mathólogy

Correlation of Yukon Program of Studies with Mathology Grade 6

Curriculum Expectations	Grade 6 Mathology.ca	Mathology Practice Workbook 6	Pearson Canada Grades 4-6 Mathematics Learning Progression
Content - Elaborations			
small to large numbers (thousandths to billions): - place value from thousandths to billions, operations with thousandths to billions - numbers used in science, medicine, technology, and media - compare, order, and estimate	Number Unit 1: Number Relationships and Place Value 1: Representing Larger Numbers (to 1000000 and Beyond) 2: Representing Numbers in Different Forms 5: Consolidation of Number Relationships and Place Value Number Unit 3: Fractions, Decimals, Percents, and Integers 15: Representing Decimals 16: Comparing and Ordering Decimals 21: Consolidation of Fractions, Decimals, Percents, and Integers	Unit 2 Questions 1, 2, 3, 4, 5, 6 (pp. 9-10) Unit 7 Questions 6, 7, 8, 15, 16 (pp. 47-48, 50-51) Unit 8 Questions 1, 2, 3 (pp. 52-53) Unit 11 Question 11 (p. 78)	Big Idea: The set of real numbers is infinite. Extending whole number understanding to the set of real numbers - Extends whole number understanding to 1000000. - Extends decimal number understanding to thousandths. Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Compares, orders, and locates whole numbers based on place-value understanding, and records using <, =, and > symbols. - Compares, orders, and locates decimal numbers using place-value understanding. Decomposing and composing numbers to investigate equivalencies - Composes and decomposes whole numbers using standard and non-standard partitioning (e.g., 1000 is 10 hundreds or 100 tens). - Composes and decomposes decimal numbers using standard and non-standard partitioning (e.g., 1.6 is 16 tenths or 0.16 tens). Big Idea: Quantities and numbers can be grouped by or partitioned into equal-sized units. Unitizing quantities into base-ten units - Writes and reads whole numbers in multiple forms (e.g., 1358; one thousand three hundred fifty-eight; $1000+300+50+8)$.

			- Understands that the value of a digit is ten times the value of the same digit one place to the right. - Understands that the value of a digit is one-tenth the value of the same digit one place to the left. - Writes and reads decimal numbers in multiple forms (e.g., numerals, number names, expanded form). Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Extends whole number computation models to larger numbers. - Demonstrates an understanding of decimal number computation through modelling and flexible strategies. Developing fluency of operations - Solves whole number computation using efficient strategies (e.g., mental computation, algorithms, calculating cost of transactions and change owing, saving money to make a purchase). - Solves decimal number computation using efficient strategies.
multiplication and division facts to 100 (developing computational fluency): - mental math strategies (e.g., the double-double strategy to multiply 23×4)	Number Unit 2: Fluency with Whole Numbers 6: Solving Problems with Whole Numbers 7: Estimating Reasonableness of Solutions 9: Mental Math Strategies 12: Consolidation of Fluency with Whole Numbers	Unit 2 Questions 7, 8, 9, 11, 13, 14, 16 (pp. 11-12, 13-14) Unit 12 Questions 1, 3 (pp. 81-83)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing fluency of operations - Fluently recalls multiplication and division facts to 100. - Solves whole number computation using efficient strategies (e.g., mental computation, algorithms, calculating cost of transactions and change owing, saving money to make a purchase).
order of operations with whole numbers: - includes the use of brackets, but excludes exponents - quotients can be rational numbers	Number Unit 2: Fluency with Whole Numbers 8: The Order of Operations 12: Consolidation of Fluency with Whole Numbers	Unit 3 Questions 1, 2, 3, 4, 14 (pp. 15-16, 20)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Investigating number and arithmetic properties - Applies order of operations for whole numbers and explains the effect when order is not followed.

