

$\qquad$

## $\underbrace{\substack{\text { Unit } \\ \text { Line Master 2a }}}_{\text {Number }}$ Connect 15: Up to 10 Million

| START <br> Where is 76596 ? | seventy-six thousand five hundred ninety-six <br> Where is $\begin{aligned} & 3000000+900000+40000+ \\ & 6000+500+20+1 ? \end{aligned}$ |
| :---: | :---: |
| 3946521 <br> Where is a number with 4 hundred thousands, 2 ten thousands, 6 thousands, 8 hundreds, 2 ones? | four hundred twenty-six thousand eight hundred two <br> Where is <br> 1000000 ? |
| 1 million <br> Where is $600000+5000+800+20+4 ?$ | 605824 <br> Where is a number that is 30 thousands more than $204904 ?$ |
| $200000+30000+4000+900+4$ <br> Where is a number with 5 hundred thousands, 4 tens, 5 ones? | 500045 <br> Where is 345 thousand? |
| 345000 <br> Where is $2000000+6$ ? | 2000006 <br> Where is $300000+5000+300+5 ?$ |

$\qquad$

$\qquad$
$\qquad$

## Number <br> Unit 1 Line Master 4a <br> Place-Value Challenge! Recording Sheet

Player B

$\frac{11}{0}$



$\qquad$
$\qquad$

| Number |
| :--- |
| Unit 1 Line Master 4b |

Place-Value Challenge! Recording Sheet (cont'd)

| Player A | Rounded Number |
| :--- | :--- |
| Round 1 |  |
| Round 2 |  |
| Round 3 |  |
| Round 4 |  |


| Player B | Rounded Number |
| :--- | :--- |
| Round 1 |  |
| Round 2 |  |
| Round 3 |  |
| Round 4 |  |

## Points

|  | Round 1 | Round 2 | Round 3 | Round 4 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Player A |  |  |  |  |  |
| Player B |  |  |  |  |  |

$\qquad$
$\qquad$

## Number <br> Unit 1 Line Master 5a <br> Link 3! Gameboard A: Up to $\mathbf{1 0}$ Million

| $\begin{aligned} & 0 \\ & 寸 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $$ |  | $\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $$ | $\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$ | $$ |
| $\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{N} \\ & \underset{+}{+} \end{aligned}$ | $\begin{aligned} & N \\ & N \\ & N \\ & N \end{aligned}$ | $\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & N \\ & \underset{N}{2} \end{aligned}$ | 8 <br>  <br> 0 <br> 8 <br> - <br> - |
| $\begin{aligned} & \text { N } \\ & \underset{\sim}{\infty} \\ & \underset{+}{2} \end{aligned}$ | $\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline 8 \\ & 0 \\ & \bullet \\ & \leftarrow \end{aligned}$ | $\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & 10 \end{aligned}$ | $$ |
| $\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{*} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 10 \\ & 0 \\ & \forall \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \hline \end{aligned}$ |

$\qquad$

## Number <br> Unit 1 Line Master 5b <br> Link 3! Gameboard A Cards: Up to 10 Million


$\qquad$
$\qquad$

Number
Unit 1 Line Master 6a

Link 3! Gameboard B: Up to 100000

| 74747 | 4747 | 90680 |
| :---: | :---: | :---: |
| 9608 | 54632 | 20089 |
| 8632 | 2098 | 23075 |
| 20375 | 87643 | 80632 |

$\qquad$
$\qquad$

Number
Unit 1 Line Master 6b

## Link 3! Gameboard B Cards: Up to 100000



## Activity 1 Assessment

Representing Numbers to 10000000

| Extending Whole Number Understa |  |  |
| :---: | :---: | :---: |
| Represents 6-digit number on place-value chart (decomposes in one way) <br> "982 769 has 9 hundred-thousands, 8 ten-thousands, 2 thousands, 7 hundreds, 6 tens, and 9 ones." | Represents 7-digit number on place-value chart (decomposes in one way) <br>  <br> "1 025 820: I used the digits of the number to tell me the number to write in each column." | Uses relationships among place-value positions to read and write a number in more than one way <br> " 1 million, 2 ten-thousands, 5 thousands, 8 hundreds, and 2 tens, can also be 1 million, 25 thousands, 820 ones." $1025820=1000000+20000+5000+800+20$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 1 Assessment

Representing Numbers to 10000000

| Extending Whole Number Understanding (cont'd) |  |  |
| :---: | :---: | :---: |
| Uses place-value to compare and order numbers to 10000000 <br> "Both start with 4 million 125 thousands. <br> 3 hundreds is greater than 1 hundred, 2 tens is greater than 0 tens, and 7 ones is less than 9 ones. <br> So, 4125327 is greater than 4125 109." | Rounds 6- and 7-digit numbers to various places <br> "1 025820 rounded to the nearest ten is 1025820 , to the nearest hundred is 1025800 , to the nearest thousand is 1026000 , to the nearest ten thousand is 1030000 , to the nearest hundred thousand is 1000000 , and to the nearest million is 1000000 ." | Represents and compares numbers flexibly using place-value relationships $\begin{gathered} " 1025820= \\ 1000000+20000+5000+800+20 \\ 1025820= \\ 1000000+20000+5000+700+120 \\ 1025820= \\ 1000000+20000+5000+700+110+10 " \end{gathered}$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 2 Assessment

Representing Numbers in Different Forms

| Extending Whole Number Understa |  |  |
| :---: | :---: | :---: |
| Represents 6-digit number on place-value chart (decomposes in one way) <br> "982 769 has 9 hundred-thousands, 8 ten-thousands, 2 thousands, 7 hundreds, 6 tens, and 9 ones." | Represents 7-digit number on place-value chart (decomposes in one way) <br>  <br> "1 025 820: I used the digits of the number to tell me the number to write in each column." | Uses relationships among place-value positions to read and write a number in more than one way <br> " 1 million, 2 ten-thousands, 5 thousands, 8 hundreds, and 2 tens, can also be 1 million, 25 thousands, 820 ones." $1025820=1000000+20000+5000+800+20$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 2 Assessment

## Representing Numbers in Different Forms

| Extending Whole Number Understanding (cont'd) |  |  |
| :---: | :---: | :---: |
| Uses place-value to compare and order numbers to 10000000 <br> "Both start with 4 million 125 thousands. 3 hundreds is greater than 1 hundred, 2 tens is greater than 0 tens, and 7 ones is less than 9 ones. <br> So, 4125327 is greater than 4125 109." | Rounds 6- and 7-digit numbers to various places <br> "1 025820 rounded to the nearest ten is 1025820 , to the nearest hundred is 1025800 , to the nearest thousand is 1026000 , to the nearest ten thousand is 1030000 , to the nearest hundred thousand is 1000000 , and to the nearest million is 1000000 ." | Represents and compares numbers flexibly using place-value relationships $\begin{gathered} " 1025820= \\ 1000000+20000+5000+800+20 \\ 1025820= \\ 1000000+20000+5000+700+120 \\ 1025820= \\ 1000000+20000+5000+700+110+10 " \end{gathered}$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 3 Assessment

Comparing and Rounding Numbers

| Extending Whole Number Understa |  |  |
| :---: | :---: | :---: |
| Represents 6-digit number on place-value chart (decomposes in one way) <br> "982 769 has 9 hundred-thousands, 8 ten-thousands, 2 thousands, 7 hundreds, 6 tens, and 9 ones." | Represents 7-digit number on place-value chart (decomposes in one way) <br> "1 025 820: I used the digits of the number to tell me the number to write in each column." | Uses relationships among place-value positions to read and write a number in more than one way <br> $\begin{array}{ccccc}\uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ 1000000 & 0 & 20000 & 5000 & 800\end{array}$ <br> " 1 million, 2 ten-thousands, 5 thousands, 8 hundreds, and 2 tens, can also be 1 million, 25 thousands, 820 ones." $1025820=1000000+20000+5000+800+20$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 3 Assessment

Comparing and Rounding Numbers

| Extending Whole Number Understanding (cont'd) |  |  |
| :---: | :---: | :---: |
| Uses place-value to compare and order numbers to 10000000 <br> "Both start with 4 million 125 thousands. 3 hundreds is greater than 1 hundred, 2 tens is greater than 0 tens, and 7 ones is less than 9 ones. <br> So, 4125327 is greater than 4125 109." | Rounds 6- and 7-digit numbers to various places <br> "1 025820 rounded to the nearest ten is 1025820 , to the nearest hundred is 1025800 , to the nearest thousand is $\mathbf{1 0 2 6 0 0 0}$, to the nearest ten thousand is 1030000 , to the nearest hundred thousand is 1000000 , and to the nearest million is 1000000. ." | Represents and compares numbers flexibly using place-value relationships $\begin{gathered} " 1025820= \\ 1000000+20000+5000+800+20 \\ 1025820= \\ 1000000+20000+5000+700+120 \\ 1025820= \\ 1000000+20000+5000+700+110+10 " \end{gathered}$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 4 Assessment

Consolidating Number Relationships and Place Value


## Activity 4 Assessment

Consolidating Number Relationships and Place Value

$\qquad$ Date $\qquad$

Number Unit 2 Line Master 1

## Number of Views

Choose one video below.
How many views did it get on its first two days online?
First four days online?
Use estimation to check the reasonableness of your answers.


## Activity 5 Assessment

Exploring Addition Strategies

| Conceptual Meaning of Whole Number Addition and Subtraction |  |  |
| :---: | :---: | :---: |
| Recognizes addition and subtraction situations to 1000000 <br> How many views did the video get on its first two days online? <br> "To find the total number of views, I need to add the number of views on Day 1 and the number of views on Day 2." | Models and symbolizes ways to solve problems to 1000000 $156231+275489=?$ | Uses an understanding of place value to decompose numbers to solve problems to 1000000 $\begin{aligned} 156231 & =100000+50000+6000+200+30+1 \\ 275489 & =200000+70000+5000+400+80+9 \\ 156231+275489 & =300000+120000+11000+600+110+10 \\ & =431720 \end{aligned}$ <br> "I added hundred thousands with hundred thousands, ten thousands with ten thousands, thousands with thousands, and so on. I added like units." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 5 Assessment Exploring Addition Strategies

| Conceptual Meaning of Whole Number Addition and Subtraction (cont'd) |  |  |
| :---: | :---: | :---: |
| Uses an understanding of place value to add and subtract to 1000000 using the standard algorithm $\begin{gathered} 968867-790283=? \\ 8171 \\ 968867 \\ -790283 \\ \hline 178584 \end{gathered}$ <br> "I used the standard algorithm." | Estimates to determine if answer to problem is reasonable $968867-790283=?$ <br> "968 867 is close to 970000 and 790283 is close to 800000. $970000-800000=170000$ <br> 178584 is close to 170000 . <br> So, my answer is reasonable." | Creates and solves multi-step addition and subtraction problems flexibly using a variety of strategies <br> A dancing monkey video got 54977 likes one day and 127522 likes the next. How many more likes does it need to reach 250000 ? $\begin{array}{r} 111 \\ 54977 \\ +127552 \\ \hline 182529 \end{array} \begin{array}{r} 1149991 \\ 25 \emptyset 0 \emptyset 0 \\ -182529 \\ \hline 67471 \end{array}$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 6 Assessment

Exploring Subtraction Strategies

| Conceptual Meaning of Whole Number Addition and Subtraction |  |  |
| :---: | :---: | :---: |
| Recognizes addition and subtraction situations to 1000000 <br> How many views did the video get on its first two days online? <br> "To find the total number of views, I need to add the number of views on Day 1 and the number of views on Day 2." | Models and symbolizes ways to solve problems to 1000000 $156231+275489=?$ | Uses an understanding of place value to decompose numbers to solve problems to 1000000 $\begin{aligned} 156231 & =100000+50000+6000+200+30+1 \\ 275489 & =200000+70000+5000+400+80+9 \\ 156231+275489 & =300000+120000+11000+600+110+10 \\ & =431720 \end{aligned}$ <br> "I added hundred thousands with hundred thousands, ten thousands with ten thousands, thousands with thousands, and so on. I added like units." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 6 Assessment

Exploring Subtraction Strategies

| Conceptual Meaning of Whole Number Addition and Subtraction (cont'd) |  |  |
| :---: | :---: | :---: |
| Uses an understanding of place value to add and subtract to 1000000 using the standard algorithm $\begin{gathered} 968867-790283=? \\ 8171 \\ 968867 \\ -790283 \\ \hline 178584 \end{gathered}$ <br> "I used the standard algorithm." | Estimates to determine if answer to problem is reasonable $968867-790283=?$ <br> "968 867 is close to 970000 and 790283 is close to 800000. $970000-800000=170000 .$ <br> 178584 is close to 170000 . <br> So, my answer is reasonable." | Creates and solves multi-step addition and subtraction problems flexibly using a variety of strategies <br> A dancing monkey video got 54977 likes one day and 127522 likes the next. How many more likes does it need to reach 250000 ? $\begin{array}{r} 111 \\ 54977 \\ +127552 \end{array} \begin{array}{r} 1149991 \\ 25 \emptyset \emptyset \emptyset 0 \\ -182529 \\ \hline 182529 \end{array} \quad \begin{array}{r} 67471 \end{array}$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 7 Assessment

Consolidating Fluency with Addition and Subtraction

| Conceptual Meaning of Whole Number Addition and Subtraction |  |  |
| :---: | :---: | :---: |
| Recognizes addition and subtraction situations to 1000000 <br> How many views did the video get on its first two days online? <br> "To find the total number of views, I need to add the number of views on Day 1 and the number of views on Day 2." | Models and symbolizes ways to solve problems to 1000000 $156231+275489=?$ | Uses an understanding of place value to decompose numbers to solve problems to 1000000 $\begin{aligned} 156231 & =100000+50000+6000+200+30+1 \\ 275489 & =200000+70000+5000+400+80+9 \\ 156231+275489 & =300000+120000+11000+600+110+10 \\ & =431720 \end{aligned}$ <br> "I added hundred thousands with hundred thousands, ten thousands with ten thousands, thousands with thousands, and so on. I added like units." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 7 Assessment <br> Consolidating Fluency with Addition and Subtraction

| Conceptual Meaning of Whole Number Addition and Subtraction (cont'd) |  |  |
| :---: | :---: | :---: |
| Uses an understanding of place value to add and subtract to 1000000 using the standard algorithm $\begin{array}{r} 968867-790283=? \\ 8171 \\ 968867 \\ -790283 \\ \hline 178584 \end{array}$ <br> "I used the standard algorithm." | Estimates to determine if answer to problem is reasonable $968867-790283=?$ <br> "968 867 is close to 970000 and 790283 is close to 800000. $970000-800000=170000 .$ <br> 178584 is close to 170000 . <br> So, my answer is reasonable." | Creates and solves multi-step addition and subtraction problems flexibly using a variety of strategies <br> A dancing monkey video got 54977 likes one day and 127522 likes the next. How many more likes does it need to reach 250 000? $\begin{array}{r} 111 \\ 54977 \\ +127552 \end{array} \begin{array}{r} 1149991 \\ 250 \emptyset 00 \\ -182529 \\ \hline 182529 \end{array} \begin{array}{r} 67471 \end{array}$ |
| Observations/Documentation |  |  |
|  |  |  |

$\qquad$

Number
Unit 3 Line Master 1

Relational Rods

$\qquad$
$\qquad$

Number
Unit 3 Line Master 2
Colour Tile Grid

$\qquad$

Number
Unit S Line Master 3a Where the Chickens Live

$\qquad$

Number
Unit 3 Line Master 3b

## Where the Chickens Live (cont'd)


$\qquad$

## Number <br> Unit 3 Line Master 4 Open Number Lines


$\qquad$
$\qquad$

Number
Unit 3 Line Master 5a

Filling Three
Goal: Counting by one-fifths to be the first to reach 3 .

## How to Play:

- Player A: Start at 0 . Count 1, 2, or 3 one-fifths.

Draw jumps on the line and write a fraction to label where you land.

- Player B: Start where Player A ended.

Count on 1, 2, or 3 one-fifths.

- Draw the jumps and label where you land.

If you land beyond 1, record the fraction as a mixed number.

- Continue to take turns until one player reaches 3 .
- Play again.

$\qquad$
$\qquad$

Number
Unit 3 Line Master 5b

Filling Four

## How to Play:

- Player A: Start at 0 . Count 1, 2, or 3 one-fourths.

Draw jumps on the line and write a fraction to label where you land.

- Player B: Start where Player A ended.

Count on 1, 2, or 3 one-fourths. Draw the jumps and label where you land. If you land beyond 1 , record the fraction as a mixed number.

- Continue to take turns until one player reaches 4.
- Play again.

