\qquad
\qquad

Hundred Chart

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Activity 1 Assessment

 Investigating Prime Factorization| Prime Factorization and Powers | | |
| :---: | :---: | :---: |
| Represents a number as a product of factors in different ways. 24
 "I can think of 24 as $2 \times 12,4 \times 6$, or as $2 \times 2 \times 6$." | Identifies prime and composite numbers.
 " 24 is a composite number because it has more than 2 factors.
 23 is a prime number because it has only 2 factors, 1 and itself." | Determines the prime factorization of a number. |
| Observations/Documentation | | |
| | | |

Activity 1 Assessment

 Investigating Prime Factorization

Activity 2 Assessment

Investigating Powers and Divisibility of Numbers

Prime Factorization and Powers		
Represents a number as a product of factors in different ways. 24 "I can think of 24 as $2 \times 12,4 \times 6$, or as $2 \times 2 \times 6$."	Identifies prime and composite numbers. "24 is a composite number because it has more than 2 factors. 23 is a prime number because it has only 2 factors, 1 and itself."	Determines the prime factorization of a number. $\text { " } 24=2 \times 2 \times 2 \times 3 \text { " }$
Observations/Documentation		

Activity 2 Assessment

Investigating Powers and Divisibility of Numbers

Prime Factorization and Powers (cont'd)		
Writes repeated multiplication of identical factors as a power and vice versa. $\begin{gathered} 2 \times 2 \times 2=2^{3} \\ 3^{4}=3 \times 3 \times 3 \times 3 \end{gathered}$ "In the power 2^{3}, 2 is the base and 3 is the exponent."	Rewrites prime factorization of a number using powers. $24=2 \times 2 \times 2 \times 3$ "I can rewrite the prime factorization using powers: $24=2^{3} \times 3$."	Flexibly uses prime factorization to identify common factors and divisibility. " 24 is divisible by $2,3,4,6,2 \times 2 \times 2$ or 8 , and $2 \times 2 \times 3$ or 12 ."

Activity 3 Assessment

Number Relationships Consolidation

Prime Factorization and Powers		
Represents a number as a product of factors in different ways. 24 "I can think of 24 as $2 \times 12,4 \times 6$, or as $2 \times 2 \times 6$."	Identifies prime and composite numbers. " 24 is a composite number because it has more than 2 factors. 23 is a prime number because it has only 2 factors, 1 and itself."	Determines the prime factorization of a number. $\text { " } 24=2 \times 2 \times 2 \times 3 \text { " }$
Observations/Documentation		

Activity 3 Assessment

Number Relationships Consolidation

\qquad

Number
Unit 2 Line Master 1

Integer Situations

\qquad

Number Lines (-10 to 10) Horizontal

\qquad

Number
Unit 2 Line Master 2b

Number Lines (-10 to 10) Vertical

\qquad
\qquad

Number
Unit 2 Line Master 3a

Elevations Below Sea Level

Place	Country	Elevation (Below Sea Level)
Laguna del Carbon	Argentina	-105 m
Lake Eyre	Australia	-16 m
Baku	Azerbaijan	-28 m
Lake Assal	Djibouti	-153 m
Lake Enriquillo	Dominican Republic	-46 m
Allenby Bridge	Jordan-West Bank	-381 m
Dead Sea	Jordan-West Bank- Israel	-430 m
Atyrau Airport	Kazakhstan	-22 m
Badwater Basin, Death Valley, California	United States	-85 m
Jericho	West Bank	-258 m

[^0]\qquad

Number Unit 2 Line Master 3b

Elevations Below Sea Level Number Line

\qquad

Number
 Unit 2 Line Master 4a
 Number Lines 1

\qquad

\qquad
\qquad

Number
 Unit 2 Line Master 4c
 Number Lines 3

$\begin{array}{lllllllllll}-50 & -40 & -30 & -20 & -10 & 0 & 10 & 20 & 30 & 40 & 50\end{array}$
\qquad
\qquad