Mathology 6 Curriculum Correlation - Yukon

factors and multiples greatest common factor and least common multiple: - prime and composite numbers, divisibility rules, factor trees, prime factor phrase (e.g., $300=2^{2} \times 3 \times$ 5^{2}) - using graphic organizers (e.g., Venn diagrams) to compare numbers for common factors and common multiples	Number Unit 1: Number Relationships and Place Value 3: Identifying Factors and Multiples 4: Identifying Prime and Composite Numbers 5: Consolidation of Number Relationships and Place Value	Unit 2 Questions 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 (pp. 11-14)	Big Idea: Numbers are related in many ways. Decomposing and composing numbers to investigate equivalencies - Decomposes numbers into prime factors. Big Idea: Quantities and numbers can be operated on to determine how many and how much. Investigating number and arithmetic properties - Determines whether one number is a multiple of any one-digit number. - Examines and classifies whole numbers based on their properties (e.g., even/odd; prime; composite; divisible by 2,5 , and 10). - Generates multiples and factors for numbers using flexible strategies. - Distinguishes between and investigates properties of prime and composite numbers (e.g., prime factorization). - Extends exponent notation to any repeated multiplication (e.g., $2 \times 2 \times 2 \times 2=2^{4}$) and evaluates expressions using exponents (e.g., $3^{4}=3 \times 3 \times 3 \times 3=$ 81). Developing fluency of operations - Fluently recalls multiplication and division facts to 100.
improper fractions and mixed numbers: - using benchmarks, number line, and common denominators to compare and order, including whole numbers - using pattern blocks, Cuisenaire Rods, fraction strips, fraction circles, grids - birchbark biting	Number Unit 3: Fractions, Decimals, Percents, and Integers 13: Representing Fractions 14: Comparing and Ordering Fractions 21: Consolidation of Fractions, Decimals, Percents, and Integers	Unit 7 Questions $1,2,3,4,5$, 15, 16 (pp. 45-46, 50-51)	Big Idea: Numbers are related in many ways. Comparing and ordering quantities (multitude or magnitude) - Compares, orders, and locates fractions using flexible strategies (e.g., comparing models; creating common denominators or numerators). Estimating quantities and numbers - Estimates the size and magnitude of fractions by comparing to benchmarks. Decomposing and composing numbers to investigate equivalencies - Models equivalent forms of improper fractions and mixed numbers using flexible strategies.

introduction to ratios: - comparing numbers, comparing quantities, equivalent ratios - part-to-part ratios and part-to-whole ratios	Number Unit 2: Fluency with Whole Numbers 11: Exploring Ratios 12: Consolidation of Fluency with Whole Numbers	Unit 3 Questions 9, 10, 11, 12, 13, 14 (pp. 18-20)	Big Idea: Numbers are related in many ways. Using ratios, rates, proportions, and percents creates a relationship between quantities - Understands the concept of ratio as a relationship between two quantities (e.g., 3 wins to 2 losses).
whole-number percents and percentage discounts: - use base 10 blocks, geoboard, 10×10 grid to represent whole number percents - find missing part (whole or percentage) - $50 \%=\frac{1}{2}=0.5=$ 50:100	Number Unit 3: Fractions, Decimals, Percents, and Integers 18: Relating Fractions, Decimals, and Percents 21: Consolidation of Fractions, Decimals, Percents, and Integers	Unit 7 Questions 9, 10 (pp. 48-49) Unit 12 Questions 7, 8, 9, 10, 14 (pp. 84-85, 87)	Big Idea: Numbers are related in many ways. Decomposing and composing numbers to investigate equivalencies - Models and explains the relationships among fractions, decimals, and percents. - Translates flexibly between representations. Using ratios, rates, proportions, and percents creates a relationship between quantities - Understands and applies the concept of percentage as a rate per 100 (e.g., calculating sales tax, tips, or discount).
multiplication and division of decimals: - 0.125×3 or $7.2 \div 9$ - using base 10 block array - birchbark biting	Number Unit 4: Operations with Fractions, Decimals, and Percents 22: Multiplying Decimals by 1Digit Numbers 24: Dividing Decimals by 1- Digit Numbers 30: Consolidation of Operations with Fractions, Decimals, and Percents	Unit 12 Questions 1, 2, 3, 4, 5, 14 (pp. 81-84, 87)	Big Idea: Quantities and numbers can be operated on to determine how many and how much. Developing conceptual meaning of operations - Demonstrates an understanding of decimal number computation through modelling and flexible strategies. Developing fluency of operations - Solves decimal number computation using efficient strategies.
increasing and decreasing patterns, using expressions, tables, and graphs as functional relationships: - limited to discrete points in the first quadrant	Patterning Unit 1: Patterning 1: Investigating Patterns and Relationships in Tables and Graphs 2: Solving Problems 4: Consolidation of Patterning	Unit 1 Questions 1, 2, 3, 4, 5, 6, 7, 8 (pp. 2-8)	Big Idea: Regularity and repetition form patterns that can be generalized and predicted mathematically. Representing patterns, relations, and functions - Represents a numeric or shape pattern using a table of values by pairing the term value with a term number. - Represents a mathematical context or problem with