$\qquad$

Number Unit 3 Line Master 6a

## Number Lines (0 to 4)


$\qquad$

Number Unit 3 Line Master 6b

Number Lines (0 to 1)


Number
Unit 3 Line Master 7

## Thousandths Grids


$\qquad$
$\qquad$


Number Unit 3 Line Master 9

## Hundredths Grids


$\qquad$

Number
Unit 3 Line Master 10


## Hundredths Lines



## Activity 8 Assessment Counting by Unit Fractions

| Exploring Fractions and Decimals |  |  |  |
| :--- | :--- | :--- | :--- |
| Uses counting to determine <br> improper fractions and mixed <br> numbers | Models fractions using quantities, <br> lengths, and areas | Expresses improper fractions as <br> mixed numbers and vice versa | Compares and orders fractions, <br> including improper fractions and <br> mixed numbers (e.g., using <br> benchmarks) |

## Activity 8 Assessment

 Counting by Unit Fractions| Exploring Fractions and Decimals (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Represents decimal numbers to thousandths <br> "I shaded the grids to show 1.254." | Identifies a decimal between two given decimals $2.834, ?, 2.84$ <br> "Both decimals have 2 wholes. I know 2.834 has <br> 834 thousandths and 2.84 has 840 thousandths. <br> 836 is between 834 and 840 . <br> So, 2.836 is between 2.834 and 2.84." | Rounds decimals to a specified place value (e.g., nearest hundredth) <br> " 2.517 is closer to 2.52 than to 2.51, so I round up to 2.52 ." | Flexibly compares and orders decimals $2.7,2.649,2.76$ <br> "I ordered the decimals from least to greatest: 2.649, 2.7, 2.76." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 9 Assessment

Exploring Different Representations of Fractions

| Exploring Fractions and Decimals |  |  |  |
| :--- | :--- | :--- | :--- |
| Uses counting to determine <br> improper fractions and mixed <br> numbers | Models fractions using quantities, <br> lengths, and areas | Expresses improper fractions as <br> mixed numbers and vice versa | Compares and orders fractions, <br> including improper fractions and <br> mixed numbers (e.g., using <br> benchmarks) |

## Activity 9 Assessment

Exploring Different Representations of Fractions

| Exploring Fractions and Decimals (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Represents decimal numbers to thousandths <br> "I shaded the grids to show 1.254." | Identifies a decimal between two given decimals $2.834, \text { ?, } 2.84$ <br> "Both decimals have 2 wholes. <br> I know 2.834 has <br> 834 thousandths and 2.84 has 840 thousandths. <br> 836 is between 834 and 840 . <br> So, 2.836 is between 2.834 and 2.84." | Rounds decimals to a specified place value (e.g., nearest hundredth) <br> " 2.517 is closer to 2.52 than to 2.51, so I round up to 2.52 ." | Flexibly compares and orders decimals $2.7,2.649,2.76$ <br> "I ordered the decimals from least to greatest: 2.649, 2.7, 2.76." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 10 Assessment

Exploring Improper Fractions and Mixed Numbers

| Exploring Fractions and Decimals |  |  |  |
| :--- | :--- | :--- | :--- |
| Uses counting to determine <br> improper fractions and mixed <br> numbers | Models fractions using quantities, <br> lengths, and areas | Expresses improper fractions as <br> mixed numbers and vice versa | Compares and orders fractions, <br> including improper fractions and <br> mixed numbers (e.g., using <br> benchmarks) |

## Activity 10 Assessment

Exploring Improper Fractions and Mixed Numbers

| Exploring Fractions and Decimals (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Represents decimal numbers to thousandths <br> "I shaded the grids to show 1.254." | Identifies a decimal between two given decimals $2.834, \text { ?, } 2.84$ <br> "Both decimals have 2 wholes. <br> I know 2.834 has <br> 834 thousandths and 2.84 has 840 thousandths. <br> 836 is between 834 and 840 . <br> So, 2.836 is between 2.834 and 2.84." | Rounds decimals to a specified place value (e.g., nearest hundredth) <br> " 2.517 is closer to 2.52 than to 2.51, so I round up to 2.52 ." | Flexibly compares and orders decimals $2.7,2.649,2.76$ <br> "I ordered the decimals from least to greatest: 2.649, 2.7, 2.76." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 11 Assessment Comparing and Ordering Fractions

| Exploring Fractions and Decimals |  |  |  |
| :--- | :--- | :--- | :--- |
| Uses counting to determine <br> improper fractions and mixed <br> numbers | Models fractions using quantities, <br> lengths, and areas | Expresses improper fractions as <br> mixed numbers and vice versa | Compares and orders fractions, <br> including improper fractions and <br> mixed numbers (e.g., using <br> benchmarks) |

## Activity 11 Assessment Comparing and Ordering Fractions

| Exploring Fractions and Decimals (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Represents decimal numbers to thousandths <br> "I shaded the grids to show 1.254." | Identifies a decimal between two given decimals $2.834, \text { ?, } 2.84$ <br> "Both decimals have 2 wholes. <br> I know 2.834 has <br> 834 thousandths and 2.84 has 840 thousandths. <br> 836 is between 834 and 840 . <br> So, 2.836 is between 2.834 and 2.84." | Rounds decimals to a specified place value (e.g., nearest hundredth) <br> " 2.517 is closer to 2.52 than to 2.51, so I round up to 2.52 ." | Flexibly compares and orders decimals $2.7,2.649,2.76$ <br> "I ordered the decimals from least to greatest: 2.649, 2.7, 2.76." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 12 Assessment

Representing Decimals

| Exploring Fractions and Decimals |  |  |  |
| :---: | :---: | :---: | :---: |
| Uses counting to determine improper fractions and mixed numbers <br> "I counted 15 one-fourths. Each four-fourths is one whole, so $\frac{15}{4}=3 \frac{3}{4}$." | Models fractions using quantities, lengths, and areas <br> "I took jumps on a number line to show $\frac{5}{3}$ " | Expresses improper fractions as mixed numbers and vice versa $\begin{gathered} \frac{5}{3}=1 \frac{2}{3} \\ " 5=3+2 \end{gathered}$ <br> So, $\frac{5}{3}=\frac{3}{3}+\frac{2}{3}$, which is the same as $1+\frac{2}{3}=1 \frac{2}{3} . "$ | Compares and orders fractions, including improper fractions and mixed numbers (e.g., using benchmarks) $\begin{gathered} \frac{11}{7}, \frac{16}{9}, \frac{13}{12} \\ \frac{11}{7}=1 \frac{4}{7}, \frac{16}{9}=1 \frac{7}{9}, \frac{13}{12}=1 \frac{1}{12} \end{gathered}$ <br> "All the fractions are between 1 and 2. I compared to benchmarks: $1 \frac{4}{7}$ is a little more than 1 and one-half. $1 \frac{7}{9}$ is pretty close to 2 . $1 \frac{1}{12}$ is very close to 1 . So, from least to greatest: $\frac{13}{12}, 1 \frac{4}{7}, 1 \frac{7}{9} . "$ |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 12 Assessment

Representing Decimals

| Exploring Fractions and Decimals (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Represents decimal numbers to thousandths <br> "I shaded the grids to show 1.254." | Identifies a decimal between two given decimals $2.834, ?, 2.84$ <br> "Both decimals have 2 wholes. <br> I know 2.834 has <br> 834 thousandths and 2.84 has 840 thousandths. <br> 836 is between 834 and 840 . <br> So, 2.836 is between 2.834 and 2.84." | Rounds decimals to a specified place value (e.g., nearest hundredth) <br> " 2.517 is closer to 2.52 than to 2.51 , so I round up to 2.52 ." | Flexibly compares and orders decimals $\text { 2.7, 2.649, } 2.76$ <br> "I ordered the decimals from least to greatest: 2.649, 2.7, 2.76." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 13 Assessment

 Comparing and Ordering Decimals| Exploring Fractions and Decimals |  |  |  |
| :--- | :--- | :--- | :--- |
| Uses counting to determine <br> improper fractions and mixed <br> numbers | Models fractions using quantities, <br> lengths, and areas | Expresses improper fractions as <br> mixed numbers and vice versa | Compares and orders fractions, <br> including improper fractions and <br> mixed numbers (e.g., using <br> benchmarks) |

## Activity 13 Assessment

Comparing and Ordering Decimals

| Exploring Fractions and Decimals (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Represents decimal numbers to thousandths <br> "I shaded the grids to show 1.254." | Identifies a decimal between two given decimals $2.834, \text { ?, } 2.84$ <br> "Both decimals have 2 wholes. <br> I know 2.834 has <br> 834 thousandths and 2.84 has 840 thousandths. <br> 836 is between 834 and 840 . <br> So, 2.836 is between 2.834 and 2.84." | Rounds decimals to a specified place value (e.g., nearest hundredth) <br> " 2.517 is closer to 2.52 than to 2.51 , so I round up to 2.52." | Flexibly compares and orders decimals $2.7,2.649,2.76$ <br> "I ordered the decimals from least to greatest: 2.649, 2.7, 2.76." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Number

## Activity 14 Assessment

 Exploring Ratios| Exploring Ratios |  |  |  |
| :---: | :---: | :---: | :---: |
| Understands difference between part-part and part-whole relationships <br> "Butterflies to ladybugs is a part-part relationship and butterflies to all insects is a part-whole relationship.' | Expresses part-part and part-whole relationships with ratios <br> "Butterflies to ladybugs: 3:1, a part-part ratio. <br> Butterflies to all insects: 3:4, a part-whole ratio." | Expresses part-whole relationships in different ways (i.e., ratios, fractions, decimals, percents) <br> "Butterflies to all insects: $3: 4, \frac{3}{4}, 0.75,75 \% "$ | Flexibly interprets and expresses ratios to represent different situations <br> 4:5 <br> "A 4:5 ratio could represent a part-part situation, such as: <br> Or it could represent a part-whole situation, such as:" |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 15 Assessment

Consolidating Fractions, Decimals, and Ratios

| Exploring Fractions and Decimals |  |  |  |
| :--- | :--- | :--- | :--- |
| Uses counting to determine <br> improper fractions and mixed <br> numbers | Models fractions using quantities, <br> lengths, and areas | Expresses improper fractions as <br> mixed numbers and vice versa | Compares and orders fractions, <br> including improper fractions and <br> mixed numbers (e.g., using <br> benchmarks) |

## Activity 15 Assessment

Consolidating Fractions, Decimals, and Ratios

| Exploring Fractions and Decimals (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Represents decimal numbers to thousandths <br> "I shaded the grids to show 1.254." | Identifies a decimal between two given decimals $2.834, \text { ?, } 2.84$ <br> "Both decimals have 2 wholes. <br> I know 2.834 has <br> 834 thousandths and 2.84 has 840 thousandths. <br> 836 is between 834 and 840 . <br> So, 2.836 is between 2.834 and 2.84." | Rounds decimals to a specified place value (e.g., nearest hundredth) <br> " 2.517 is closer to 2.52 than to 2.51, so I round up to 2.52 ." | Flexibly compares and orders decimals $2.7,2.649,2.76$ <br> "I ordered the decimals from least to greatest: 2.649, 2.7, 2.76." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 15 Assessment

Consolidating Fractions, Decimals, and Ratios

| Exploring Ratios |  |  |  |
| :---: | :---: | :---: | :---: |
| Understands difference between part-part and part-whole relationships <br> "Butterflies to ladybugs is a part-part relationship and butterflies to all insects is a part-whole relationship." | Expresses part-part and part-whole relationships with ratios <br> "Butterflies to ladybugs: 3:1, a part-part ratio. <br> Butterflies to all insects: 3:4, a part-whole ratio." | Expresses part-whole relationships in different ways (i.e., ratios, fractions, decimals, percents) <br> "Butterflies to all insects: $3: 4, \frac{3}{4}, 0.75,75 \% "$ | Flexibly interprets and expresses ratios to represent different situations <br> 4:5 <br> "A 4:5 ratio could represent a part-part situation, such as: <br> Or it could represent a part-whole situation, such as:" |
| Observations/Documentation |  |  |  |
|  |  |  |  |

$\qquad$
$\qquad$ Hundred Chart

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

$\qquad$
$\qquad$

Number
Unit 4 Line Master 2

## Who is Correct?

An egg farmer took 10 cartons of eggs to the market.
Each carton had 12 eggs.
How many eggs did the farmer take?

To solve the problem:

- Ronica outlined an array on dot paper.

- Patrick made an open array.

10


Whose solution is correct? Explain.
How are the solution strategies the same?
How are they different?
$\qquad$
$\qquad$

Number
Unit 4 Line Master 3a

## How Much Do They Eat?

For each problem, determine how much food each animal gets.
Show your work.
Record your solution on grid paper or dot paper.

## Problem 1

There are 6 grizzly bears at a wildlife park.
Each day, they receive a $120-\mathrm{kg}$ bag of food.
The food is shared equally among them.

$\qquad$

Number
Unit 4 Line Master 3b

# How Much Do They Eat? (cont'd) 

## Problem 2

There are 5 elephants at a safari park.
Each day, they receive a $150-\mathrm{kg}$ bag of food.
The food is shared equally among them.


## Activity 16 Assessment Investigating Divisibility Tests



## Activity 16 Assessment Investigating Divisibility Tests

| Multiplying and Dividing Larger Numbers (cont'd) |  |  |
| :---: | :---: | :---: |
| Estimates to determine if answer to multiplication or division problem is reasonable $258 \times 15=3870$ <br> " 258 is close to 250 . $\begin{aligned} 250 \times 15 & =(250 \times 10)+(250 \times 5) \\ & =2500+1250 \\ & =3750 \end{aligned}$ <br> 3870 is close to 3750 . <br> So, my answer is reasonable." | Expresses a quotient with or without a remainder according to context <br> There are 114 students going on field trip. Each bus holds 9 students. <br> How many buses are needed? $\begin{gathered} \frac{12}{9 \longdiv { 1 1 4 }} \\ \frac{-9}{24} \\ \frac{-18}{6} \\ 114 \div 9=12 R 6 \end{gathered}$ <br> "Since 6 students cannot be left behind, 13 buses are needed." | Creates and solves multiplication and division problems flexibly using a variety of strategies <br> 5 elephants share 748 kg of food. How much food does each elephant get? $\begin{aligned} 748 \div 5 & =(500 \div 5)+(200 \div 5)+(45 \div 5)+(3 \div 5) \\ & =100+40+9+(3 \div 5) \\ & =149 \mathrm{R} 3, \text { or } 149 \frac{3}{5} \text { or } 149 \frac{6}{10}, \text { or } 149.6 \end{aligned}$ <br> Each elephant got 149.6 kg of food. |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 17 Assessment

Using Estimation for Multiplication and Division


## Activity 17 Assessment

Using Estimation for Multiplication and Division

| Multiplying and Dividing Larger Numbers (cont'd) |  |  |
| :---: | :---: | :---: |
| Estimates to determine if answer to multiplication or division problem is reasonable $258 \times 15=3870$ <br> " 258 is close to 250. $\begin{aligned} 250 \times 15 & =(250 \times 10)+(250 \times 5) \\ & =2500+1250 \\ & =3750 \end{aligned}$ <br> 3870 is close to 3750 . <br> So, my answer is reasonable." | Expresses a quotient with or without a remainder according to context <br> There are 114 students going on field trip. Each bus holds 9 students. How many buses are needed? $\begin{gathered} \frac{12}{9 \lcm{114}} \\ \frac{-9}{24} \\ \frac{-18}{6} \\ 114 \div 9=12 R 6 \end{gathered}$ <br> "Since 6 students cannot be left behind, 13 buses are needed." | Creates and solves multiplication and division problems flexibly using a variety of strategies <br> 5 elephants share 748 kg of food. <br> How much food does each elephant get? $\begin{aligned} 748 \div 5 & =(500 \div 5)+(200 \div 5)+(45 \div 5)+(3 \div 5) \\ & =100+40+9+(3 \div 5) \\ & =149 R 3, \text { or } 149 \frac{3}{5} \text { or } 149 \frac{6}{10}, \text { or } 149.6 \end{aligned}$ <br> Each elephant got 149.6 kg of food. |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 18 Assessment

