patterning Unit 2: Variables and Equations 5: Investigating Algebraic Expressions 10. Consolidation of Variables and Equations	Unit 13 Questions 1, 4, 5, 7, 13 (pp. 96, 98-99, 102)	Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Understanding relationships among measured units - Develops and generalizes strategies to compute area and perimeter of rectangles. - Develops and generalizes strategies to compute area of triangles, quadrilaterals, and other polygons (e.g., decomposing a parallelogram and rearranging to form a rectangle).
Equalities and Inequalities			
C2.3 solve equations that involve multiple terms and whole numbers in various contexts, and verify solutions	Patterning Unit 2: Variables and Equations 6: Investigating Equality in Equations 7: Representing Generalizations in Patterns 8: Writing and Solving Equations 10. Consolidation of Variables and Equations	Unit 13 Questions 6, 8, 9, 10, 11, 13 (pp. 99-102)	Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Understanding equality and inequality, building on generalized properties of numbers and operations - Determines an unknown number in simple one-step equations using different strategies (e.g., $n \times 3=12$; 13 $\square=8$). - Investigates and models the meaning of preservation of equality of single variable equations (e.g., $3 x=12$).
C2.4 solve inequalities that involve two operations and whole numbers up to 100 , and verify and graph the solutions	Patterning Unit 2: Variables and Equations 9: Solving and Graphing Inequalities 10: Consolidation of Variables and Equations	Unit 13 Question 12 (p. 101)	

C3. Coding solve proble			
Coding Skills			
C3.1 solve problems and create computational representations of mathematical situations by writing and executing efficient code, including code that involves conditional statements and other control structures	Patterning Unit 3: Coding 11: Altering Code for a Game 12: Making Shapes 13: Classifying Polygons 14: Consolidation of Coding	Unit 6 Questions 2, 4, 5, 6 (pp. 38, 41-42)	Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons - Measures, constructs, and estimates angles using degrees. Big Idea: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. Investigating geometric attributes and properties of 2-D shapes and 3-D solids - Sorts, describes, constructs, and classifies polygons based on side attributes (e.g., parallel, perpendicular, regular/irregular). - Understands angle as a geometric figure formed from two rays or line segments sharing a common endpoint. Big Idea: Objects can be located in space and viewed from multiple perspectives. Locating and mapping objects in space - Develops understanding of a Cartesian plane as a coordinate system using perpendicular axes. - Plots and locates points on a Cartesian plane, and relates the location to the two axes. (Limited to the first quadrant.) Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness Using the language and tools of chance to describe and predict events - Investigates and calculates the experimental probability of simple events (i.e., relative frequency) of simple events (e.g., 3 heads in 5 coin tosses is $\frac{3}{5}$).

C3.2 read and alter existing code, including code that involves conditional statements and other control structures, and describe how changes to the code affect the outcomes and the efficiency of the code	Patterning Unit 3: Coding 11: Altering Code for a Game 12: Making Shapes 13: Classifying Polygons 14: Consolidation of Coding	Unit 6 Questions 1, 3, 4 (pp. 37-41)	Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons - Measures, constructs, and estimates angles using degrees. Big Idea: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. Investigating geometric attributes and properties of 2-D shapes and 3-D solids - Sorts, describes, constructs, and classifies polygons based on side attributes (e.g., parallel, perpendicular, regular/irregular). - Understands angle as a geometric figure formed from two rays or line segments sharing a common endpoint. Big Idea: Objects can be located in space and viewed from multiple perspectives. Locating and mapping objects in space - Develops understanding of a Cartesian plane as a coordinate system using perpendicular axes. - Plots and locates points on a Cartesian plane, and relates the location to the two axes. (Limited to the first quadrant.) Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness Using the language and tools of chance to describe and predict events - Investigates and calculates the experimental probability of simple events (i.e., relative frequency) of simple events (e.g., 3 heads in 5 coin tosses is $\frac{3}{5}$).