Number
 Unit 2 Line Master 4d
 Number Lines 4

\qquad
\qquad

Track and Field Relay Race Cards Representing Situations

Represent this situation with an integer. You go up $\mathbf{6}$ floors in an elevator.	Represent this situation with an integer. You climb down 5 rungs on a ladder.
Represent this situation with an integer. The temperature drops $\mathbf{7}^{\circ} \mathbf{C}$.	Represent this situation with an integer. You borrow \$5 from a friend.
Represent this situation with an integer. You deposit \$20 in your account.	Represent this situation with an integer. The kite is $\mathbf{5 0} \mathbf{m}$ above the ground.
Represent this situation with an integer. You dove 15 m below sea level.	Represent this situation with an integer. You earned \$15 cutting grass.
Represent this situation with an integer. You spent \$12 at the movies.	Represent this situation with an integer. You withdrew \$10 from your account.

\qquad

Track and Field Relay Race Cards Comparing Integers

Use < or > to compare. $+8 \ldots{ }^{-3}$	Use < or > to compare $-6 \ldots{ }_{-}^{-9}$
Use < or > to compare. 3 \qquad 18	Use < or > to compare. $-19 \ldots ـ-10$
Use < or > to compare. $+12 \ldots-5$	Use < or > to compare $-2 \ldots-12$
Use < or > to compare. $0 _ \text {_16 }$	Use < or > to compare $+6 \ldots-6$
Use < or to compare. $+7 \ldots{ }^{-5}$	Use < or > to compare $-1 _1$

\qquad
\qquad

Number
Unit 2 Master 5c

Track and Field Relay Race Cards Ordering Integers

Order from least to greatest. $-6,8,0$	Order from least to greatest. $-8,-10,-6$
Order from least to greatest. $+5,-5,-1$	Order from least to greatest. $+19,-18,-17$
Order from least to greatest. $-3,8,-7$	Order from greatest to least. $-15,11,5$
Order from greatest to least. $-24,15,3$	Order from greatest to least. $-6,19,0$
Order from greatest to least.	Order from greatest to least. $-2,13,-14,0$

\qquad

Track and Field Relay Race Cards Adding Integers

Add.	Add.
$-7+3$	$-3+2$
Add.	Add.
$-13+(-7)$	$-12+(-8)$
Add.	Add.
$5+(-5)$	$6+(-8)$
$-4+(-6)$	Add.
Add.	$+5+3$
$-18+(-11)$	Add.

\qquad
\qquad

Number
Unit 2 Master 5e

Track and Field Relay Race Cards Pass the Baton Cards: Team Questions

-6 and +6 is an example of what type of pair? Resume play if answered correctly. If incorrect, each player moves back 2 spaces.	Provide 3 examples of integers used in daily life. Resume play if answered correctly. If incorrect, each player moves back 2 spaces.
The temperature increased by $7^{\circ} \mathrm{C}$ to $19^{\circ} \mathrm{C}$. What was the starting temperature? Resume play if answered correctly. If incorrect, each player moves back 2 spaces.	Provide 3 pairs of integers that have a sum of 0 . Resume play if answered correctly. If incorrect, each player moves back 2 spaces.
You have $\$ 15$ in the bank. You withdraw \$5 and deposit $\$ 8$. What is your balance? Resume play if answered correctly. If incorrect, each player moves back 2 spaces.	The temperature was $-3^{\circ} \mathrm{C}$ It rose $15^{\circ} \mathrm{C}$, then fell $7^{\circ} \mathrm{C}$. What was the final temperature? Resume play if answered correctly. If incorrect, each player moves back 2 spaces.
What is the additive inverse of each of these numbers? $-12,+9,-27$ Resume play if answered correctly. If incorrect, each player moves back 2 spaces.	Write this difference as a sum, then find the sum. $-13-9$ Resume play if answered correctly. If incorrect, each player moves back 2 spaces.