 Multiplying Larger Numbers

## Activity 18 Assessment

 Multiplying Larger Numbers| Multiplying and Dividing Larger Numbers (cont'd) |  |  |
| :---: | :---: | :---: |
| Estimates to determine if answer to multiplication or division problem is reasonable $258 \times 15=3870$ <br> " 258 is close to 250 . $\begin{aligned} 250 \times 15 & =(250 \times 10)+(250 \times 5) \\ & =2500+1250 \\ & =3750 \end{aligned}$ <br> 3870 is close to 3750 . <br> So, my answer is reasonable." | Expresses a quotient with or without a remainder according to context <br> There are 114 students going on field trip. Each bus holds 9 students. <br> How many buses are needed? $\begin{gathered} \frac{12}{9 \longdiv { 1 1 4 }} \\ \frac{-9}{24} \\ \frac{-18}{6} \\ 114 \div 9=12 R 6 \end{gathered}$ <br> "Since 6 students cannot be left behind, 13 buses are needed." | Creates and solves multiplication and division problems flexibly using a variety of strategies <br> 5 elephants share 748 kg of food. How much food does each elephant get? $\begin{aligned} 748 \div 5 & =(500 \div 5)+(200 \div 5)+(45 \div 5)+(3 \div 5) \\ & =100+40+9+(3 \div 5) \\ & =149 \mathrm{R} 3, \text { or } 149 \frac{3}{5} \text { or } 149 \frac{6}{10}, \text { or } 149.6 \end{aligned}$ <br> Each elephant got 149.6 kg of food. |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 19 Assessment

Dividing Larger Numbers


## Activity 19 Assessment

Dividing Larger Numbers

| Multiplying and Dividing Larger Numbers (cont'd) |  |  |
| :---: | :---: | :---: |
| Estimates to determine if answer to multiplication or division problem is reasonable $258 \times 15=3870$ <br> " 258 is close to 250 . $\begin{aligned} 250 \times 15 & =(250 \times 10)+(250 \times 5) \\ & =2500+1250 \\ & =3750 \end{aligned}$ <br> 3870 is close to 3750 . <br> So, my answer is reasonable." | Expresses a quotient with or without a remainder according to context <br> There are 114 students going on field trip. Each bus holds 9 students. How many buses are needed? $\begin{gathered} \frac{12}{9 \longdiv { 1 1 4 }} \\ \frac{-9}{24} \\ \frac{-18}{6} \\ 114 \div 9=12 R 6 \end{gathered}$ <br> "Since 6 students cannot be left behind, 13 buses are needed." | Creates and solves multiplication and division problems flexibly using a variety of strategies <br> 5 elephants share 748 kg of food. How much food does each elephant get? $\begin{aligned} 748 \div 5 & =(500 \div 5)+(200 \div 5)+(45 \div 5)+(3 \div 5) \\ & =100+40+9+(3 \div 5) \\ & =149 \mathrm{R} 3, \text { or } 149 \frac{3}{5} \text { or } 149 \frac{6}{10}, \text { or } 149.6 \end{aligned}$ <br> Each elephant got 149.6 kg of food. |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 20 Assessment <br> Consolidating Multiplying and Dividing Larger Numbers

| Multiplying and Dividing Larger Numbers |  |  |
| :---: | :---: | :---: |
| Uses divisibility tests to identify numbers that are divisible by 2,3 , and 5 . $285$ <br> "Not divisible by 2 as the ones digit is not even. Divisible by 3 because the sum of the digits, 15 , is divisible by 3 . Divisible by 5 as the ones digit is 5 ." | Models multiplication and division situations concretely and pictorially (i.e., using Base Ten Blocks, arrays, open arrays) $258 \times 15=?$ <br> "I used an open array and added all the areas: $\begin{gathered} 2000+1000+500+250+80+40=3870 \\ \text { So, } 258 \times 15=3870 . " \end{gathered}$ | Uses standard algorithms to multiply and divide $\begin{array}{lr} \qquad 258 \times 15=? \\ & \begin{array}{r} 24 \\ 258 \\ \times 15 \\ \hline \end{array} \\ \begin{aligned} & 1290 \\ & \text { Multiply: } 258 \times 5 \\ & \text { Multiply: } 258 \times 10+2580 \\ & \hline \end{aligned} & \end{array}$ <br> "I used the standard algorithm to multiply." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 20 Assessment <br> Consolidating Multiplying and Dividing Larger Numbers

| Multiplying and Dividing Larger Numbers (cont'd) |  |  |
| :---: | :---: | :---: |
| Estimates to determine if answer to multiplication or division problem is reasonable $258 \times 15=3870$ <br> " 258 is close to 250 . $\begin{aligned} 250 \times 15 & =(250 \times 10)+(250 \times 5) \\ & =2500+1250 \\ & =3750 \end{aligned}$ <br> 3870 is close to 3750 . <br> So, my answer is reasonable." | Expresses a quotient with or without a remainder according to context <br> There are 114 students going on field trip. Each bus holds 9 students. <br> How many buses are needed? $\begin{gathered} \frac{12}{9 \longdiv { 1 1 4 }} \\ \frac{-9}{24} \\ \frac{-18}{6} \\ 114 \div 9=12 R 6 \end{gathered}$ <br> "Since 6 students cannot be left behind, 13 buses are needed." | Creates and solves multiplication and division problems flexibly using a variety of strategies <br> 5 elephants share 748 kg of food. <br> How much food does each elephant get? $\begin{aligned} 748 \div 5 & =(500 \div 5)+(200 \div 5)+(45 \div 5)+(3 \div 5) \\ & =100+40+9+(3 \div 5) \\ & =149 \mathrm{R} 3, \text { or } 149 \frac{3}{5} \text { or } 149 \frac{6}{10}, \text { or } 149.6 \end{aligned}$ <br> Each elephant got 149.6 kg of food. |
| Observations/Documentation |  |  |
|  |  |  |

$\qquad$

$\qquad$

| Number |
| :--- |
| Unit 5 Line Master 1b |

Decimal Cards (cont'd)
To hundredths and thousandths

$\qquad$

## Number <br> Unit 5 Line Master 1c <br> Decimal Cards (cont'd) <br> To tenths


$\qquad$

## Number <br> Unit 5 Line Master 1d <br> Decimal Cards (cont'd) <br> To tenths


$\qquad$

Number
Unit 5 Line Master 2

Decimals Gotcha!
Recording Sheet

$\qquad$
$\qquad$

\section*{| Number |
| :---: |
| Unit 5 Line Master 3 | Shopping for the Food Bank}

Preston is grocery shopping to buy 10 kg of food for the food bank. Preston will choose 1 of each item.
Identify a basket of food that comes close to a total mass of 10 kg . Estimate first, then add to check.
What is the difference between the total mass of food you chose and 10 kg ? Show how you know.

| Food Item | Mass (kg) |
| :--- | :---: |
| Baked beans | 0.550 |
| Blueberries | 1.750 |
| Carrots | 1.360 |
| Cereal | 0.640 |
| Cheese (grated) | 0.125 |
| Chicken broth | 0.985 |
| Chicken wings | 0.850 |
| Hamburger | 1.450 |
| Potatoes | 2.270 |
| Tea bags | 0.790 |
| Tuna (3 cans) | 0.510 |
| Water | 1.250 |

$\qquad$
$\qquad$

Fraction Action!
Gameboard

| $\frac{2}{5}$ | $\frac{4}{6}$ | $\frac{2}{3}$ | $1 \frac{1}{5}$ | $\frac{8}{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| $1 \frac{2}{7}$ | $\frac{5}{8}$ | $2 \frac{1}{5}$ | $\frac{2}{6}$ | $\frac{6}{8}$ |
| $2 \frac{1}{8}$ | $1 \frac{1}{4}$ | FREE | $\frac{20}{50}$ | $\frac{5}{6}$ |
| $\frac{9}{7}$ | $\frac{3}{4}$ | $\frac{1}{6}$ | $\frac{4}{10}$ | $\frac{13}{25}$ |
| $\frac{1}{3}$ | $\frac{7}{8}$ | $\frac{6}{9}$ | $\frac{17}{8}$ | $\frac{5}{4}$ |

$\qquad$
$\qquad$

Number
Unit 5 Line Master 4b

Fraction Action! (cont'd) Game Cards

| $\frac{7}{25}+\frac{6}{25}$ | Alexa mixes $\frac{2}{9}$ of lemonade with $\frac{4}{9}$ of water. How much liquid do they have altogether? | $2 \frac{2}{8}-1 \frac{3}{8}$ |
| :---: | :---: | :---: |
| Gerome has a full tray of brownies. They ate $\frac{1}{6}$ of the brownies. How much is left? | $\frac{10}{50}+\frac{10}{50}$ | Aleshia needs $\frac{7}{5}$ of soil and $\frac{4}{5}$ of fertilizer for their garden. How much planting mixture will they have in total? |
| $3-\frac{7}{8}$ | For one recipe, Lenor needs 1 cup of flour. For another, they need $\frac{2}{3}$ of a cup of flour. What's the difference in flour needed? | $\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}$ |
| Jabar walked $\frac{5}{7}$ of a kilometre and then $\frac{4}{7}$ of a kilometre to the library. How many kilometres did Jabar walk altogether? | $1 \frac{3}{6}-\frac{7}{6}$ | Orange juice comes in 2 L-bottles. You use $\frac{3}{4} L$ of juice for a smoothie. How much juice is left? |

$\qquad$
$\qquad$

Number Unit 5 Line Master 4c

## Fraction Action! (cont'd) Game Cards


$\qquad$
$\qquad$

## Fraction Action! (cont'd) Gameboard

| $\frac{1}{6}$ | $\frac{2}{5}$ | $\frac{6}{9}$ |
| :---: | :---: | :---: |
| $\frac{2}{3}$ | FREE | $\frac{2}{6}$ |
| $\frac{1}{3}$ | $\frac{5}{8}$ | $\frac{5}{6}$ |

$\qquad$
$\qquad$

## Number <br> Unit 5 Line Master 5 <br> Complete the Chase! <br> Gameboard



Legend

- Estimating
* Subtracting decimals
- Adding decimals
^ Adding/subtracting fractions
$\qquad$
$\qquad$

Number
Unit 5 Line Master 6a

## Complete the Chase!

## Game Cards

| Estimate: $24.40+12.16$ <br> Estimate: $0.907-0.83$ <br> - $17.36+43.02$ <br> * $0.8-0.36$ <br> ค $\frac{1}{6}+\frac{5}{6}$ <br> - $\frac{7}{4}-\frac{5}{4}$ | Estimate: $0.45-0.21$ <br> Estimate: $2.44+9.7$ <br> $13.2+12.05$ <br> \& $\quad \$ 73.40-\$ 54.23$ <br> - $1 \frac{3}{8}-\frac{5}{8}$ <br> - $\frac{21}{25}+\frac{29}{25}$ |
| :---: | :---: |
| Estimate: $36.11+27.35$ <br> Estimate: $8.457-6.382$ <br> - \$19.99 + \$17.49 <br> - $9.12-2.45$ <br> ค $4 \frac{1}{5}-\frac{2}{5}$ <br> - $8+\frac{1}{10}$ | Estimate: $3.10-0.8$ <br> Estimate: $6.396+9.051$ <br> $17.324+9.16$ <br> \& $15.94-8.64$ <br> ค $2 \frac{7}{10}+5 \frac{8}{10}$ <br> - $3 \frac{3}{5}-2 \frac{1}{5}$ |
| Estimate: $2.22+6.95$ <br> Estimate: $4.02-3.8$ <br> - $0.14+14.03$ <br> - $3.842-1.016$ <br> - $\frac{3}{4}+\frac{9}{4}$ <br> ค $\frac{17}{75}-\frac{2}{75}$ | Estimate: 83.1 - 34.01 <br> Estimate: $5.18+7.352$ <br> - $29.125+12.236$ <br> * $71.981-61.87$ <br> - $3 \frac{3}{10}-\frac{9}{10}$ <br> - $\frac{13}{10}+\frac{17}{10}$ |

$\qquad$
$\qquad$

## Number <br> Unit 5 Line Master 6b <br> Complete the Chase! (cont'd) Game Cards

| Estimate: $24.40+12.16$ <br> Estimate: 7.8-6.395 <br> - $17.36+43.02$ <br> - $0.827-0.36$ <br> ค $\frac{3}{8}+\frac{5}{8}$ <br> ค $\frac{5}{6}-\frac{1}{6}$ | Estimate: $0.45-0.21$ <br> Estimate: $6.652+23.48$ <br> - $135.2+12.05$ <br> * $\$ 73.40-\$ 54.23$ <br> - $1-\frac{4}{4}$ <br> - $\frac{7}{3}+\frac{14}{3}$ |
| :---: | :---: |
| Estimate: 36.11 + 27.35 <br> Estimate: 29.47 - 14.369 <br> - \$19.99 + \$17.49 <br> - $9.12-2.457$ <br> - $4 \frac{2}{5}+9 \frac{2}{5}$ <br> - $4 \frac{1}{5}-\frac{6}{5}$ | Estimate: $3.04-0.8$ <br> Estimate: $76.8+32.473$ <br> - $17.32+9.67$ <br> - $15.94-8.6$ <br> - $2 \frac{1}{3}+\frac{5}{3}$ <br> - $3 \frac{33}{100}-\frac{8}{100}$ |
| - Estimate: $2.22+6.95$ <br> - Estimate: $9.821-3.694$ <br> - $0.14+14.035$ <br> - $3.84-1.016$ <br> ค $\frac{57}{50}+\frac{93}{50}$ <br> ค $\frac{41}{10}-\frac{29}{10}$ | Estimate: 83.1 - 34.01 <br> Estimate: $46.34+16.089$ <br> - $29.12+12.23$ <br> \& $71.98-61.8$ <br> ง $2 \frac{1}{3}+3 \frac{2}{3}$ <br> A $3 \frac{1}{25}-1 \frac{26}{25}$ |

$\qquad$

## Number <br> Unit 5 Line Master 7

## Complete the Chase!

 Game Pieces

## Activity 21 Assessment

Estimating Sums and Differences with Decimals

| Conceptual Meaning of Addition and Subtraction of Decimals |  |  |
| :---: | :---: | :---: |
| Recognizes addition and subtraction situations and models concretely or pictorially to add or subtract to hundredths (using hundredths grids or Base Ten Blocks) <br> " 86 hundredths -23 hundredths = 63 hundredths $\begin{gathered} 25-17=8 " \\ 25.86-17.23=8.63 \end{gathered}$ | Uses an understanding of place value to add or subtract decimals with hundredths (using standard algorithm) $\begin{array}{r} 25.86-17.23=? \\ 11 \\ 25.86 \\ -17.23 \\ \hline 8.63 \end{array}$ <br> "I used the standard algorithm to subtract the hundredths, then the tenths, and then the whole numbers." | Models to add or subtract decimals with thousandths (e.g., using thousandths grids or number lines) $43.600-1.345=?$   <br> "600 thousandths -345 thousandths = 255 thousandths $\begin{gathered} 43-1=42 . " \\ 43.6-1.345=42.255 \end{gathered}$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 21 Assessment

 Estimating Sums and Differences with Decimals| Conceptual Meaning of Addition and Subtraction of Decimals (cont'd) |  |  |
| :---: | :---: | :---: |
| Uses an understanding of place value to add or subtract decimals with thousandths (e.g., using standard algorithm) $\begin{array}{r} 591 \\ 43.6 \emptyset 0 \\ -1.345 \\ \hline 42.255 \end{array}$ <br> "I used the standard algorithm to subtract the thousandths, then the hundredths, then the tenths, and then the whole numbers." | Uses estimation and mental math strategies to check reasonableness of solutions $43.6-1.345=42.255$ <br> 43.6 is close to 44.1 .345 is close to 1 . $44-1=43$ <br> "42.255 is the answer I calculated, and it is close to 43 , so my answer is reasonable." | Solves addition and subtraction problems flexibly, using a variety of strategies <br> Naomi swam 1.5 km , rode a bicycle for 35.29 km , and ran for 8.375 km . What was the total distance Naomi travelled? $1.5 \mathrm{~km}+35.29 \mathrm{~km}+8.375 \mathrm{~km}=?$ $\begin{array}{r} 11 \\ 1.500 \\ 35.290 \\ +\quad 8.375 \\ \hline 45.165 \end{array}$ <br> "I wrote each number as a decimal with thousandths. <br> Naomi travelled 45.165 km in total." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 22 Assessment

Adding and Subtracting Decimals to Thousandths

| Conceptual Meaning of Addition and Subtraction of Decimals |  |  |
| :---: | :---: | :---: |
| Recognizes addition and subtraction situations and models concretely or pictorially to add or subtract to hundredths (using hundredths grids or Base Ten Blocks) <br> " 86 hundredths -23 hundredths = 63 hundredths $25-17=8 \text { " }$ $25.86-17.23=8.63$ | Uses an understanding of place value to add or subtract decimals with hundredths (using standard algorithm) $\begin{array}{r} 25.86-17.23=? \\ 111.86 \\ -17.23 \\ \hline 8.63 \end{array}$ <br> "I used the standard algorithm to subtract the hundredths, then the tenths, and then the whole numbers." | Models to add or subtract decimals with thousandths (e.g., using thousandths grids or number lines) $43.600-1.345=?$ <br> " 600 thousandths -345 thousandths = 255 thousandths $43-1=42 . "$ $43.6-1.345=42.255$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 22 Assessment