Mathology 6 Curriculum Correlation - Ontario

D. Data

D. 1 Data Literacy

manage, analyse, and use data to make convincing arguments and informed decisions, in various contexts drawn from real life

Data Collection and Organization

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { D1.1 describe the } \\
\text { difference } \\
\text { between discrete and cont } \\
\text { inuous data, and provide } \\
\text { examples of each }\end{array} & \begin{array}{l}\text { Data Management Unit 1: } \\
\text { Data Management } \\
\text { 1: Exploring Line Graphs } \\
\text { 2: Exploring Histograms } \\
\text { 6. Consolidation of Data } \\
\text { Management }\end{array} & \begin{array}{l}\text { Unit 9 Questions 1, 5, 8 } \\
\text { (pp. 61-62, 64, 66) }\end{array} & \begin{array}{l}\text { Big Idea: Formulating questions, collecting data, and } \\
\text { consolidating data in visual and graphical displays help } \\
\text { us understand, predict, and interpret situations that }\end{array}
$$

involve uncertainty, variability, and randomness.

Collecting data and organizing it into categories

- Distinguishes between discrete (e.g., votes) and

continuous (e.g., height) data.

Creating graphical displays of collected data

- Creates charts and graphs with appropriate titles and\end{array}\right]\)| labels to represent data collected (e.g., bar graph, line |
| :--- |
| plot, pictograph, stem-and-leaf plot). |

			- Chooses and justifies appropriate visual representations for displaying discrete (e.g., bar graph) and continuous (e.g., line graph) data. Drawing conclusions by making inferences and justifying decisions based on data collected - Draws conclusions on based data presented. - Interprets the results of data presented graphically from primary (e.g., class survey) and secondary (e.g., online news report) sources.
Data Visualization			
D1.3 select from among a variety of graphs, including histograms and brokenline graphs, the type of graph best suited to represent various sets of data; display the data in the graphs with proper sources, titles, and labels, and appropriate scales; and justify their choice of graph	Data Management Unit 1: Data Management 1: Exploring Line Graphs 2: Exploring Histograms 3: Collecting and Organizing Data 4: Interpreting Graphs to Solve Problems 6. Consolidation of Data Management	Unit 9 Questions 1, 2, 5, 8 (pp. 61-62, 64, 66)	Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. Creating graphical displays of collected data - Creates charts and graphs with appropriate titles and labels to represent data collected (e.g., bar graph, line plot, pictograph, stem-and-leaf plot). - Represents data graphically using many-to-one correspondence with appropriate scales and intervals (e.g., each symbol on pictograph represents 10 people). - Chooses and justifies appropriate visual representations for displaying discrete (e.g., bar graph) and continuous (e.g., line graph) data. Using the language and tools of chance to describe and predict events - Compares and explains the differences in the relative frequencies of a given outcome in a repeated experiment (e.g., number of heads in 10 coin tosses, repeated three times).
D1.4 create an infographic about a data set, representing the data in appropriate ways, including in tables, histograms, and brokenline graphs, and incorporating any other relevant information that	Data Management Unit 1: Data Management 1: Exploring Line Graphs 2: Exploring Histograms 6. Consolidation of Data Management	N/A	Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. Creating graphical displays of collected data - Creates charts and graphs with appropriate titles and labels to represent data collected (e.g., bar graph, line plot, pictograph, stem-and-leaf plot).

helps to tell a story about the data			- Represents data graphically using many-to-one correspondence with appropriate scales and intervals (e.g., each symbol on pictograph represents 10 people). - Chooses and justifies appropriate visual representations for displaying discrete (e.g., bar graph) and continuous (e.g., line graph) data. - Visually represents two or more data sets (e.g., double bar chart, stacked bar graph, multi-line graph, multicolumn table).
Data Analysis			
D1.5 determine the range as a measure of spread and the measures of central tendency for various data sets, and use this information to compare two or more data sets	Data Management Unit 1: Data Management 5: Determining Range and Measures of Central Tendency 6. Consolidation of Data Management	Unit 9 Questions 6, 7, 8 (pp. 65-66)	Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. Reading and interpreting data displays and analyzing variability - Determines range values (e.g., maximum, minimum, difference) and relates values to the variability of data collected. - Visualizes and determines the median value as a middle measure representing a whole data set. - Visualizes and determine the mean of a data set. - Understands that measures of central tendency (i.e., mode, median, mean) are summary measures that represent all values in a data set with a single number (i.e., most frequent value; middle value; balance point of values). - Understands and describes the difference between the central tendency values (i.e., mode, median, mean) and explores which measure is most appropriate for the data collected. Using the language and tools of chance to describe and predict events - Describe data using frequency counts (e.g., 5 people chose peppermint) and modal value (e.g., dogs are the most common pet).

