Activity 2 Assessment

Determining Area of Composite Shapes

Measuring Area of Parallelograms an	riangles	
Determines the area of a rectangle. "A rectangle is an array of squares. To find the area, I multiply the number of rows by the number of columns or use the formula $A=b \times h$. This rectangle has area $5 \mathrm{~cm} \times 3 \mathrm{~cm}=15 \mathrm{~cm}^{2} . "$	Partitions and rearranges a parallelogram to form a rectangle with the same base and height. "I partitioned the parallelogram and moved the triangle to create a rectangle. I then found the area of the rectangle: $A=b \times h=12 \mathrm{~cm} \times 3 \mathrm{~cm}=36 \mathrm{~cm}^{2} .$ The area of the parallelogram is also $36 \mathrm{~cm}^{2}$."	Doubles a triangle to create a parallelogram (area of triangle is one-half that of parallelogram). "I rotated the triangle to make a parallelogram with the same base and height. The area of the triangle is one-half the area of the parallelogram. Area of parallelogram: $15 \mathrm{~cm} \times 4 \mathrm{~cm}=60 \mathrm{~cm}^{2}$ Area of triangle: $60 \mathrm{~cm}^{2} \div 2=30 \mathrm{~cm}^{2}$ So, the formula for the area of a triangle is: $A=b \times h \div 2 . "$
Observations/Documentation		

Activity 2 Assessment

Determining Area of Composite Shapes