Adding and Subtracting Decimals to Thousandths

| Conceptual Meaning of Addition and Subtraction of Decimals (cont'd) |  |  |
| :---: | :---: | :---: |
| Uses an understanding of place value to add or subtract decimals with thousandths (e.g., using standard algorithm) $\begin{array}{r} 591 \\ 43.6 \emptyset 0 \\ -1.345 \\ \hline 42.255 \end{array}$ <br> "I used the standard algorithm to subtract the thousandths, then the hundredths, then the tenths, and then the whole numbers." | Uses estimation and mental math strategies to check reasonableness of solutions $\begin{gathered} 43.6-1.345=42.255 \\ 43.6 \text { is close to } 44.1 .345 \text { is close to } 1 . \\ 44-1=43 \end{gathered}$ <br> " 42.255 is the answer I calculated, and it is close to 43 , so my answer is reasonable." | Solves addition and subtraction problems flexibly, using a variety of strategies <br> Naomi swam 1.5 km , rode a bicycle for 35.29 km , and ran for 8.375 km . What was the total distance Naomi travelled? $1.5 \mathrm{~km}+35.29 \mathrm{~km}+8.375 \mathrm{~km}=?$ $\begin{array}{r} 11 \\ 1.500 \\ 35.290 \\ +\quad 8.375 \\ \hline 45.165 \end{array}$ <br> "I wrote each number as a decimal with thousandths. Naomi travelled 45.165 km in total." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 23 Assessment

Adding and Subtracting Fractions with Like Denominators

| Adding and Subtracting Fractions with Like Denominators |  |  |  |
| :---: | :---: | :---: | :---: |
| Expresses the composition or decomposition of a quantity as a sum or difference <catch: pick up <br> "I can think of $\frac{4}{6}$ as $\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}$, or $\text { as } \frac{1}{6}+\frac{3}{6} \text {. }$ <br> I can also think of $\frac{4}{6}$ as $\frac{6}{6}-\frac{1}{6}-\frac{1}{6}$, or as $\frac{6}{6}-\frac{2}{6}$." | Adds and subtracts concretely or pictorially $\frac{3}{4}+\frac{2}{4}=?$ <br> "Because each whole is divided into fourths, I can add the parts. 3 fourths +2 fourths $=5$ fourths. 5 fourths make 1 whole and $\frac{1}{4}$." <br> "I modelled on the number line, then counted on from $\frac{3}{4}$ : 4 fourths, 5 fourths." | Adds and subtracts symbolically $\begin{aligned} 3 \frac{1}{8}-\frac{6}{8} & =? \\ 3 \frac{1}{8} & =\frac{25}{8} \\ \frac{25}{8}-\frac{6}{8} & =\frac{19}{8}, \text { or } 2 \frac{3}{8} \end{aligned}$ <br> "I converted $3 \frac{1}{8}$ to $\frac{25}{8}$, then subtracted. I checked my answer using addition." | Flexibly solves problems involving the addition and subtraction of fractions $\begin{aligned} 1 \frac{3}{10}+\frac{8}{10}+? & =2 \frac{7}{10} \\ 1 \frac{3}{10}+\frac{8}{10}=1 \frac{11}{10} & =2 \frac{1}{10} \\ 2 \frac{7}{10}-2 \frac{1}{10} & =\frac{6}{10} \\ 2 \frac{1}{10}+\frac{6}{10} & =2 \frac{7}{10} \end{aligned}$ <br> " $\frac{6}{10}$ needs to be added to the other fractions to equal $2 \frac{7}{10}$." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 24 Assessment

Consolidating Operations with Fractions and Decimal

| Conceptual Meaning of Addition and Subtraction of Decimals |  |  |
| :---: | :---: | :---: |
| Recognizes addition and subtraction situations and models concretely or pictorially to add or subtract to hundredths (using hundredths grids or Base Ten Blocks) <br> " 86 hundredths -23 hundredths = 63 hundredths $25-17=8 "$ $25.86-17.23=8.63$ | Uses an understanding of place value to add or subtract decimals with hundredths (using standard algorithm) $\begin{array}{r} 25.86-17.23=? \\ 11 \\ 25.86 \\ -17.23 \\ \hline 8.63 \end{array}$ <br> "I used the standard algorithm to subtract the hundredths, then the tenths, and then the whole numbers." | Models to add or subtract decimals with thousandths (e.g., using thousandths grids or number lines) $43.600-1.345=?$ <br> " 600 thousandths -345 thousandths $=$ 255 thousandths $43-1=42$." $43.6-1.345=42.255$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 24 Assessment

Consolidating Operations with Fractions and Decimal

| Conceptual Meaning of Addition and Subtraction of Decimals (cont'd) |  |  |
| :---: | :---: | :---: |
| Uses an understanding of place value to add or subtract decimals with thousandths (e.g., using standard algorithm) $\begin{array}{r} 591 \\ 43.6 \emptyset 0 \\ -1.345 \\ \hline 42.255 \end{array}$ <br> "I used the standard algorithm to subtract the thousandths, then the hundredths, then the tenths, and then the whole numbers." | Uses estimation and mental math strategies to check reasonableness of solutions $43.6-1.345=42.255$ <br> 43.6 is close to 44.1 .345 is close to 1 . $44-1=43$ <br> "42.255 is the answer I calculated, and it is close to 43 , so my answer is reasonable." | Solves addition and subtraction problems flexibly, using a variety of strategies <br> Naomi swam 1.5 km, rode a bicycle for 35.29 km , and ran for 8.375 km . What was the total distance Naomi travelled? $1.5 \mathrm{~km}+35.29 \mathrm{~km}+8.375 \mathrm{~km}=?$ $\begin{array}{r} 11 \\ 1.500 \\ 35.290 \\ +\quad 8.375 \\ \hline 45.165 \end{array}$ <br> "I wrote each number as a decimal with thousandths. Naomi travelled 45.165 km in total." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 24 Assessment

Consolidating Operations with Fractions and Decimal

| Adding and Subtracting Fractions with Like Denominators |  |  |  |
| :---: | :---: | :---: | :---: |
| Expresses the composition or decomposition of a quantity as a sum or difference <catch: pick up <br> "Il can think of $\frac{4}{6}$ as $\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}$, or $\text { as } \frac{1}{6}+\frac{3}{6} \text {. }$ <br> I can also think of $\frac{4}{6}$ as $\frac{6}{6}-\frac{1}{6}-\frac{1}{6}$, or $\text { as } \frac{6}{6}-\frac{2}{6} \text {." }$ | Adds and subtracts concretely or pictorially $\frac{3}{4}+\frac{2}{4}=?$ <br> "Because each whole is divided into fourths, I can add the parts. 3 fourths +2 fourths $=5$ fourths. 5 fourths make 1 whole and $\frac{1}{4}$." <br> "I modelled on the number line, then counted on from $\frac{3}{4}$ : 4 fourths, 5 fourths." | Adds and subtracts symbolically $\begin{aligned} 3 \frac{1}{8}-\frac{6}{8} & =? \\ 3 \frac{1}{8} & =\frac{25}{8} \\ \frac{25}{8}-\frac{6}{8} & =\frac{19}{8}, \text { or } 2 \frac{3}{8} \end{aligned}$ <br> "I converted $3 \frac{1}{8}$ to $\frac{25}{8}$, <br> then subtracted. I checked my answer using addition." | Flexibly solves problems involving the addition and subtraction of fractions $\begin{aligned} 1 \frac{3}{10}+\frac{8}{10}+? & =2 \frac{7}{10} \\ 1 \frac{3}{10}+\frac{8}{10}=1 \frac{11}{10} & =2 \frac{1}{10} \\ 2 \frac{7}{10}-2 \frac{1}{10} & =\frac{6}{10} \\ 2 \frac{1}{10}+\frac{6}{10} & =2 \frac{7}{10} \end{aligned}$ <br> " $\frac{6}{10}$ needs to be added to the other fractions to equal $2 \frac{7}{10}$." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

$\qquad$
$\qquad$

Number
Unit 6 Line Master 1 Bubbly Budgeting

| Weekly Action Plans | Income | Expenses |
| :--- | :--- | :--- |
| What will you do each week? |  |  |
| Week 1 <br> Parents' group donates money <br> to help with expenses for the <br> car wash. | $\$ 50.00$ |  |
| Week 2 |  |  |
| Week 3 |  |  |
| Week 4 |  |  |
| Car Wash Day <br> Cost per car: <br> Cost per van: <br> Cost per truck: |  |  |
| Totals: |  |  |

$\qquad$
$\qquad$

Number
Unit 6 Line Master 2

## Cleaning Supplies



Plastic bucket
$\$ 4.99$


3 L of soap \$9.97

## Advertising



Poster board
\$4.98


Package of 4 cloths \$2.47


Sponge \$2.97


Marker
$\$ 1.49$

## Other Expenses

$\qquad$

## Our Financial Plan

1. Our goal is $\qquad$ .
2. Explain why you chose that goal.

## 3. Is your goal a short-term or long-term goal?

## 4. What steps will you take to reach your goal?

$\qquad$

[^0]
## Our Financial Plan (cont'd)

5. Create a savings plan to reach your goal.

## 6. What factors might help you reach your goal?

## 7. What factors might prevent you from reaching your goal?

$\qquad$

$\qquad$

Number
Unit 6 Line Master 5a
$\qquad$

| Number |
| :---: |
| Unit 6 Line Master 5b |$\quad$ Budget Cards (cont'd)


| $\$ 790$ | $\$ 520$ |
| :---: | :---: |
| $\$ 655$ | $\$ 695$ |
| $\$ 755$ | $\$ 1005$ |
| $\$ 805$ | $\$ 630$ |
| $\$ 645$ | $\$ 495$ |
| $\$ 855$ | $\$ 785$ |

$\qquad$
$\qquad$

## Number <br> Unit 6 Line Master 6a <br> Consumer Choice Cards

| Smartphone $\$ 418$ | Laptop computer \$729 |
| :---: | :---: |
| Video game console $\$ 449$ | $\begin{aligned} & \text { Bike } \\ & \$ 285 \end{aligned}$ |
| Running shoes \$109 | Backpack \$43 |
| Movie tickets $\$ 32$ | Fast-food meal \$18 |
| $\begin{gathered} \text { T-shirt } \\ \$ 14 \end{gathered}$ | Book $\$ 12$ |
| Streaming subscription \$34 | Smart watch \$299 |
| $\begin{gathered} \text { Guitar } \\ \$ 175 \end{gathered}$ | Makeup \$27 |

$\qquad$


| Board game <br> $\$ 39$ | Sports equipment <br> $\$ 57$ |
| :---: | :---: |
| Art supplies <br> $\$ 35$ | TV <br> $\$ 349$ |
| Pet food <br> $\$ 75$ | Virtual Reality game <br> $\$ 99$ |
| Skateboard <br> $\$ 88$ | Shorts <br> $\$ 31$ |
| Hoodie <br> $\$ 47$ | Amusement Park <br> tickets <br> $\$ 49$ |
| Hockey game tickets | Donuts <br> $\$ 23$ |

$\qquad$

| ne Master 7a Influence Cards |  |
| :---: | :---: |
| - |  |
| Celebrity endorsement | Social media influencer |
| Friend recommendation | 5-star product reviews |
| Package design | TV advertisement |
| Brand reputation | Family influence |
| Peer influence | Price discount |
| Trend or fad | Environmentally friendly |
| Convenience | Product guarantee |

$\qquad$


| Ac | Expert opinion |
| :---: | :---: |
| Product demo | User testimonial |
| 2-star product review | Not environmentally <br> friendly |
| Poor quality | Coupon |
|  |  |

## Activity 25 Assessment

Designing a Simple Budget

| Designing a Simple Budget |  |  |  |
| :---: | :---: | :---: | :---: |
| Identifies a financial goal <br> "I want to raise $\$ 250$ to donate to the food bank." | Considers some factors involved in designing a budget <br> "I need to think about how much to charge per car, and how much to spend on supplies and advertising." | Designs a simple budget recognizing the importance of several factors <br> "Our expenses are about $\$ 100$. We'll charge $\$ 8$ per car and assume 50 cars. We should make about $\$ 300$ after expenses, which allows us to reach our goal." | Flexibly creates a simple budget and adjusts for unforeseen circumstances <br> "We'll advertise a second date in case of rain. We'll aim to raise a bit more than $\$ 250$ in case the hose breaks and we need to buy another one." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 26 Assessment <br> Planning for Financial Goals

| Planning for Financial Goals |  |  |  |
| :---: | :---: | :---: | :---: |
| Understands the difference between short-term and long-term goals <br> "Short-term goal: Save \$5 for the pizza lunch next Friday. Long-term goal: Save \$150 for new skates next winter." | Outlines key steps needed to make a savings plan to achieve a financial goal <br> "I earn $\$ 10$ a week cutting grass. I will save $\$ 5$ each week in my bank account." | Recognizes and explains various factors that may help or interfere with reaching a financial goal <br> "I will have to find another job as I can't cut grass in the winter. To save money, I will borrow books from the library." | Makes informed decisions about planning for a financial goal, considering all possible factors <br> "If I lose a job or I have an unexpected expense, I need to be able to adjust my savings plan so that I can still achieve my goal." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 27 Assessment

Factors Influencing Consumer Choices

| Factors Influencing Consumer Choices |  |  |  |
| :---: | :---: | :---: | :---: |
| Identifies and recognizes that consumers have choice when purchasing a product or service <br> "I know that there are many places to buy lunch and I have a choice to make." | Identifies some factors that influence consumer choice (e.g., advertising and marketing) <br> "I know that coupons are a way to advertise for a company and to attract consumers." | Recognizes many different factors that influence consumer choice and how each is used to sway consumer practice <br> "I know that sporting companies use celebrity athletes in advertisements because people will think they can play like them if they use the same sports equipment." | Understands subtle ways consumers are being influenced in the world around them <br> "Companies advertise on television during popular viewing times because the viewing crowd is so large." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 28 Assessment Consolidating Financial Literacy

| Designing a Simple Budget |  |  |  |
| :---: | :---: | :---: | :---: |
| Identifies a financial goal <br> "I want to raise $\$ 250$ to donate to the food bank." | Considers some factors involved in designing a budget <br> "I need to think about how much to charge per car, and how much to spend on supplies and advertising." | Designs a simple budget recognizing the importance of several factors <br> "Our expenses are about $\$ 100$. We'll charge $\$ 8$ per car and assume 50 cars. We should make about \$300 after expenses, which allows us to reach our goal." | Flexibly creates a simple budget and adjusts for unforeseen circumstances <br> "We'll advertise a second date in case of rain. We'll aim to raise a bit more than $\$ 250$ in case the hose breaks and we need to buy another one." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 28 Assessment

Consolidating Financial Literacy

| Factors Influencing Consumer Choices |  |  |  |
| :---: | :---: | :---: | :---: |
| Identifies and recognizes that consumers have choice when purchasing a product or service <br> "I know that there are many places to buy lunch and I have a choice to make." | Identifies some factors that influence consumer choice (e.g., advertising and marketing) <br> "I know that coupons are a way to advertise for a company and to attract consumers." | Recognizes many different factors that influence consumer choice and how each is used to sway consumer practice <br> "I know that sporting companies use celebrity athletes in advertisements because people will think they can play like them if they use the same sports equipment." | Understands subtle ways consumers are being influenced in the world around them <br> "Companies advertise on television during popular viewing times because the viewing crowd is so large." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

$\qquad$
$\qquad$

Patterning and Algebra
Unit 1 Line Master 1
How Much Does Diego Need?

| Number of <br> Children | Number of <br> Paper <br> Towel Rolls | Number of <br> Feathers | Number of <br> Pieces of <br> Craft Paper | Number of <br> Dried <br> Beans |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 4 | 3 | 10 |
| 2 | 2 | 8 |  |  |
| 3 | 3 |  | 9 |  |
| 4 | 4 |  | 12 | 40 |
|  |  |  |  |  |
|  |  |  |  |  |

Complete the table.

Identify the rule that relates the number of children to each type of material.

Write an algebraic expression for each rule.