D1.6 analyse different set of data presented in various ways, including in histograms and brokenline graphs, and in misleading graphs, by asking and answering questions about the data, challenging preconceived notions, and drawing conclusions, then make convincing arguments and informed decisions

Data Management Unit 1:

 Data Management1: Exploring Line Graphs
2: Exploring Histograms
4: Interpreting Graphs to Solve
Problems
6. Consolidation of Data

Management

Unit 9 Questions 1, 2, 4, 5, \quad Big Idea: Formulating questions, collecting data, and 8 (pp. 61-64, 66) consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. Drawing conclusions by making inferences and justifying decisions based on data collected

- Draws conclusions based on data presented.
- Uses inferences to make predictions about future events (e.g., Would the pictograph of shoe types look the same every day?).
- Interprets the results of data presented graphically from primary (e.g., class survey) and secondary (e.g., online news report) sources.
- Interprets results and makes inferences about the similarities and differences of past and future events based on data collected.

D2. Probability

describe the likelihood that events will happen, and use that information to make predictions

Probability

D2.1 use fractions,

decimals, and percents to express the probability of events happening, represent this probability on a probability line, and use it to make predictions and informed decisions

Data Management Unit 2: Probability
7: Exploring Theoretical
Probability
8: Independent Events
9: Conducting Experiments
10. Consolidation of Probability

Patterning Unit 3: Coding

11: Altering Code for a Game

Unit 10 Questions 1, 2, 3, 4, 5, 6, 7, 8 (pp. 67-72)

Big Idea: Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. Using the language and tools of chance to describe and predict events

- Locates the likelihood of outcomes on a vocabularybased probability continuum (e.g., impossible, unlikely, likely, certain).
- Distinguishes between equally likely events (e.g., heads or tails on a fair coin) unequally likely events (e.g., spinner with differently sized sections).
- Identifies the sample space of independent events in an experiment (e.g., flipping a cup, drawing a coloured cube from a bag).
- Investigates and calculates the experimental probability (i.e., relative frequency) of simple events (e.g., 3 heads in 5 coin tosses is $\frac{3}{5}$).
- Determines theoretical probability as a ratio (i.e., number of outcomes for a given event to total number of
$\left.\begin{array}{|l|l|l|l|}\hline & & & \begin{array}{l}\text { possible outcomes). } \\ - \\ \text { Uses theoretical probability to predict the outcome of } \\ \text { an experiment or game. } \\ \text { - Extends understanding of the probability continuum by } \\ \text { expressing and comparing probabilities using decimals }\end{array} \\ \text { (between 0 and 1), ratios, fractions, and percents. }\end{array}\right\}$

E. Spatial Sense			
E1. Geometric and Spatial Reasoning describe and represent shape, location, and movement by applying geometric properties and spatial relationships in order to navigate the world around them			
Geometric Reasoning			
E1.1 create lists of the geometric properties of various types of quadrilaterals, including the properties of the diagonals, rotational symmetry, and line symmetry	Geometry Unit 1B: 2-D Shapes, Angles, and 3-D Solids 3: Properties of Quadrilaterals 5. Consolidation of 2-D Shapes, Angles, and 3-D Solids	Unit 4 Questions 8, 9, 10, 11, 12 (pp. 27-29)	Big Idea: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. Investigating geometric attributes and properties of 2-D shapes and 3-D solids - Sorts, describes, constructs, and classifies polygons based on side attributes (e.g., parallel, perpendicular, regular/irregular). - Sorts, describes, and classifies 2-D shapes based on their geometric properties (e.g., side lengths, angles, diagonals). - Classifies 2-D shapes within a hierarchy based on their properties (e.g., rectangles are a subset of parallelograms). Big Ideas: 2-D shapes and 3-D solids can be transformed in many ways and analyzed for change. Exploring symmetry to analyze 2-D shapes and 3-D solids - Explores and classifies quadrilaterals based on lines of symmetry. - Draws, creates, and identifies shapes that have rotational symmetry, and identifies the centre of rotation and angle of rotation.
E1.2 construct threedimensional objects when given their top, front, and side views	Geometry Unit 1B: 2-D Shapes, Angles, and 3-D Solids 4: Constructing 3-D Objects 5. Consolidation of 2-D Shapes, Angles, and 3-D Solids	N/A	Big Idea: Objects can be located in space and viewed from multiple perspectives. Viewing and representing objects from multiple perspectives - Interprets and creates coded plans, and constructs objects from plans (e.g., used linking cubes to build 3-D object from plan).