Mathology 6 Curriculum Correlation - Yukon

- visual patterning (e.g., colour tiles) - Take 3 add 2 each time, $2 n+1$, and 1 more than twice a number all describe the pattern $3,5,7, \ldots$ - graphing data on First Peoples language loss, effects of language intervention	Patterning Unit 2: Variables and Equations 7: Representing Generalizations in Patterns		expressions and equations using variables to represent unknowns. Generalizing and analyzing patterns, relations, and functions - Explains the rule for numeric patterns including the starting point and change (e.g., given: 16, 22, 28, 34, Start at 16 and add 6 each time). - Describes numeric and shape patterns using words and numbers. - Predicts the value of a given element in a numeric or shape pattern using pattern rules. - Describes the relationship between two numeric patterns (e.g., for every 4 steps, she travels 3 metres).
one-step equations with whole number coefficients and solutions: - preservation of equality (e.g., using a balance, algebra tiles) - $3 x=12, x+5=11$	Patterning Unit 2: Variables and Equations 6: Investigating Equality in Equations 8: Writing and Solving Equations 10: Consolidation of Variables and Equations	Unit 14 Questions 4, 5, 7, 8, 9, 10, 11, 13 (pp. 98-102)	Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Understanding equality and inequality, building on generalized properties of numbers and operations - Expresses a one-step mathematical problem as an equation using a symbol or letter to represent an unknown number (e.g., Sena had some tokens and used four. She has seven left: $\square-4=7$). - Determines an unknown number in simple one-step equations using different strategies (e.g., $n \times 3=12$; 13 $\square=8$). - Uses arithmetic properties to investigate and transform one-step addition and multiplication equations (e.g., 5 + $4=9$ and $5+a=9$ have the same structure and can be rearranged in similar ways to maintain equality: $4+5=9$ and $a+5=9$). - Recognizes that an equal sign between two expressions with variables indicates that the expressions are equivalent (e.g., $5 n-4=3 n ; 3 r=2+s$). - Uses arithmetic properties to investigate and transform one-step subtraction and division equations (e.g., $12-5$ $=7$ and $12-b=7$ have the same structure and can be rearranged in similar ways to maintain equality: $12-7=$ 5 and $12-7=b$). - Investigates and models the meaning of preservation of equality of single variable equations (e.g., $3 x=12$).