Use each expression to determine how much of each material is needed for 50 children.
$\qquad$
$\qquad$ Hundred Chart

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

## Activity 1 Assessment <br> Investigating Visual Sequences



## Activity 1 Assessment <br> Investigating Visual Sequences



```
Patterning
and Algebra
```


## Activity 2 Assessment <br> Investigating Numeric Sequences

| Investigating Arithmetic Sequences |  |  |
| :---: | :---: | :---: |
| Identifies how an arithmetic sequence increases or decreases and describes the initial term and constant change <br> Term 1 Term 2 Term 3 Term 4 Term 5 <br> "This is a decreasing sequence. Initial term: 14 red tiles; Constant change: take away 1 red tile." | Represents arithmetic sequences in tables of values and on graphs <br> "The table and graph show the number of tiles decreases by 1 each time. The points on the graph lie on a straight line that goes down to the right." | Identifies a rule that relates the positions and terms of an arithmetic sequence <br> "By looking at the table, I see that the number of tiles is equal to 15 minus the term number." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 2 Assessment <br> Investigating Numeric Sequences



## Activity 3 Assessment

Consolidating Patterns and Relations

| Investigating Arithmetic Sequences |  |  |
| :---: | :---: | :---: |
| Identifies how an arithmetic sequence increases or decreases and describes the initial term and constant change <br> Term 1 Term 2 Term 3 Term 4 Term 5 <br> "This is a decreasing sequence. Initial term: 14 red tiles; Constant change: take away 1 red tile." | Represents arithmetic sequences in tables of values and on graphs <br> "The table and graph show the number of tiles decreases by 1 each time. The points on the graph lie on a straight line that goes down to the right." | Identifies a rule that relates the positions and terms of an arithmetic sequence <br> "By looking at the table, I see that the number of tiles is equal to 15 minus the term number." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 3 Assessment

Consolidating Patterns and Relations

$\qquad$
$\qquad$

Patterning and Algebra Unit 2 Line Master 1

Using Variables

| Problem or Picture | Equation |
| :---: | :---: |
| Janie rolled 10 with two number cubes. |  |
| What number was on the other cube? |  |
| There are 12 cars in the parking lot. |  |
| The cars are parked in rows of 4. |  |
| How many rows are there? |  |

$\qquad$
$\qquad$

Patterning and Algebra
Unit 2 Line Master 2a

## Working on It Answers

For example:

## Part A

- $7 n$ or $7 \times n$
- $\frac{n}{8}$ or $n \div 8$
- $n-3$
- $n+6$
- $n \div 2+9$ or $\frac{n}{2}+9$
- $20-2 n$
- $(n-5) \times 2$ or $2(n-5)$


## Part B

- $20 \div r=5$
- $19+s=34$
- $20=5 z$
- $20+a=36$
- Josie went to the dollar store to buy some craft sticks for art class. She needs 40 sticks and they come in packages of 8 . How many packages should Josie buy?
- At the school's Spring Clean Up Day, 72 volunteers showed up. The principal arranged them onto 9 teams.
How many volunteers are on each team?
- There is an 89-step staircase at the hiking trail. Edam climbed 23 steps. How many more steps does Edam need to take to reach the top?
- Ali counted 52 crackers left in the box. His siblings ate 37 crackers yesterday. How many crackers were there in the box to start with?
$\qquad$

Patterning and Algebra
Unit 2 Line Master 2b

## Working on It Answers (cont'd)

## Part C

- Square: $s=3$; Perimeter $=3+3+3+3=12$ units, Area $=3 \times 3=9$ square units
- Rectangle: $I=2, w=6$; Perimeter $=2 \times 2+2 \times 6=16$ units, Area $=2 \times 6=12$ square units
$\qquad$
$\qquad$

Patterning and Algebra
Unit 2 Line Master 2c

## Accommodation

## For example:

## Part A

- $7 n$ or $7 \times n$
- $\frac{n}{8}$ or $n \div 8$
- $n-3$
- $n+6$


## Part B

- $10=3+n$
- $12 \div r=4$
- I gave 15 pencils to my 3 friends.

I gave each friend the same number of pencils.
How many pencils did I give to each friend?

- $6+a=14$


## Part C

- Square: $s=3$; Perimeter $=3+3+3+3=12$ units, Area $=3 \times 3=9$ square units


## Patterning and Algebra Unit 2 Line Master 3 <br> Solving Equations

| $n+3=10$ |
| :---: |
| $12-p=9$ |
| $9=3+r$ |
| $10=s-8$ |

$\qquad$

Patterning and Algebra
Unit 2 Line Master 4

Working on It Answers

Part A

$$
n=6
$$

$$
t=11
$$

$$
p=20
$$

$$
d=5
$$

## Part B

$n=18$
$p=27$
$q=24$
$r=14$

## Accommodation

$n=7$
$p=3$
$r=6$
$s=18$
$\qquad$
$\qquad$

## Patterning and Algebra Unit 2 Line Master 5a <br> Tic-Tac-Toe Gameboard 1 (One-Step Equations)

| $m=24 \div 3$ | $6 \times c=42$ | $5 p=50$ |
| :---: | :---: | :---: |
| $6=\frac{n}{5}$ | $49=7 \times k$ | $b=72 \div 9$ |
| $36=4 \times t$ | $\frac{35}{s}=5$ | $11 e=44$ |
|  |  |  |

$\qquad$
$\qquad$

## Tic-Tac-Toe Gameboard 2 <br> (Two-Step Equations)

| $m+2=24 \div 3$ | $26-6 c=4$ | $4 p-6=38$ |
| :---: | :---: | :---: |
| $5=\frac{d}{4}$ | $49=2 n-3$ | $4 b=72 \div 9$ |
| $40=4 t+8$ | $s \div 3=8$ | $\frac{k}{5}-6=1$ |
|  |  |  |

$\qquad$

## Patterning and Algebra Unit 2 Line Master 5c <br> Tic-Tac-Toe Gameboard 3


$\qquad$
$\qquad$

## Patterning and Algebra Unit 2 Line Master 5d <br> Tic-Tac-Toe Gameboard 4


$\qquad$
$\qquad$

## Working on It Answers

## On-Grade <br> (One-Step Equations)

$$
\begin{aligned}
& m=24 \div 3 ; m=8 \\
& 6 \times c=42 ; c=7 \\
& 5 p=50 ; p=10 \\
& 6=\frac{n}{5} ; n=30 \\
& 49=7 \times k ; k=7 \\
& b=72 \div 9 ; b=8 \\
& 36=4 \times t ; t=9 \\
& \frac{35}{s}=5 ; s=7 \\
& 11 e=44 ; e=4
\end{aligned}
$$

## Accommodation

$a=6 \div 3 ; a=2$
$4 \times b=12 ; b=3$
$15=3 \times c ; c=5$
$2=\frac{d}{4} ; d=8$
$16=8 \times e ; e=2$
$f=6 \times 2 ; f=12$
$9 \div g=3 ; g=3$
$\frac{h}{2}=5 ; h=10$
$12 \div 3=k ; k=4$

## On-Grade <br> (Two-Step Equations)

$m+2=24 \div 3 ; m=6$
$28-6 c=4 ; c=4$
$4 p-6=38 ; p=11$
$5=\frac{d}{4} ; d=20$
$49=2 n-3 ; n=26$
$4 b=72 \div 9 ; b=2$
$40=4 t+8 ; t=8$
$s \div 3=8 ; s=24$
$\frac{k}{5}-6=1 ; k=35$

## Extension

For example:
$t=6 ; 66 \div t=11$
$n=24 ; n \div 4=6$
$e=10 ; 10 e=100$
$y=8 ; 96=12 y$
$x=36 ; 18=x \div 2$
$r=12 ; 3 r=42-6$
$v=21 ; 3 \times 7=v$
$p=7 ; \frac{p}{7}=1$
$w=9 ; 35-8=3 w$
$\qquad$
$\qquad$

Patterning and Algebra
Unit 2 Line Master 7

## Story Problems

Accommodation

Amy will be 10 years old in 2 years. How old is Amy now?

Devon had 12 tickets to play games at the fun fair. All games cost the same number of tickets. Devon played 3 games. How many tickets are needed to play 1 game?

Cary woke up to 9 text messages.
They replied to some of them.
There are still 5 unread texts. How many texts did Cary reply to?

In 5 days, Dani packed 15 lunch boxes for a charity. Each day, they packed the same number of boxes. How many lunch boxes did Dani pack in 1 day?
$\qquad$
$\qquad$

## Patterning and Algebra <br> Unit 2 Line Master 8 <br> Working on It Answers

For example:

## On-Grade

$a+5=16, a=11$; Amy is 11 years old now.
$\frac{36}{t}=9, t=4 ; 4$ tickets are needed to play one game.
$23-n=11, n=12$; Cary replied to 12 text messages.
$\frac{42}{b}=6, b=7$; Dani packed 7 lunch boxes in one day.

## Accommodation

$a+2=10 ; a=8$, Amy is 8 years old now.
$\frac{12}{t}=3, t=4 ; 4$ tickets are needed to play one game.
$9-n=5, n=4$; Cary replied to 4 text messages.
$\frac{15}{b}=5, b=3$; Dani packed 3 lunch boxes in one day.
$\qquad$

Patterning and Algebra Unit 2 Line Master 9a

## One-Step Equations <br> Answers

| $4 x=44$ |  |
| :---: | :---: |
| $x=11$ | $37-y=18$ |
| $y=19$ |  | | $p+19=41$ |
| ---: |
| $p=22$ |$\quad$| $8=\frac{n}{7}$ |
| ---: |
| $n=56$ |


| $9 r=63$ |  |
| :---: | ---: |
| $r=7$ | $s-11=38$ |
| $s=49$ |  |
| $27=14+t$ | $\frac{96}{v}=12$ |
| $t=13$ | $v=8$ |


| $75=5 u$ |  |
| :---: | :---: |
| $u=15$ | $25=49-w$ |
| $w=24$ |  |
| $13+y=42$ |  |
| $y=29$ | $\frac{80}{m}=16$ |
| $m=5$ |  |

$\qquad$

Patterning and Algebra Unit 2 Line Master 9b

## Two-Step Equations Answers

$\left.$| $3 x+2=32$ |
| ---: | :---: |
| $x=10$ | | $47-y=15+7$ |
| ---: |
| $y=25$ | \right\rvert\, | $5=\frac{n}{15}$ |
| ---: |
| $45-h=14$ |
| $h=31$ |


| $\begin{aligned} 7 a & =42 \\ a & =6 \end{aligned}$ | $\begin{aligned} 24+39 & =9 b \\ b & =7 \end{aligned}$ |
| :---: | :---: |
| $\begin{aligned} 6 n & =25+11 \\ n & =6 \end{aligned}$ | $\begin{aligned} 51-21 & =c+18 \\ c & =12 \end{aligned}$ |


| $39=7 e+4$ |
| :---: | :---: |
| $e=5$ |$|$| $g-13=42 \div 6$ |
| :---: |
| $g=20$ |

$\qquad$

Patterning and Algebra Unit 2 Line Master 9c

Evaluating Expressions Answers

| $200+50 \times 9 \div 3$ <br> $=350$ | $(36+14) \div 10-2$ <br> $=3$ |
| :---: | :---: |
| $50+6 \times(11-4)$ <br> $=92$ | $(2+5) \times(9-4)$ <br> $=35$ |

\(\left.$$
\begin{array}{|c|c|}\hline 2+30 \div 5 \times 3 \\
=20\end{array}
$$ \quad \begin{array}{c}4+5 \times 32-2 <br>

=162\end{array}\right]\)| $21+10 \times 11 \div 5$ |
| :---: |
| $=43$ |

\(\left.$$
\begin{array}{|c|c|}\hline 20+3 \times 21 \div 7 \\
=29\end{array}
$$ \quad \begin{array}{c}(27-11) \div(2 \times 4) <br>

=2\end{array}\right]\)\begin{tabular}{c}
$98+50 \times 3 \div 25$ <br>
$15-2 \times(17+4) \div 3$ <br>
$=1$

$\quad$

<br>
\hline
\end{tabular}

Patterning and Algebra

## Activity 4 Assessment

The Order of Operations

| Variables and Equations |  |  |  |
| :---: | :---: | :---: | :---: |
| Evaluates a numerical expression using the order of operations $\begin{aligned} 2 \times(30+18)-3 & =2 \times 48-3 \\ & =96-3 \\ & =93 \end{aligned}$ <br> "I have to do the operation in brackets first, then the multiplication, and then the subtraction." | Writes an algebraic expression to describe an unknown value <br> Subtract five from a number, then multiply by two $(n-5) \times 2$ <br> "I let $n$ represent the number. I used brackets so 5 would be subtracted first." | Evaluates an algebraic expression using substitution $(n-5) \times 2$ <br> "To find the value of the expression when $n$ equals 12 , I substitute 12 for $n$." $\begin{aligned} (n-5) \times 2 & =(12-5) \times 2 \\ & =7 \times 2 \\ & =14 \end{aligned}$ | Solves equations involving one operation using different strategies $\begin{aligned} 23 & =e+15 \\ 23-15 & =e+15-15 \\ 8 & =e \end{aligned}$ <br> "I used the inverse operation, subtracting 15 from each side." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Patterning and Algebra

## Activity 4 Assessment

The Order of Operations

| Variables and Equations (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Solves equations involving two operations using different strategies $\begin{aligned} 29 & =3 z+2 \\ 29-2 & =3 z+2-2 \\ 27 & =3 z \\ \frac{27}{3} & =\frac{3 z}{3} \\ 9 & =z \end{aligned}$ <br> "I performed the order of operations in the reverse order to isolate the variable. I subtracted 2 from each side, then divided each side by 3 ." | Verifies the solution to an equation $29=3 z+2$ <br> "To verify, substitute $z=9$. $\begin{aligned} \text { Left side } & =29 \\ \text { Right side } & =3(9)+2 \\ & =27+2 \\ & =29 \end{aligned}$ <br> Since the left side equals the right side, my solution is correct." | Solves problems using equations involving one or two operations <br> Kairis sold 16 tickets. <br> That is twice as many tickets as Grace sold. <br> How many tickets did Grace sell? <br> Let $t$ represent the number of tickets Grace sold. $\begin{aligned} 2 t & =16 \\ \frac{2 t}{2} & =\frac{16}{2} \\ t & =8 \end{aligned}$ <br> "So, Grace sold 8 tickets." | Flexibly works with equations to solve problems using a variety of strategies <br> At the grocery store, there are 5 lines of people at the checkouts. There are the same number of people in each line. <br> The manager counts to determine the total number of people at the checkouts, including 6 employees (including the manager). They counted 51 people. <br> How many people are in each line? <br> Let $n$ represent the number of people in each line. $\begin{aligned} 5 n+6 & =51 \\ 5 n+6-6 & =51-6 \\ 5 n & =45 \\ n & =9 \end{aligned}$ <br> "I know $5 \times 9=45$, so $n=9$. <br> There are 9 people in each line." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

## Activity 5 Assessment

## Using Variables

| Using Variables to Represent a Problem as an Equation |  |  |  |
| :---: | :---: | :---: | :---: |
| Interprets word problems/pictures and identifies the unknown part <br> Our class needs to set up rows of 6 chairs for a presentation. <br> There are 30 chairs altogether. <br> How many rows do we need? <br> "The unknown is the number of rows of 6 chairs needed to make an array of 30 chairs." | Translates word problems into equations using variables, operations, and numbers <br> "The unknown, $n$, is the number of rows. I know there are 6 chairs in each row and a total of 30 chairs. $\text { So, } 6 n=30 . "$ | Describes equivalent relationships using more than one equation (including formulas) <br> "I know the area of a rectangle is base multiplied by height, which is 30. If the base is 6 , then the height must be $n$. I could write the equation $30=6 n \text { or } 30 \div 6=n . "$ | Flexibly writes algebraic equations using a variety of strategies $\begin{aligned} & 6 n=30 \\ & 30 \div n=6 \end{aligned}$ <br> "I can use the inverse operation to rewrite the equation." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Patterning and Algebra

## Activity 6 Assessment

Solving Addition and Subtraction Equations

| Variables and Equations |  |  |  |
| :---: | :---: | :---: | :---: |
| Evaluates a numerical expression using the order of operations $\begin{aligned} 2 \times(30+18)-3 & =2 \times 48-3 \\ & =96-3 \\ & =93 \end{aligned}$ <br> "I have to do the operation in brackets first, then the multiplication, and then the subtraction." | Writes an algebraic expression to describe an unknown value <br> Subtract five from a number, then multiply by two $(n-5) \times 2$ <br> "I let $n$ represent the number. I used brackets so 5 would be subtracted first." | Evaluates an algebraic expression using substitution $(n-5) \times 2$ <br> "To find the value of the expression when $n$ equals 12 , I substitute 12 for $n$." $\begin{aligned} (n-5) \times 2 & =(12-5) \times 2 \\ & =7 \times 2 \\ & =14 \end{aligned}$ | Solves equations involving one operation using different strategies $\begin{aligned} 23 & =e+15 \\ 23-15 & =e+15-15 \\ 8 & =e \end{aligned}$ <br> "I used the inverse operation, subtracting 15 from each side." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Patterning and Algebra