Location and Movement			
E1.3 plot and read coordinates in all four quadrants of a Cartesian plane, and describe the translations that move a point from one coordinate to another	Geometry Unit 2B: Transformations 6: Plotting and Reading Coordinates 10. Consolidation of Transformations	Unit 5 Questions 1, 2, 5, 6 (pp. 30-31, 33)	Big Idea: The set of real numbers is infinite. Extending whole number understanding to the set of real numbers - Extends whole number understanding to negative numbers. Big Idea: Objects can be located in space and viewed from multiple perspectives. Locating and mapping objects in space - Develops understanding of a Cartesian plane as a coordinate system using perpendicular axes. - Plots and locates points on a Cartesian plane, and relates the location to the two axes. (Limited to the first quadrant). - Analyzes and locates the vertices of 2-D shapes after transformation on a Cartesian plane. (Limited to the first quadrant).
E1.4 describe and perform combinations of translations, reflections, and rotations up to 360° on a grid, and predict the results of these transformations	Geometry Unit 2B: Transformations 7: Transformations on a Grid 8: Rotating 2-D Shapes up to 360° 9: Combining Transformations on a Grid 10. Consolidation of Transformations	Unit 5 Questions 3, 4, 9 (pp. 31-32, 36)	Big Idea: 2-D shapes and 3-D solids can be transformed in many ways and analyzed for change. Exploring 2-D shapes and 3-D solids by applying and visualizing transformations - Identifies, describes, applies, and creates a combination of successive transformations on 2-D shapes.
E2. Measurement compare, estimate, and determine measurements in various contexts			
The Metric System			
E2.1 measure length, area, mass, and capacity using the appropriate metric units, and solve problems that require converting smaller units to larger units, and vice versa	Measurement Unit 1B: Length, Mass, Capacity, and Area 1: Relationships Among Metric Units 4. Consolidation of Length, Mass, Capacity, and Area	Unit 13 Question 1, 2 (pp. 88-89)	Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons - Chooses the most appropriate unit to measure a given attribute of an object (e.g., classroom area measured in square metres). Understanding relationships among measured units - Understands and applies the multiplicative relationships among metric units of length, mass, and capacity.

Angles			
E2.2 use a protractor to measure and construct angles up to 360°, and state the relationship between angles that are measured clockwise and those that are measured counterclockwis e	Geometry Unit 1B: 2-D Shapes, Angles, and 3-D Solids 1: Measuring and Constructing Angles 5. Consolidation of 2-D Shapes, Angles, and 3-D Solids	Unit 4 Questions 1, 2, 3, 12 (pp. 23-25, 29)	Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons - Measures, constructs, and estimates angles using degrees. Big Idea: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. Investigating geometric attributes and properties of 2-D shapes and 3-D solids - Understands angle as a geometric figure formed from two rays or line segments sharing a common endpoint. - Draws, compares, and classifies angles (i.e., right, acute, obtuse, straight, reflex).
E2.3 use the properties of supplementary angles, complementary angles, opposite angles, and interior and exterior angles to solve for unknown angle measures	Geometry Unit 1B: 2-D Shapes, Angles, and 3-D Solids 2: Angle Properties and Relationships 5. Consolidation of 2-D Shapes, Angles, and 3-D Solids	Unit 4 Question 4 (p. 25)	
Area and Surface Area			
E2.4 determine the areas of trapezoids, rhombuses, kites, and composite polygons by decomposing them into shapes with known areas	Measurement Unit 1B: Length, Mass, Capacity, and Area 2: Determining Area 4. Consolidation of Length, Mass, Capacity, and Area	Unit 13 Questions 3, 4, 5, 6, 7, 13 (pp. 89-92, 95)	Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared. Understanding attributes that can be measured, compared, and ordered - Understands area is additive (e.g., the area of an irregular shape can be solved by decomposing it into rectangles and adding their areas). Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Understanding relationships among measured units - Develops and generalizes strategies to compute area of triangles, quadrilaterals, and other polygons (e.g., decomposing a parallelogram and rearranging to form a rectangle).

