Patterning and Algebra

Activity 9 Assessment

Using Equations with Two Operations to Solve Problems

Variables and Equations			
Evaluates a numerical expression using the order of operations $\begin{aligned} 2 \times(30+18)-3 & =2 \times 48-3 \\ & =96-3 \\ & =93 \end{aligned}$ "I have to do the operation in brackets first, then the multiplication, and then the subtraction."	Writes an algebraic expression to describe an unknown value Subtract five from a number, then multiply by two $(n-5) \times 2$ "I let n represent the number. I used brackets so 5 would be subtracted first."	Evaluates an algebraic expression using substitution $(n-5) \times 2$ "To find the value of the expression when n equals 12 , I substitute 12 for n." $\begin{aligned} (n-5) \times 2 & =(12-5) \times 2 \\ & =7 \times 2 \\ & =14 \end{aligned}$	Solves equations involving one operation using different strategies $\begin{aligned} 23 & =e+15 \\ 23-15 & =e+15-15 \\ 8 & =e \end{aligned}$ "I used the inverse operation, subtracting 15 from each side."
Observations/Documentation			

Patterning and Algebra

Activity 9 Assessment

Using Equations with Two Operations to Solve Problems

Variables and Equations (cont'd)			
Solves equations involving two operations using different strategies $\begin{aligned} 29 & =3 z+2 \\ 29-2 & =3 z+2-2 \\ 27 & =3 z \\ \frac{27}{3} & =\frac{3 z}{3} \\ 9 & =z \end{aligned}$ "I performed the order of operations in the reverse order to isolate the variable. I subtracted 2 from each side, then divided each side by 3 ."	Verifies the solution to an equation $29=3 z+2$ "To verify, substitute $z=9$. $\begin{aligned} \text { Left side } & =29 \\ \text { Right side } & =3(9)+2 \\ & =27+2 \\ & =29 \end{aligned}$ Since the left side equals the right side, my solution is correct."	Solves problems using equations involving one or two operations Kairis sold 16 tickets. That is twice as many tickets as Grace sold. How many tickets did Grace sell? Let t represent the number of tickets Grace sold. $\begin{gathered} 2 t=16 \\ \frac{2 t}{2}=\frac{16}{2} \\ t=8 \end{gathered}$ "So, Grace sold 8 tickets."	Flexibly works with equations to solve problems using a variety of strategies At the grocery store, there are 5 lines of people at the checkouts. There are the same number of people in each line. The manager counts to determine the total number of people at the checkouts, including 6 employees (including the manager). They counted 51 people. How many people are in each line? Let n represent the number of people in each line. $\begin{aligned} 5 n+6 & =51 \\ 5 n+6-6 & =51-6 \\ 5 n & =45 \\ n & =9 \end{aligned}$ "I know $5 \times 9=45$, so $n=9$. There are 9 people in each line."
Observations/Documentation			