## Activity 6 Assessment

Solving Addition and Subtraction Equations

| Variables and Equations (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Solves equations involving two operations using different strategies $\begin{aligned} 29 & =3 z+2 \\ 29-2 & =3 z+2-2 \\ 27 & =3 z \\ \frac{27}{3} & =\frac{3 z}{3} \\ 9 & =z \end{aligned}$ <br> "I performed the order of operations in the reverse order to isolate the variable. I subtracted 2 from each side, then divided each side by 3 ." | Verifies the solution to an equation $29=3 z+2$ <br> "To verify, substitute $z=9$. $\begin{aligned} \text { Left side } & =29 \\ \text { Right side } & =3(9)+2 \\ & =27+2 \\ & =29 \end{aligned}$ <br> Since the left side equals the right side, my solution is correct." | Solves problems using equations involving one or two operations <br> Kairis sold 16 tickets. <br> That is twice as many tickets as Grace sold. <br> How many tickets did Grace sell? <br> Let $t$ represent the number of tickets Grace sold. $\begin{gathered} 2 t=16 \\ \frac{2 t}{2}=\frac{16}{2} \\ t=8 \end{gathered}$ <br> "So, Grace sold 8 tickets." | Flexibly works with equations to solve problems using a variety of strategies <br> At the grocery store, there are 5 lines of people at the checkouts. There are the same number of people in each line. <br> The manager counts to determine the total number of people at the checkouts, including 6 employees (including the manager). They counted 51 people. How many people are in each line? Let $n$ represent the number of people in each line. $\begin{aligned} 5 n+6 & =51 \\ 5 n+6-6 & =51-6 \\ 5 n & =45 \\ n & =9 \end{aligned}$ <br> "I know $5 \times 9=45$, so $n=9$. <br> There are 9 people in each line." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Patterning and Algebra

## Activity 7 Assessment

Solving Multiplication and Division Equations

| Variables and Equations |  |  |  |
| :---: | :---: | :---: | :---: |
| Evaluates a numerical expression using the order of operations $\begin{aligned} 2 \times(30+18)-3 & =2 \times 48-3 \\ & =96-3 \\ & =93 \end{aligned}$ <br> "I have to do the operation in brackets first, then the multiplication, and then the subtraction." | Writes an algebraic expression to describe an unknown value <br> Subtract five from a number, then multiply by two $(n-5) \times 2$ <br> "I let $n$ represent the number. I used brackets so 5 would be subtracted first." | Evaluates an algebraic expression using substitution $(n-5) \times 2$ <br> "To find the value of the expression when $n$ equals 12 , I substitute 12 for $n$." $\begin{aligned} (n-5) \times 2 & =(12-5) \times 2 \\ & =7 \times 2 \\ & =14 \end{aligned}$ | Solves equations involving one operation using different strategies $\begin{aligned} 23 & =e+15 \\ 23-15 & =e+15-15 \\ 8 & =e \end{aligned}$ <br> "I used the inverse operation, subtracting 15 from each side." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Patterning and Algebra

## Activity 7 Assessment

Solving Multiplication and Division Equations

| Variables and Equations (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Solves equations involving two operations using different strategies $\begin{aligned} 29 & =3 z+2 \\ 29-2 & =3 z+2-2 \\ 27 & =3 z \\ \frac{27}{3} & =\frac{3 z}{3} \\ 9 & =z \end{aligned}$ <br> "I performed the order of operations in the reverse order to isolate the variable. I subtracted 2 from each side, then divided each side by 3 ." | Verifies the solution to an equation $29=3 z+2$ <br> "To verify, substitute $z=9$. $\begin{aligned} \text { Left side } & =29 \\ \text { Right side } & =3(9)+2 \\ & =27+2 \\ & =29 \end{aligned}$ <br> Since the left side equals the right side, my solution is correct." | Solves problems using equations involving one or two operations <br> Kairis sold 16 tickets. <br> That is twice as many tickets as Grace sold. <br> How many tickets did Grace sell? <br> Let $t$ represent the number of tickets Grace sold. $\begin{gathered} 2 t=16 \\ \frac{2 t}{2}=\frac{16}{2} \\ t=8 \end{gathered}$ <br> "So, Grace sold 8 tickets." | Flexibly works with equations to solve problems using a variety of strategies <br> At the grocery store, there are 5 lines of people at the checkouts. There are the same number of people in each line. <br> The manager counts to determine the total number of people at the checkouts, including 6 employees (including the manager). They counted 51 people. How many people are in each line? <br> Let $n$ represent the number of people in each line. $\begin{aligned} 5 n+6 & =51 \\ 5 n+6-6 & =51-6 \\ 5 n & =45 \\ n & =9 \end{aligned}$ <br> "I know $5 \times 9=45$, so $n=9$. <br> There are 9 people in each line." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Patterning and Algebra

## Activity 8 Assessment

Using Equations to Solve Problems

| Variables and Equations |  |  |  |
| :---: | :---: | :---: | :---: |
| Evaluates a numerical expression using the order of operations $\begin{aligned} 2 \times(30+18)-3 & =2 \times 48-3 \\ & =96-3 \\ & =93 \end{aligned}$ <br> "I have to do the operation in brackets first, then the multiplication, and then the subtraction." | Writes an algebraic expression to describe an unknown value <br> Subtract five from a number, then multiply by two $(n-5) \times 2$ <br> "I let $n$ represent the number. I used brackets so 5 would be subtracted first." | Evaluates an algebraic expression using substitution $(n-5) \times 2$ <br> "To find the value of the expression when $n$ equals 12 , I substitute 12 for $n$." $\begin{aligned} (n-5) \times 2 & =(12-5) \times 2 \\ & =7 \times 2 \\ & =14 \end{aligned}$ | Solves equations involving one operation using different strategies $\begin{aligned} 23 & =e+15 \\ 23-15 & =e+15-15 \\ 8 & =e \end{aligned}$ <br> "I used the inverse operation, subtracting 15 from each side." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Patterning and Algebra

## Activity 8 Assessment

Using Equations to Solve Problems

| Variables and Equations (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Solves equations involving two operations using different strategies $\begin{aligned} 29 & =3 z+2 \\ 29-2 & =3 z+2-2 \\ 27 & =3 z \\ \frac{27}{3} & =\frac{3 z}{3} \\ 9 & =z \end{aligned}$ <br> "I performed the order of operations in the reverse order to isolate the variable. I subtracted 2 from each side, then divided each side by 3 ." | Verifies the solution to an equation $29=3 z+2$ <br> "To verify, substitute $z=9$. $\begin{aligned} \text { Left side } & =29 \\ \text { Right side } & =3(9)+2 \\ & =27+2 \\ & =29 \end{aligned}$ <br> Since the left side equals the right side, my solution is correct." | Solves problems using equations involving one or two operations <br> Kairis sold 16 tickets. <br> That is twice as many tickets as Grace sold. <br> How many tickets did Grace sell? <br> Let $t$ represent the number of tickets Grace sold. $\begin{aligned} 2 t & =16 \\ \frac{2 t}{2} & =\frac{16}{2} \\ t & =8 \end{aligned}$ <br> "So, Grace sold 8 tickets." | Flexibly works with equations to solve problems using a variety of strategies <br> At the grocery store, there are 5 lines of people at the checkouts. There are the same number of people in each line. <br> The manager counts to determine the total number of people at the checkouts, including 6 employees (including the manager). They counted 51 people. <br> How many people are in each line? <br> Let $n$ represent the number of people in each line. $\begin{aligned} 5 n+6 & =51 \\ 5 n+6-6 & =51-6 \\ 5 n & =45 \\ n & =9 \end{aligned}$ <br> "I know $5 \times 9=45$, so $n=9$. <br> There are 9 people in each line." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Patterning and Algebra

## Activity 9 Assessment

Using Equations with Two Operations to Solve Problems

| Variables and Equations |  |  |  |
| :---: | :---: | :---: | :---: |
| Evaluates a numerical expression using the order of operations $\begin{aligned} 2 \times(30+18)-3 & =2 \times 48-3 \\ & =96-3 \\ & =93 \end{aligned}$ <br> "I have to do the operation in brackets first, then the multiplication, and then the subtraction." | Writes an algebraic expression to describe an unknown value <br> Subtract five from a number, then multiply by two $(n-5) \times 2$ <br> "I let $n$ represent the number. I used brackets so 5 would be subtracted first." | Evaluates an algebraic expression using substitution $(n-5) \times 2$ <br> "To find the value of the expression when $n$ equals 12 , I substitute 12 for $n$." $\begin{aligned} (n-5) \times 2 & =(12-5) \times 2 \\ & =7 \times 2 \\ & =14 \end{aligned}$ | Solves equations involving one operation using different strategies $\begin{aligned} 23 & =e+15 \\ 23-15 & =e+15-15 \\ 8 & =e \end{aligned}$ <br> "I used the inverse operation, subtracting 15 from each side." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Patterning and Algebra

## Activity 9 Assessment

Using Equations with Two Operations to Solve Problems

| Variables and Equations (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Solves equations involving two operations using different strategies $\begin{aligned} 29 & =3 z+2 \\ 29-2 & =3 z+2-2 \\ 27 & =3 z \\ \frac{27}{3} & =\frac{3 z}{3} \\ 9 & =z \end{aligned}$ <br> "I performed the order of operations in the reverse order to isolate the variable. I subtracted 2 from each side, then divided each side by 3 ." | Verifies the solution to an equation $29=3 z+2$ <br> "To verify, substitute $z=9$. $\begin{aligned} \text { Left side } & =29 \\ \text { Right side } & =3(9)+2 \\ & =27+2 \\ & =29 \end{aligned}$ <br> Since the left side equals the right side, my solution is correct." | Solves problems using equations involving one or two operations <br> Kairis sold 16 tickets. <br> That is twice as many tickets as Grace sold. <br> How many tickets did Grace sell? <br> Let $t$ represent the number of tickets Grace sold. $\begin{gathered} 2 t=16 \\ \frac{2 t}{2}=\frac{16}{2} \\ t=8 \end{gathered}$ <br> "So, Grace sold 8 tickets." | Flexibly works with equations to solve problems using a variety of strategies <br> At the grocery store, there are 5 lines of people at the checkouts. There are the same number of people in each line. <br> The manager counts to determine the total number of people at the checkouts, including 6 employees (including the manager). They counted 51 people. How many people are in each line? <br> Let $n$ represent the number of people in each line. $\begin{aligned} 5 n+6 & =51 \\ 5 n+6-6 & =51-6 \\ 5 n & =45 \\ n & =9 \end{aligned}$ <br> "I know $5 \times 9=45$, so $n=9$. <br> There are 9 people in each line." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Patterning and Algebra

## Activity 10 Assessment

Consolidating Variables and Equations

| Variables and Equations |  |  |  |
| :---: | :---: | :---: | :---: |
| Evaluates a numerical expression using the order of operations $\begin{aligned} 2 \times(30+18)-3 & =2 \times 48-3 \\ & =96-3 \\ & =93 \end{aligned}$ <br> "I have to do the operation in brackets first, then the multiplication, and then the subtraction." | Writes an algebraic expression to describe an unknown value <br> Subtract five from a number, then multiply by two $(n-5) \times 2$ <br> "I let $n$ represent the number. I used brackets so 5 would be subtracted first." | Evaluates an algebraic expression using substitution $(n-5) \times 2$ <br> "To find the value of the expression when $n$ equals 12, I substitute 12 for $n$." $\begin{aligned} (n-5) \times 2 & =(12-5) \times 2 \\ & =7 \times 2 \\ & =14 \end{aligned}$ | Solves equations involving one operation using different strategies $\begin{aligned} 23 & =e+15 \\ 23-15 & =e+15-15 \\ 8 & =e \end{aligned}$ <br> "I used the inverse operation, subtracting 15 from each side." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

```
Patterning and Algebra
```


## Activity 10 Assessment <br> Consolidating Variables and Equations

| Variables and Equations (cont'd) |  |  |  |
| :---: | :---: | :---: | :---: |
| Solves equations involving two operations using different strategies $\begin{aligned} 29 & =3 z+2 \\ 29-2 & =3 z+2-2 \\ 27 & =3 z \\ \frac{27}{3} & =\frac{3 z}{3} \\ 9 & =z \end{aligned}$ <br> "I performed the order of operations in the reverse order to isolate the variable. I subtracted 2 from each side, then divided each side by 3 ." | Verifies the solution to an equation $29=3 z+2$ <br> "To verify, substitute $z=9$. $\begin{aligned} \text { Left side } & =29 \\ \text { Right side } & =3(9)+2 \\ & =27+2 \\ & =29 \end{aligned}$ <br> Since the left side equals the right side, my solution is correct." | Solves problems using equations involving one or two operations <br> Kairis sold 16 tickets. <br> That is twice as many tickets as Grace sold. <br> How many tickets did Grace sell? <br> Let $t$ represent the number of tickets Grace sold. $\begin{aligned} 2 t & =16 \\ \frac{2 t}{2} & =\frac{16}{2} \\ t & =8 \end{aligned}$ <br> "So, Grace sold 8 tickets." | Flexibly works with equations to solve problems using a variety of strategies <br> At the grocery store, there are 5 lines of people at the checkouts. There are the same number of people in each line. <br> The manager counts to determine the total number of people at the checkouts, including 6 employees (including the manager). They counted 51 people. <br> How many people are in each line? <br> Let $n$ represent the number of people in each line. $\begin{aligned} 5 n+6 & =51 \\ 5 n+6-6 & =51-6 \\ 5 n & =45 \\ n & =9 \end{aligned}$ <br> "I know $5 \times 9=45$, so $n=9$. <br> There are 9 people in each line." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

```
Patterning and Algebra
```


## Activity 10 Assessment

Consolidating Variables and Equations

| Using Variables to Represent a Problem as an Equation |  |  |  |
| :---: | :---: | :---: | :---: |
| Interprets word problems/pictures and identifies the unknown part <br> Our class needs to set up rows of 6 chairs for a presentation. <br> There are 30 chairs altogether. <br> How many rows do we need? <br> "The unknown is the number of rows of 6 chairs needed to make an array of 30 chairs." | Translates word problems into equations using variables, operations, and numbers <br> "The unknown, $n$, is the number of rows. I know there are 6 chairs in each row and a total of 30 chairs. So, $6 n=30$." | Describes equivalent relationships using more than one equation (including formulas) <br> "I know the area of a rectangle is base multiplied by height, which is 30. If the base is 6 , then the height must be $n$. I could write the equation $30=6 n$ or $30 \div 6=n$." | Flexibly writes algebraic equations using a variety of strategies $\begin{aligned} & 6 n=30 \\ & 30 \div n=6 \end{aligned}$ <br> "I can use the inverse operation to rewrite the equation." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

$\qquad$
$\qquad$

## Perimeter and Area <br> Recording Sheets

My perimeter is: $\qquad$

| Width (m) | Length (m) | Area (m ${ }^{2}$ ) |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

$\qquad$
$\qquad$


I have $\qquad$ knitted squares.

| Width <br> (number of <br> squares) | Length <br> (number of <br> squares) | Perimeter <br> (number of <br> squares) | Perimeter <br> (cm) |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Activity 1 Assessment

Estimating and Measuring Area in Square Metres

| Relationships Among Standard Units of Area |  |  |
| :---: | :---: | :---: |
| Recognizes that area is measured using square units <br> "I covered the rectangle with square tiles and determined the area to be 20 square units." | Relates a centimetre/metre to a square centimetre/metre <br> "A square with side length 1 m has an area of $1 \mathrm{~m}^{2}$." | Expresses the relationship between square centimetres, square metres, and square kilometres $\begin{aligned} " 1 \mathrm{~m}=100 \mathrm{~cm}, \text { so } 1 \mathrm{~m}^{2} & =100 \mathrm{~cm} \times 100 \mathrm{~cm} \\ & =10000 \mathrm{~cm}^{2} \\ 1 \mathrm{~km}=1000 \mathrm{~m}, \text { so } 1 \mathrm{~km}^{2} & =1000 \mathrm{~m} \times 1000 \mathrm{~m} \\ & =1000000 \mathrm{~m}^{2 \prime} \end{aligned}$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 1 Assessment

