Activity 4 Assessment

Investigating Volume with Rectangular Prisms

Interpreting and Expressing Volume			
Explores volume as the amount of space occupied by a 3-D shape. "This cube occupies a space that can be measured. Each edge has a length of 1 cm and it has a volume of $1 \mathrm{~cm}^{3}$."	Recognizes volume of 3-D shapes in familiar contexts. "Everyday objects have volume; for example, a loaf of bread and a cereal box."	Models volume using concrete materials (non-standard units). "The volume of the box is about 12 marbles. Marbles aren't the greatest unit because they leave gaps."	Expresses volume of 3-D shapes using standard units (cubic metres, cubic centimetres). "I filled the box with centimetre cubes. The volume of the box is about $24 \mathrm{~cm}^{3}$."
Observations/Documentation			

Activity 4 Assessment

Investigating Volume with Rectangular Prisms

Interpreting and Expressing Volume (cont'd)			
Models volume of a rectangular prism as a 3-D array of cubic units. "The prism is a 3-D array of centimetre cubes. There are 12 cubes in each layer and 3 layers: $12+12+12=36$ The prism has volume $36 \mathrm{~cm}^{3}$."	Recognizes that volume remains the same when decomposed or rearranged. "I rearranged the 36 centimetre cubes to make a different prism. The number of cubes didn't change so, the volume is still $36 \mathrm{~cm}^{3}$."	Determines the volume of a rectangular prism using multiplication. "The prism has length 4 cm , width 3 cm and height 3 cm . The area of the base is $4 \mathrm{~cm} \times 3 \mathrm{~cm}=12 \mathrm{~cm}^{2}$, and the volume of the prism is: Area of the base \times height $=12 \mathrm{~cm}^{2} \times 3 \mathrm{~cm}$ $=36 \mathrm{~cm}^{3} . .$	Flexibly solves problems in various contexts that involve the volume of rectangular prisms. A square prism has height 11 cm and volume $539 \mathrm{~cm}^{3}$. Determine the side length of the square base. "Volume $=$ area of base \times height $539 \mathrm{~cm}^{3}=$ Area of the base $\times 11 \mathrm{~cm}$ $539 \div 11=49$ So, the area of the base is $49 \mathrm{~cm}^{2}$. The base is a square, so all sides are equal: $49 \mathrm{~cm}^{2}=s \times s$ Since $7 \times 7=49$, the side length of the square base is 7 cm ."
Observations/Documentation			