			Using variables, algebraic expressions, and equations to represent mathematical relations - Understands an unknown quantity (i.e., variable) may be represented by a symbol or letter (e.g., $13-\square=8 ; 4 n$ = 12). - Flexibly uses symbols and letters to represent unknown quantities in equations (e.g., knows that $4+\square=7 ; 4+x=$ 7 ; and $4+y=7$ all represent the same equation with \square, x, and y representing the same value). - Interprets and writes algebraic expressions (e.g., $2 n$ means two times a number; subtracting a number from 7 can be written as $7-n$).
perimeter of complex shapes: - A complex shape is a group of shapes with no holes (e.g., use colour tiles, pattern blocks, tangrams).	Measurement Unit 1A: Perimeter, Area, Volume, and Capacity 1: Determining the Perimeter of Polygons 6: Consolidation of Perimeter, Area, Volume, and Capacity	Unit 13 Questions 4, 5, 13 (pp. 90-91, 95)	Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons - Measures, constructs, and estimates perimeter and area of regular and irregular polygons.
area of triangles, parallelograms, and trapezoids: - grid paper explorations - deriving formulas - making connections between area of parallelogram and area of rectangle - birchbark biting	Measurement Unit 1A: Perimeter, Area, Volume, and Capacity 2: Determining the Area of Rectangles 3: Areas of Parallelograms, Triangles, and Trapezoids 6: Consolidation of Perimeter, Area, Volume, and Capacity	Unit 13 Questions 3, 4, 5, 6, 7, 13 (pp. 89-92, 95)	Big Idea: Patterns and relations can be represented with symbols, equations, and expressions. Using variables, algebraic expressions, and equations to represent mathematical relations - Uses expressions and equations with variables to represent generalized relations and algorithms (e.g., $P=2 /+2 w$). Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Understanding relationships among measured units - Develops and generalizes strategies to compute area of triangles, quadrilaterals, and other polygons (e.g., decomposing a parallelogram and rearranging to form a rectangle).

angle measurement and classification: - straight, acute, right, obtuse, reflex - constructing and identifying; include examples from local environment - estimating using 45°, 90°, and 180° as reference angles - angles of polygons - Small Number stories: Small Number and the Skateboard Park	Geometry Unit 1A: 2-D Shapes and Angles 1: Classifying and Measuring Angles 2: Measuring and Constructing Angles 5: Investigating Polygons 6: Consolidation of 2-D Shapes and Angles	Unit 4 Questions 1, 2, 3, 12 (pp. 23-25, 29)	Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared. Understanding attributes that can be measured, compared, and ordered - Understands angle as an attribute that can be measured and compared. - Understands angle is additive (e.g., 90° can be visualized as nine sectors that are 10° each). Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons - Measures, constructs, and estimates angles using degrees. Big Idea: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. Investigating geometric attributes and properties of 2-D shapes and 3-D solids - Draws, compares, and classifies angles (i.e., right, acute, obtuse, straight, reflex).
volume and capacity: - using cubes to build 3D objects and determine their volume - referents and relationships (e.g., $\left.\mathrm{cm}^{3}, \mathrm{~m}^{3}, \mathrm{~mL}, \mathrm{~L}\right)$ - the number of coffee mugs that hold a litre - berry baskets, seaweed drying	Measurement Unit 1A: Perimeter, Area, Volume, and Capacity 4: Determining the Volume of Right Rectangular Prisms 5: Investigating Capacity 6: Consolidation of Perimeter, Area, Volume, and Capacity	Unit 13 Questions 1, 2 (pp. 88-89)	Big Idea: Many things in our world (e.g., objects, spaces, events) have attributes that can be measured and compared. Understanding attributes that can be measured, compared, and ordered - Understands volume and capacity as attributes of 3-D objects that can be measured and compared. Big Idea: Assigning a unit to a continuous attribute allows us to measure and make comparisons. Selecting and using units to estimate, measure, construct, and make comparisons - Develops understanding of a unit cube to estimate and measure volume of 3-D objects. - Measures, constructs, and estimates volume using standard cube units (e.g., cubic centimetres). Understanding relationships among measured units - Understands and applies the multiplicative relationship among metric units of length, mass, and capacity.