Estimating and Measuring Area in Square Metres

| Relationships Among Standard Units of Area (cont'd) |  |  |
| :---: | :---: | :---: |
| Identifies which metric unit should be used to measure an area <br> The Classroom Floor <br> "I could use a metre stick to determine the length and width of the classroom. <br> So, I would use a square metre to measure the area of the floor." | Uses benchmarks to estimate area using metric units, then measures to check (square centimetre, square metre) <br> The Classroom Floor <br> "I visualize covering the classroom floor with about 50 tabletops, so I estimate its area to be about $50 \mathrm{~m}^{2}$. <br> When I measured to check, the classroom was 8 m long and 6 m wide. So, the actual area is $8 \mathrm{~m} \times 6 \mathrm{~m}=48 \mathrm{~m}^{2}$. My estimate was close." | Flexibly chooses an appropriate metric unit to estimate and measure area and explains reasoning <br> "I'd estimate and measure the area of the soccer field in square metres. I could use square centimetres, but the number would be so large that it would be difficult to relate to." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 2 Assessment

Exploring the Relationships among Metric Units of Area

| Relationships Among Standard Units of Area |  |  |
| :---: | :---: | :---: |
| Recognizes that area is measured using square units <br> "I covered the rectangle with square tiles and determined the area to be 20 square units." | Relates a centimetre/metre to a square centimetre/metre <br> "A square with side length 1 m has an area of $1 \mathrm{~m}^{2}$." | Expresses the relationship between square centimetres, square metres, and square kilometres $\begin{aligned} " 1 \mathrm{~m}=100 \mathrm{~cm}, \text { so } 1 \mathrm{~m}^{2} & =100 \mathrm{~cm} \times 100 \mathrm{~cm} \\ & =10000 \mathrm{~cm}^{2} \\ 1 \mathrm{~km}=1000 \mathrm{~m}, \text { so } 1 \mathrm{~km}^{2} & =1000 \mathrm{~m} \times 1000 \mathrm{~m} \\ & =1000000 \mathrm{~m}^{2 \prime} \end{aligned}$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 2 Assessment

Exploring the Relationships among Metric Units of Area

| Relationships Among Standard Units of Area (cont'd) |  |  |
| :---: | :---: | :---: |
| Identifies which metric unit should be used to measure an area <br> The Classroom Floor <br> "I could use a metre stick to determine the length and width of the classroom. <br> So, I would use a square metre to measure the area of the floor." | Uses benchmarks to estimate area using metric units, then measures to check (square centimetre, square metre) <br> The Classroom Floor <br> "I visualize covering the classroom floor with about 50 tabletops, so I estimate its area to be about $50 \mathrm{~m}^{2}$. <br> When I measured to check, the classroom was 8 m long and 6 m wide. So, the actual area is $8 \mathrm{~m} \times 6 \mathrm{~m}=48 \mathrm{~m}^{2}$. My estimate was close." | Flexibly chooses an appropriate metric unit to estimate and measure area and explains reasoning <br> "I'd estimate and measure the area of the soccer field in square metres. I could use square centimetres, but the number would be so large that it would be difficult to relate to." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 3 Assessment

## Relating Perimeter and Area of Rectangles

| Measuring Area and Perimeter of | gles |  |
| :---: | :---: | :---: |
| Recognizes that the perimeter of a rectangle is the distance around and area is the number of tiles that cover it <br> "Perimeter of rectangle: $3+5+3+5=16$, 16 units; Area: $3 \times 5=15,15$ square units." | Uses algebraic formulas to determine the perimeter and area of a rectangle <br> "To determine the perimeter of a rectangle, I use the formula $P=2 b+2 h$ and to determine the area, I use the formula $A=b \times h$. <br> For a rectangle with $b=6 \mathrm{~m}$ and $h=3 \mathrm{~m}$ : <br> Perimeter: $2 \times 6 \mathrm{~m}+2 \times 3 \mathrm{~m}=18 \mathrm{~m}$ Area: $6 \mathrm{~m} \times 3 \mathrm{~m}=18 \mathrm{~m}^{2}$." | Compares the perimeters and areas of rectangles <br> "Both rectangles have a perimeter of 18 cm : $2 \times 4+2 \times 5=18 ; 2 \times 6+2 \times 3=18 .$ <br> The rectangles have different areas: $4 \mathrm{~cm} \times 5 \mathrm{~cm}=20 \mathrm{~cm}^{2} \text { and } 6 \mathrm{~cm} \times 3 \mathrm{~cm}=18 \mathrm{~cm}^{2} . "$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 3 Assessment

## Relating Perimeter and Area of Rectangles



Activity 4 Assessment Consolidating Area and Perimeter

| Relationships Among Standard Units of Area |  |  |
| :---: | :---: | :---: |
| Recognizes that area is measured using square units <br> "I covered the rectangle with square tiles and determined the area to be 20 square units." | Relates a centimetre/metre to a square centimetre/metre <br> "A square with side length 1 m has an area of $1 \mathrm{~m}^{2}$." | Expresses the relationship between square centimetres, square metres, and square kilometres $\begin{aligned} " 1 \mathrm{~m}=100 \mathrm{~cm}, \text { so } 1 \mathrm{~m}^{2} & =100 \mathrm{~cm} \times 100 \mathrm{~cm} \\ & =10000 \mathrm{~cm}^{2} \\ 1 \mathrm{~km}=1000 \mathrm{~m}, \text { so } 1 \mathrm{~km}^{2} & =1000 \mathrm{~m} \times 1000 \mathrm{~m} \\ & =1000000 \mathrm{~m}^{2 \prime} \end{aligned}$ |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 4 Assessment

 Consolidating Area and Perimeter| Relationships Among Standard Units of Area (cont'd) |  |  |
| :---: | :---: | :---: |
| Identifies which metric unit should be used to measure an area <br> The Classroom Floor <br> "I could use a metre stick to determine the length and width of the classroom. <br> So, I would use a square metre to measure the area of the floor." | Uses benchmarks to estimate area using metric units, then measures to check (square centimetre, square metre) <br> The Classroom Floor <br> "I visualize covering the classroom floor with about 50 tabletops, so I estimate its area to be about $50 \mathrm{~m}^{2}$. <br> When I measured to check, the classroom was 8 m long and 6 m wide. So, the actual area is $8 \mathrm{~m} \times 6 \mathrm{~m}=48 \mathrm{~m}^{2}$. My estimate was close." | Flexibly chooses an appropriate metric unit to estimate and measure area and explains reasoning <br> "I'd estimate and measure the area of the soccer field in square metres. I could use square centimetres, but the number would be so large that it would be difficult to relate to." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 4 Assessment

 Consolidating Area and Perimeter
## Measuring Area and Perimeter of Rectangles

Recognizes that the perimeter of a rectangle is the distance around and area is the number of tiles that cover it

"Perimeter of rectangle: $3+5+3+5=16$, 16 units; Area: $3 \times 5=15,15$ square units.'

Uses algebraic formulas to determine the
perimeter and area of a rectangle

"To determine the perimeter of a rectangle, I use the formula $P=2 b+2 h$ and to determine the area, I use the formula $A=b \times h$ For a rectangle with $b=6 \mathrm{~m}$ and $h=3 \mathrm{~m}$ Perimeter: $2 \times 6 \mathrm{~m}+2 \times 3 \mathrm{~m}=18 \mathrm{~m}$ Area: $6 \mathrm{~m} \times 3 \mathrm{~m}=18 \mathrm{~m}^{2}$."

Compares the perimeters and areas of rectangles


5 cm

"Both rectangles have a perimeter of 18 cm : $2 \times 4+2 \times 5=18 ; 2 \times 6+2 \times 3=18$.
The rectangles have different areas: $4 \mathrm{~cm} \times 5 \mathrm{~cm}=20 \mathrm{~cm}^{2}$ and $6 \mathrm{~cm} \times 3 \mathrm{~cm}=18 \mathrm{~cm}^{2}$. .

Observations/Documentation

Activity 4 Assessment
Consolidating Area and Perimeter

| Measuring Area and Perimeter of Recter | ngles (cont'd) |  |
| :---: | :---: | :---: |
| Constructs a rectangle with given perimeter/area and explains strategy used $\text { Perimeter }=24 \mathrm{~m}$ <br> "To construct a rectangle with perimeter 24 m , the sum of the base and height needs to be $24 \mathrm{~m} \div 2=12 \mathrm{~m}$. I chose 8 m and 4 m . To determine the area, I multiplied the base by the height: $8 \mathrm{~m} \times 4 \mathrm{~m}=32 \mathrm{~m}^{2}$." | Constructs different rectangles for a given area and describes the rectangle with the least perimeter $\text { Area }=16 \mathrm{~cm}^{2}$ <br> "The rectangle with the least perimeter is a square." | Flexibly solves problems involving a given area and/or perimeter in a variety of contexts. <br> A square table can seat 1 student on each side. 24 tables are pushed together to make 1 large rectangular table. What is the greatest number of students who could be seated? <br> "For an area of 24 square units, the length and width can be: 1 and $24 ; 2$ and $12 ; 3$ and $8 ; 4$ and 6 . For the greatest number of students, the perimeter has to be the greatest, which means its width is the least, 1 unit, and the length is 24 units. The perimeter is 50 units, so 50 students can be seated." |
| Observations/Documentation |  |  |
|  |  |  |

$\qquad$

Geometry Unit 1 Line Master 1a

## Symmetry in First Nations Regalia

## First Nations Regalia: The Story

Since time immemorial, First Nations have and continue to have a deep-rooted connection to the natural world, which is evident in regalia designs. Material and symbols from the natural world are included in the designs. They might include inspirations and elements from water, land, and sky. For example, reflections of plants and medicines, flowers, sky (sun, moon, stars), water, and animals and their tracks might be found in some designs.

Symmetry in a design reflects living in balance and harmony with oneself, others, and the natural world. Each person's regalia tells a unique story and there is significance and meaning embedded in the colours, symbols, shapes, and designs.

Traditionally, shells, paints, bones, talons, animal teeth, bark, plants, flowers, and quillwork were used to create designs on clothing made from plant and tree fibers and animal hides. Today, regalia and their designs may be created from traditional natural materials, but they may also include silk or synthetic ribbon, fabrics, canvas, plastic or glass beads, and metal.

Designs are unique to each person and family and vary from nation to nation, community to community, and family to family. Designs and colour choices may come from the passing down of symbols within family and community, dreams, reflections of the natural world, and favourite things. Regalia designs tell a unique and personal story. The design and style of regalia are significant to the style of powwow dance.
$\qquad$
$\qquad$

## Symmetry in First Nations Regalia (cont'd)

Music and dance have always been a part of ceremony within First Nations cultural ways. Various styles of powwow dance and regalia designs have emerged over time to become what they are today. Each style of powwow dance has a purpose and the regalia worn is distinct to each style of dance.

Traditionally, music and dance were done for healing, ceremony, and celebration. Contemporary powwow dance is often competitive, although roots of healing, ceremony, and celebration continue within both contemporary and traditional powwows.

Some dance styles include traditional, fancy, and jingle. Capes can be found in most women's powwow dance regalia. Copying regalia designs and powwow dances does not honour First Nations deep-rooted cultural connection to the regalia and dance. However, some powwows feature an 'Intertribal' dance where all are welcome to respectfully participate in that round of the powwow. It would be best to inquire of powwow organizers as to whether they have that category of dance at their powwow and what the requirements are to respectfully participate.
$\qquad$
$\qquad$

## Symmetry in First Nations Regalia (cont'd)

## Stories Through Symmetry

1. What symmetrical designs can be found within First Nations regalia?
2. Complete this symmetrical design, then add colour.

$\qquad$
$\qquad$

## Symmetry in First Nations Regalia (cont'd)

## Extension

3. Share a story of your choice through a symmetrical design.
4. What is the meaning and significance of your symmetrical design? What story does your design tell?
$\qquad$

Geometry
Unit 1 Line Master 2a
Is It Symmetrical?


Geometry
Unit 1 Line Master 2b

## Is It Symmetrical?

Accommodation

$\qquad$


-     -         - • - -
-     -         - • - •
- • • • • • • • • • • • • • • •
 - • - • • • • - - -
$\qquad$
$\qquad$

$\qquad$
$\qquad$


## Geometry Unit 1 Line Master 5a <br> Polygon Cards


$\qquad$
$\qquad$

## Geometry Unit 1 Line Master 5b Polygon Cards (cont'd)


$\qquad$
$\qquad$

## Geometry

 Unit 1 Line Master 6a
## Rotation Symmetry and 2-D Shapes

If you can rotate a 2-D shape less than one full turn and it still looks the same, the shape has rotation symmetry.

Let's explore what we mean by this.
All regular polygons have rotation symmetry. The number of times a shape can be rotated within $360^{\circ}$ (one full turn) and still look the same is called the order of rotation symmetry. When determining if a shape has rotation symmetry, we rotate it about its centre.

Cut out or trace the shapes below and rotate them about their centre to see for yourself.

The order of rotation symmetry of a regular polygon is equal to the number of sides or angles!

A shape has rotation symmetry if it coincides with itself in less than one full turn about the centre of the shape.

The number of times a shape coincides with itself within a rotation of $360^{\circ}$, including either the beginning or ending position, is its order of rotation symmetry.
$\qquad$
$\qquad$

## Geometry

Unit 1 Line Master 6b

Rotation Symmetry and 2-D Shapes(cont'd)

Fill in the missing numbers.

| An equilateral triangle has 3 equal sides and 3 equal angles. <br> In one full turn about its centre, an equilateral triangle coincides with itself (looks the same) 3 times. So, an equilateral triangle has order of rotation symmetry 3. |  |
| :---: | :---: |
| A square has $\qquad$ equal sides and $\qquad$ equal angles. <br> In one full turn about its centre, a square coincides with itself (looks the same) $\qquad$ times. So, a square has order of rotation symmetry $\qquad$ . |  |
| A regular pentagon has $\qquad$ equal sides and $\qquad$ equal angles. <br> In one full turn about its centre, a regular pentagon coincides with itself (looks the same) $\qquad$ times. So, a regular pentagon has order of rotation symmetry $\qquad$ |  |
| A regular hexagon has $\qquad$ equal sides and $\qquad$ equal angles. <br> In one full turn about its centre, a regular hexagon coincides with itself (looks the same) $\qquad$ times. So, a regular hexagon has order of rotation symmetry $\qquad$ . |  |

$\qquad$
$\qquad$

Geometry
Unit 1 Line Master 6b

Rotation Symmetry and 2-D Shapes(cont'd)

Repeat for a regular polygon of your choice.
A $\qquad$ has $\qquad$ equal sides and

Draw the polygon here with the centre marked.

In one full turn about its centre, a
$\overline{\text { same ___ times. So, a coincides with itself (looks the }}$ order of rotation symmetry $\qquad$ .

On Line Master 7, we will use this information to write code to model rotation symmetry.
$\qquad$
$\qquad$

## Coding and Rotation Symmetry

Let's use coding to model rotation symmetry of 2-D shapes.

1. Click the link to access Scratch: Order of Rotation:

## https://scratch.mit.edu/projects/879134601/editor/

$>$ Click the green flag to run the application.
You will see that in one complete turn, the square is rotated 4 times since its order of rotation is 4 . Each time, it looks like the original square.
2. Let's examine the code so that we understand how it works.

We will then alter the code to model order of rotation for a triangle, pentagon, and hexagon.

$>$ The reset block has been created to ensure the shape starts in the centre of the stage and faces the correct direction before rotating.
$\qquad$ Date $\qquad$

Geometry
Unit 1 Line Master 7b

Coding and Rotation Symmetry (cont'd)
> "Costumes" have been prepared for a triangle, square, pentagon and hexagon. To model the order of rotation for a square, the square costume is selected. You can click on the Costumes tab to see the other 2-D shapes that have been prepared.

## switch costume to square -

$>$ A variable called orderOfRotation holds the number of rotations required to model rotation symmetry and bring the shape back to its starting position. As the programmer or coder, you will need to change this value depending on the shape you are using. Since we are starting with a square, we use the value 4.
set orderOiRotation - to 4
$>$ The repeat block contains code that will rotate the square 4 times, since the orderOfRotation is currently set to 4 .

A loop is a repetition of instructions used in code. In Scratch, the repeat block represents the loop.

> The rotate block was created so that the rotation happens gradually, like an animation. To calculate the angle of rotation, we need to divide $360^{\circ}$ by the order of rotation. So, for the square, each rotation will be $360^{\circ} \div 4=90^{\circ}$.
rotate (orderolRolation
$\qquad$
$\qquad$

Geometry Unit 1 Line Master 7c

## Coding and Rotation Symmetry (cont'd)

$>$ The wait block is used to pause the block for 1 second before doing the next rotation. You can alter this value if you wish to pause it for a shorter or longer time.