E2.5 create and use nets to demonstrate the relationship between the faces of prisms and pyr amids and their surface areas	Measurement Unit 1B: Length, Mass, Capacity, and Area 3: Surface Area of Prisms and Pyramids 4. Consolidation of Length, Mass, Capacity, and Area	N/A	Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared. Understanding attributes that can be measured, compared, and ordered - Understands surface area is an attribute of 3-D objects that can be measured and compared. Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Understanding relationships among measured units - Uses nets to determine the surface area of 3-D objects composed of rectangles and triangles.
E2.6 determine the surface areas of prisms and pyramids by calculating the areas of their twodimensional faces and adding them together	Measurement Unit 1B: Length, Mass, Capacity, and Area 3: Surface Area of Prisms and Pyramids 4. Consolidation of Length, Mass, Capacity, and Area	Unit 13 Questions 9, 11, 12, 13 (pp. 92-95)	Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared. Understanding attributes that can be measured, compared, and ordered - Understands surface area is an attribute of 3-D objects that can be measured and compared. Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Understanding relationships among measured units - Uses nets to determine the surface area of 3-D objects composed of rectangles and triangles.

Financial Literacy			
F1. Money and Finances demonstrate the knowledge and skills needed to make informed financial decisions			
Money Concepts			
F1.1 describe the advantages and disadvantages of various methods of payment that can be used to purchase goods and services	Number Unit 5: Financial Literacy 31: Advantages and Disadvantages of Payment Methods 34. Consolidation of Financial Literacy	Unit 11 Questions 1, 2, 3 (pp. 73-74)	
Financial Management			
F1.2 identify different types of financial goals, including earning and savin g goals, and outline some key steps in achieving them	Number Unit 5: Financial Literacy 33: Planning for Financial Goals 34. Consolidation of Financial Literacy	Unit 11 Questions 8, 9, 10, 11 (pp. 76-78)	Big Idea: Numbers are related in many ways. Using ratios, rates, proportions, and percents creates a relationship between quantities - Understands and applies the concept of percentage as a rate per 100 (e.g., calculating sales tax, tips, or discounts). Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing fluency of operations - Estimates sums and differences of decimal numbers (e.g., calculating cost of transactions involving dollars and cents). - Solves decimal number computation using efficient strategies.
F1.3 identify and describe various factors that may help or interfere with reaching financial goals	Number Unit 5: Financial Literacy 33: Planning for Financial Goals 34. Consolidation of Financial Literacy	Unit 11 Questions 9, 10 (pp. 76-77)	

Consumer and Civic Awareness			
F1.4 explain the concept of interest rates, and identify types of interest rates and fees associated with different accounts and loans offered by various banks and other financial institutions	Number Unit 5: Financial Literacy 32: Interest Rates and Fees 34. Consolidation of Financial Literacy	Unit 11 Questions 4, 5, 6 (p. 75)	Big Idea: Numbers are related in many ways. Using ratios, rates, proportions, and percents creates a relationship between quantities - Understands and applies the concept of percentage as a rate per 100 (e.g., calculating sales tax, tips, or discounts).
F1.5 describe trading, lending, b orrowing, and donating as different ways to distribute financial and other resources among individuals and organizations	Number Unit 5: Financial Literacy 31: Advantages and Disadvantages of Payment Methods $34 . ~ C o n s o l i d a t i o n ~ o f ~ F i n a n c i a l ~$	Unit 11 Question 1 (p. 73)	
Literacy			

Mathology 6 Curriculum Correlation - Ontario