Mathology 6 Curriculum Correlation - Yukon

			- Develops and generalizes strategies and formulas to compute volumes of right rectangular prisms.
triangles - scalene, isosceles, equilateral - right, acute, obtuse - classified regardless of orientation	Geometry Unit 1A: 2-D Shapes and Angles 3: Classifying Triangles 4: Identifying and Constructing Triangles 6: Consolidation of 2-D Shapes and Angles	Unit 4 Questions 5, 6, 7, 12 (pp. 25-26, 29)	Big Idea: 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. Investigating geometric attributes and properties of 2-D shapes and 3-D solids - Sorts, describes, and classifies 2-D shapes based on their geometric properties (e.g., side lengths, angles, diagonals).
combinations of transformations: - plotting points on Cartesian plane using whole-number ordered pairs - translation(s), rotation(s), and/or reflections on a single 2D shape - limited to first quadrant - transforming, drawing, and describing image - Use shapes in First Peoples art to integrate printmaking (e.g., Inuit, Northwest coastal First Nations, frieze work)	Geometry Unit 2A: Transformations 7: Rotating 2-D Shapes on a Grid 8: Single Transformations on a Grid 9: Combining Transformations on a Grid 10: Plotting and Reading Coordinates 11: Transformations on a Cartesian Plane 12: Consolidation of Transformations	Unit 5 Questions 1a, 2a, 3, 4, 6, 9 (pp. 30-33, 36)	Big Ideas: 2-D shapes and 3-D solids can be transformed in many ways and analyzed for change. Exploring 2-D shapes and 3-D solids by applying and visualizing transformations - Identifies, describes, and performs single transformations (i.e., translation, reflection, rotation) on 2-D shapes. - Identifies, describes, applies, and creates a combination of successive transformations on 2-D shapes. Big Idea: Objects can be located in space and viewed from multiple perspectives. Locating and mapping objects in space - Develops understanding of a Cartesian plane as a coordinate system using perpendicular axes. - Plots and locates points on a Cartesian plane, and relates the location to the two axes. (Limited to the first quadrant.) - Analyzes and locates the vertices of 2-D shapes after transformation on a Cartesian plane. (Limited to the first quadrant.)

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { line graphs: } \\
\text { table of values, data } \\
\text { set; creating a line } \\
\text { graph from a given } \\
\text { set of data }\end{array} & \begin{array}{l}\text { Data Management Unit 1: } \\
\text { Data Management } \\
\text { 1: Exploring Line Graphs } \\
\text { 3: Collecting and Organizing } \\
\text { Data }\end{array} & \begin{array}{l}\text { Unit 9 Questions 1, 3, 4, 5, 8 } \\
\text { (pp. 61-64, 66) }\end{array} & \begin{array}{l}\text { Big Idea: Formulating questions, collecting data, and } \\
\text { consolidating data in visual and graphical displays help } \\
\text { us understand, predict, and interpret situations that }\end{array}
$$

involve uncertainty, variability, and randomness.

Collecting data and organizing it into categories\end{array}\right]\)| - Interpreting Graphs to |
| :--- |
| Solve Problems |
| (e.g., creates tally chart or line plot on a grid to collect |
| survey data). |

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { determine } \\
\text { theoretical } \\
\text { probability } \\
\text { comparing } \\
\text { experimental results } \\
\text { with theoretical } \\
\text { expectation } \\
\text { Lahal stick games }\end{array} & & \begin{array}{l}\text { based probability continuum (e.g., impossible, unlikely, } \\
\text { likely, certain). }\end{array}
$$

- Distinguishes between equally likely events (e.g., heads

or tails on a fair coin) unequally likely events (e.g.,

spinner with differently sized sections).

- Identifies the sample space of independent events in

an experiment (e.g., flipping a cup, drawing a coloured

cube from a bag).

- Investigates and calculates the experimental

probability (i.e., relative frequency) of simple events\end{array}\right]\)| (e.g., 3 heads in 5 coins tosses is $\frac{3}{5}$). |
| :--- |

Unit 6: Coding Not required, but recommended