3. Now that we have examined the code, let's alter the code so that it will model rotation symmetry for other polygons. We will start with an equilateral triangle.
> Use the pull-down menu to change the costume to a triangle.

```
switch costume to triangle -
```

> A triangle has order of rotation of 3, so adjust the value for the orderOfRotation variable:

```
set orderOfRotation - to 3
```

That's it! Click on the green flag to run the application.
Does it rotate 3 times?
Does the triangle look the same each time?
If not, look through the code and instructions carefully to debug.
4. Go ahead and alter the code to model rotation symmetry for a pentagon and a hexagon.
$\qquad$
$\qquad$

Geometry Unit 1 Line Master 8a

## Coding Designs with Rotation Symmetry

Designs found in nature as well as those created by artists sometimes have rotation symmetry. We will use coding to create neat designs that have rotation symmetry.

1. Let's start with some code that creates a design of a circle of squares.
> Click the link to access Scratch: Designs and Rotation Symmetry. https://scratch.mit.edu/projects/879197398/editor/

Click on the green flag.
$>$ What is the rotation symmetry of this circle of squares design?
The code gives us a hint!

$\qquad$
$\qquad$

Geometry
Unit 1 Line Master 8b

## Coding Designs with Rotation Symmetry (cont'd)

2. Let's alter the code to create a design that has a rotation symmetry of 36, rather than 10.

We need to change two values to do this:
$>$ Change the value of the repeat block to 36 .
$>$ Change the rotation angle after each square is drawn. The product of the repeat block and turn block must be $360^{\circ}$. So, since the repeat is now 36 , we divide $360^{\circ}$ by 36 :
$360^{\circ} \div 36=10^{\circ}$
So, the new turn value is 10 degrees.
Try it out! Does it draw 36 squares in a full circle?

3. Alter the code to create other designs with a circle of squares by changing the order of rotation. Remember that the product of the value of the repeat block and the turn block must be $360^{\circ}$.

Share your designs with your classmates.

Geometry Unit 1 Line Master 9

## Coordinate Grids



## Activity 1 Assessment

Recognizing Symmetry in First Nations Designs

| Recognizing Symmetry in First Nations Regalia |  |  |  |
| :---: | :---: | :---: | :---: |
| Describes features of First Nations regalia <br> "I see many colours, images, symbols, materials that are the same on both sides of powwow regalia." | Identifies components of symmetry in First Nations regalia <br> "Powwow regalia have symmetrical qualities that are created by shapes that mirror each other." | Understands and describes the significance of First Nations powwow dance regalia. <br> "First Nations powwow regalia symbolize connection to the natural world, cultural teachings, and traditions within the colours, designs, and dance." | Identifies a symmetrical design that has personal meaning and significance. <br> "Different designs can be used to share a story." |
| Observations/Documentation |  |  |  |
|  |  |  |  |

Activity 2 Assessment
Understanding Line Symmetry

| Understanding Symmetry |  |  |
| :---: | :---: | :---: |
| Recognizes symmetry on 2-D and 3-D shapes <br> "I used a Mira to find the line of symmetry. When I folded the ladybug in half along the line, the two halves matched exactly." | Shows line(s) of symmetry on 2-D shapes <br> "I drew 4 lines to show the lines of symmetry on the clover. I used a Mira to check." | Describes order of rotation symmetry of 2-D shapes <br> "A square has rotation symmetry of order 4." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 2 Assessment

Understanding Line Symmetry

| Understanding Symmetry (cont'd) |  |  |
| :---: | :---: | :---: |
| Relates number of reflection and rotation symmetries of regular polygons to number of equal sides and angles <br> "A square has 4 equal sides and 4 equal angles So, it has 4 lines of symmetry and order of rotation symmetry 4 ." | Classifies 2-D shapes by the number of reflection or rotation symmetries <br> "I classified the shapes by order of rotation symmetry. Shapes B and D have order of rotation symmetry 1 , Shapes C, E, and F have order of rotation symmetry 2 , and Shape A has order of rotation symmetry 5 ." | Recognizes line and rotation symmetry in the environment <br> "A starfish has 5 lines of symmetry and order of rotation symmetry 5." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 3 Assessment

Investigating Reflection and Rotation Symmetry

| Understanding Symmetry |  |  |
| :---: | :---: | :---: |
| Recognizes symmetry on 2-D and 3-D shapes <br> "I used a Mira to find the line of symmetry. When I folded the ladybug in half along the line, the two halves matched exactly." | Shows line(s) of symmetry on 2-D shapes <br> "I drew 4 lines to show the lines of symmetry on the clover. I used a Mira to check." | Describes order of rotation symmetry of 2-D shapes <br> "A square has rotation symmetry of order 4." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 3 Assessment

Investigating Reflection and Rotation Symmetry

| Understanding Symmetry (cont'd) |  |  |
| :---: | :---: | :---: |
| Relates number of reflection and rotation symmetries of regular polygons to number of equal sides and angles <br> "A square has 4 equal sides and 4 equal angles. So, it has 4 lines of symmetry and order of rotation symmetry 4." | Classifies 2-D shapes by the number of reflection or rotation symmetries <br> "I classified the shapes by order of rotation symmetry. Shapes B and D have order of rotation symmetry 1 , Shapes C, E, and F have order of rotation symmetry 2 , and Shape A has order of rotation symmetry 5." | Recognizes line and rotation symmetry in the environment <br> "A starfish has 5 lines of symmetry and order of rotation symmetry 5." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 4 Assessment

Plotting and Reading Coordinates


## Activity 5 Assessment

 Coding and Rotation Symmetry| Understanding Symmetry |  |  |
| :---: | :---: | :---: |
| Recognizes symmetry on 2-D and 3-D shapes <br> "I used a Mira to find the line of symmetry. When I folded the ladybug in half along the line, the two halves matched exactly." | Shows line(s) of symmetry on 2-D shapes <br> "I drew 4 lines to show the lines of symmetry on the clover. I used a Mira to check." | Describes order of rotation symmetry of 2-D shapes <br> "A square has rotation symmetry of order 4." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 5 Assessment

 Coding and Rotation Symmetry| Understanding Symmetry (cont'd) |  |  |
| :---: | :---: | :---: |
| Relates number of reflection and rotation symmetries of regular polygons to number of equal sides and angles <br> "A square has 4 equal sides and 4 equal angles. So, it has 4 lines of symmetry and order of rotation symmetry 4." | Classifies 2-D shapes by the number of reflection or rotation symmetries <br> "I classified the shapes by order of rotation symmetry. Shapes B and D have order of rotation symmetry 1, Shapes C, E, and F have order of rotation symmetry 2 , and Shape A has order of rotation symmetry 5." | Recognizes line and rotation symmetry in the environment <br> "A starfish has 5 lines of symmetry and order of rotation symmetry 5." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 6 Assessment Consolidation

| Understanding Symmetry |  |  |
| :---: | :---: | :---: |
| Recognizes symmetry on 2-D and 3-D shapes <br> "I used a Mira to find the line of symmetry. When I folded the ladybug in half along the line, the two halves matched exactly." | Shows line(s) of symmetry on 2-D shapes <br> "I drew 4 lines to show the lines of symmetry on the clover. I used a Mira to check." | Describes order of rotation symmetry of 2-D shapes <br> "A square has rotation symmetry of order 4." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 6 Assessment

 Consolidation| Understanding Symmetry (cont'd) |  |  |
| :---: | :---: | :---: |
| Relates number of reflection and rotation symmetries of regular polygons to number of equal sides and angles <br> "A square has 4 equal sides and 4 equal angles So, it has 4 lines of symmetry and order of rotation symmetry 4 ." | Classifies 2-D shapes by the number of reflection or rotation symmetries <br> "I classified the shapes by order of rotation symmetry. Shapes B and D have order of rotation symmetry 1 , Shapes C, E, and F have order of rotation symmetry 2 , and Shape A has order of rotation symmetry 5 ." | Recognizes line and rotation symmetry in the environment <br> "A starfish has 5 lines of symmetry and order of rotation symmetry 5." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 6 Assessment

 Consolidation
$\qquad$
$\qquad$

Data Management
Unit 1 Line Master 1a

## Data Sets

## Set A

| Goals Scored by School Soccer Team This Season |  |  |
| :---: | :---: | :---: |
| Goals Scored | Number of Games | Frequency |
| 0 | I | 1 |
| 1 | II | 2 |
| 2 | IIII | 4 |
| 3 | IIII | 4 |
| 4 | 1 | 1 |
| 5 | 0 | 0 |

## Set B

| Heights of Students in a <br> Grade 5 Class |  |
| :---: | :---: |
| Height (cm) | Number of <br> Students |
| $120-124$ | I |
| $125-129$ | II |
| $130-134$ | HH I |
| $135-139$ | HH III |
| $140-144$ | HI |
| $145-149$ | III |
| $150-154$ | I |

$\qquad$

Data Management
Unit 1 Line Master 1
Data Sets (cont'd)
Set C


Set D

$\qquad$

## Data Sets (cont'd)

## Set E

A student's practice times, in seconds, for the 200-m dash: $30,27,28,31,29,31,28,27,29,32,29,28,28,33,29$

## Set F

Pulse rates of Grade 5 Students (beats per minute):
69, 83, 66, 78, 82, 67, 76, 84, 64, 72, 80, 72, 70, 69, 80, 66, 72, 88, $88,72,65,78,68,71$
$\qquad$
$\qquad$

Data Management
Unit 1 Line Master 2

## Interpreting Data

## Set A

## Heights of Grade 5 Students, in Centimetres

138, 127, 137, 152, 133, 141, 138, 148, 134, 136, 146, 138, 134, 140,
$138,132,141,142,123,134,144,138,129,136,145,132$

## Set B

Speeds of 20 Cars Recorded by Speed Camera in 50 km/h Zone $48,46,50,52,55,61,52,54,50,49,45,50,52,58,52,60,49,52$, 57, 61

## Set C

Where Grade 5 Students Usually Do Their Homework

| Location | Number of <br> Students |
| :---: | :---: |
| Kitchen | 7 |
| Living Room | 11 |
| Bedroom | 18 |
| Dining Room | 5 |
| Other | 4 |

## Set D

A student bought 5 boxes of candy-coated chocolates.
They counted the number of blue chocolates in each.

| Box | Number of Blue Chocolates |
| :---: | :---: |
| 1 | 12 |
| 2 | 9 |
| 3 | 12 |
| 4 | 14 |
| 5 | 11 |

## Activity 1 Assessment

Formulating Questions to Collect Data

| Data Collection |  |  |
| :---: | :---: | :---: |
| Differentiates between open-ended and closed-list questions <br> What is your favourite fruit? <br> "This is an open-ended question because respondents can answer in their own words." | Collects data using closed-list questions and categories <br> "What is your favourite fruit: orange, apple, banana, grapes, or other?" <br> Orange, apple, apple, grapes, other, banana, orange, ..., orange, apple | Categorizes collected data <br> "I marked a tally each time a student chose a particular fruit." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 1 Assessment

 Formulating Questions to Collect Data| Data Collection (cont'd) |  |  |
| :---: | :---: | :---: |
| Organizes categorized data in frequency tables <br> "I organized the data in a frequency table so I can see and compare the numbers of students who chose each fruit." | Represents data using bar graphs and dot plots <br> "I showed the data on a bar graph." | Flexibly represents data based on frequency (including stem-and-leaf plots) <br> Masses of Dogs Seen in One Day <br> Key: $1 \mid 2$ means 12 kg <br> "I see the same number of dogs had a mass between 20 kg and 29 kg as between 30 and 39 kg." |
| Observations/Documentatio |  |  |
|  |  |  |

## Activity 2 Assessment

Investigating Frequency of Data

| Data Collection |  |  |
| :---: | :---: | :---: |
| Differentiates between open-ended and closedlist questions <br> What is your favourite fruit? <br> "This is an open-ended question because respondents can answer in their own words." | Collects data using closed-list questions and categories <br> "What is your favourite fruit: orange, apple, banana, grapes, or other?" <br> Orange, apple, apple, grapes, other, banana, orange, ..., orange, apple | Categorizes collected data <br> "I marked a tally each time a student chose a particular fruit." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 2 Assessment

 Investigating Frequency of Data

## Activity 2 Assessment

 Investigating Frequency of Data

## Activity 2 Assessment Investigating Frequency of Data



## Activity 3 Assessment

## Representing Data

| Data Collection |  |  |
| :---: | :---: | :---: |
| Differentiates between open-ended and closedlist questions <br> What is your favourite fruit? <br> "This is an open-ended question because respondents can answer in their own words." | Collects data using closed-list questions and categories <br> "What is your favourite fruit: orange, apple, banana, grapes, or other?" <br> Orange, apple, apple, grapes, other, banana, orange, ..., orange, apple | Categorizes collected data <br> "I marked a tally each time a student chose a particular fruit." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 3 Assessment

 Representing Data| Data Collection (cont'd) |  |  |
| :---: | :---: | :---: |
| Organizes categorized data in frequency tables <br> "I organized the data in a frequency table so I can see and compare the numbers of students who chose each fruit." | Represents data using bar graphs and dot plots <br> "I showed the data on a bar graph." | Flexibly represents data based on frequency (including stem-and-leaf plots) <br> Masses of Dogs Seen in One Day <br> Key: $1 \mid 2$ means 12 kg <br> "I see the same number of dogs had a mass between 20 kg and 29 kg as between 30 and 39 kg ." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 3 Assessment

## Representing Data



## Activity 3 Assessment

## Representing Data

## Frequency and Mode (cont'd)

Identifies the mode in various representations of data

"The mode is 10 years old because it is the category with the tallest bar."

Recognizes data sets with no mode, one mode, or multiple modes

"The data set has no mode because all the bars are the same height."

Uses the mode to justify possible answers

| Sandwich | Frequency |
| :--- | :---: |
| Grilled Cheese | 15 |
| Hamburger | 7 |
| Hot Dog | 5 |
| Pulled Pork | 8 |
| Other | 3 |

"The mode is grilled cheese sandwich, so I am going to focus on selling different types of grilled cheese sandwiches on my food truck."

Observations/Documentation

## Activity 4 Assessment

## Interpreting Data

| Data Collection |  |  |
| :---: | :---: | :---: |
| Differentiates between open-ended and closedlist questions <br> What is your favourite fruit? <br> "This is an open-ended question because respondents can answer in their own words." | Collects data using closed-list questions and categories <br> "What is your favourite fruit: orange, apple, banana, grapes, or other?" <br> Orange, apple, apple, grapes, other, banana, orange, ..., orange, apple | Categorizes collected data <br> "I marked a tally each time a student chose a particular fruit." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 4 Assessment

 Interpreting Data| Data Collection (cont'd) |  |  |
| :---: | :---: | :---: |
| Organizes categorized data in frequency tables <br> "I organized the data in a frequency table so I can see and compare the numbers of students who chose each fruit." | Represents data using bar graphs and dot plots <br> "I showed the data on a bar graph." | Flexibly represents data based on frequency (including stem-and-leaf plots) <br> Masses of Dogs Seen in One Day <br> Key: $1 \mid 2$ means 12 kg <br> "I see the same number of dogs had a mass between 20 kg and 29 kg as between 30 and 39 kg |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 4 Assessment

## Interpreting Data



## Activity 4 Assessment

 Interpreting Data
## Frequency and Mode (cont'd)

Identifies the mode in various representations of data

"The mode is 10 years old because it is the category with the tallest bar."

Recognizes data sets with no mode, one mode, or multiple modes

"The data set has no mode because all the bars are the same height."

Observations/Documentation

## Activity 5 Assessment

 Consolidating Data Management| Data Collection |  |  |
| :---: | :---: | :---: |
| Differentiates between open-ended and closedlist questions <br> What is your favourite fruit? <br> "This is an open-ended question because respondents can answer in their own words." | Collects data using closed-list questions and categories <br> "What is your favourite fruit: orange, apple, banana, grapes, or other?" <br> Orange, apple, apple, grapes, other, banana, orange, ..., orange, apple | Categorizes collected data <br> "I marked a tally each time a student chose a particular fruit." |
| Observations/Documentation |  |  |
|  |  |  |

## Activity 5 Assessment

 Consolidating Data Management

## Activity 5 Assessment

 Consolidating Data Management

## Activity 5 Assessment

 Consolidating Data Management| Frequency and Mode (cont'd) |  |  |
| :---: | :---: | :---: |
| Identifies the mode in various representations of data <br> "The mode is 10 years old because it is the category with the tallest bar." | Recognizes data sets with no mode, one mode, or multiple modes <br> "The data set has no mode because all the bars are the same height." | Uses the mode to justify possible answers <br> "The mode is grilled cheese sandwich, so I am going to focus on selling different types of grilled cheese sandwiches on my food truck." |
| Observations/Documentation |  |  |
|  |  |  |


[^0]:    Number
    Unit 6 Line Master 3b