\qquad

Track and Field Relay Race Cards Blank Cards

Represent this situation with an integer.	Represent this situation with an integer.
Move Ahead One Space if Correct.	Move Ahead One Space if Correct.
Use < or > to compare.	Use < or > to compare.
Move Ahead One Space if Correct.	Move Ahead One Space if Correct.
Order from least to greatest.	Order from least to greatest.
Move Ahead One Space if Correct.	Move Ahead One Space if Correct.
Add.	Add.
Move Ahead One Space if Correct.	Move Ahead One Space if Correct.
Resume play if answered correctly. If incorrect, each player moves back 2 spaces.	Resume play if answered correctly. If incorrect, each player moves back 2 spaces.

\qquad
\qquad

$\substack{\text { Number } \\ \text { Unit } 2 \text { Master 6 }}$ Track and Field Relay Race Gameboard

Activity 4 Assessment

Representing Integers

Exploring Integers			
Describes integers in terms of a positive or negative distance from zero. " -5 is 5 units to the left of 0 on a horizontal number line. +3 is 3 units to the right of 0 ."	Understands that an integer and its opposite are the same distance from zero but on opposite sides of zero. "Negative 5 is the same distance from zero as positive 5 ."	Recognizes that the value of negative numbers decreases as the number of digits increases. " -8 is less than +3 because it is less than zero: $-8<3 . "$	Compares and orders positive and negative integers.
Observations/Documentation			

Activity 4 Assessment

Representing Integers

Exploring Integers (cont'd)			
Adds integers with like signs concretely or pictorially (e.g., using counters or number lines). $\bigcirc \bigcirc+\bigcirc \bigcirc=\bigcirc \bigcirc \bigcirc \bigcirc$ $-3+(-2)=-5$ "The sum of two negative integers is negative."	Recognizes that the sum of a number and its additive inverse is 0 . "Adding an integer and its opposite gives 0. ."	Adds integers with different signs concretely (e.g., using counters and zero pairs or number lines). "I moved right to model +4 , then left to model -1 . I ended up at +3 ."	Flexibly adds integers and solves addition story problems. $-6+2$ "I think of it as the sum of 0 and another integer." $\begin{aligned} -6+2 & =(-4+(-2))+2 \\ & =-4+(-2+2) \\ & =-4+0 \\ & =-4 \end{aligned}$
Observations/Documentation			

Activity 5 Assessment

 Comparing and Ordering Integers| Exploring Integers | | | |
| :---: | :---: | :---: | :---: |
| Describes integers in terms of a positive or negative distance from zero.
 " -5 is 5 units to the left of 0 on a horizontal number line. +3 is 3 units to the right of 0 ." | Understands that an integer and its opposite are the same distance from zero but on opposite sides of zero.
 "Negative 5 is the same distance from zero as positive 5." | Recognizes that the value of negative numbers decreases as the number of digits increases.
 " -8 is less than +3
 because it is less than zero:
 $-8<3$ " | Compares and orders positive and negative integers. $-5,0,-2,5,-1$
 "From least to greatest: $-5,-2,-1,0,5 "$ |
| Observations/Documentation | | | |
| | | | |

Activity 5 Assessment

Comparing and Ordering Integers

Exploring Integers (cont'd)			
Adds integers with like signs concretely or pictorially (e.g., using counters or number lines). $\bigcirc \bigcirc+\bigcirc \bigcirc=\bigcirc \bigcirc \bigcirc 0$ $-3+(-2)=-5$ "The sum of two negative integers is negative."	Recognizes that the sum of a number and its additive inverse is 0 . "Adding an integer and its opposite gives 0 ."	Adds integers with different signs concretely (e.g., using counters and zero pairs or number lines). "I moved right to model +4 , then left to model -1 . I ended up at +3 ."	Flexibly adds integers and solves addition story problems. $-6+2$ "I think of it as the sum of 0 and another integer." $\begin{aligned} -6+2 & =(-4+(-2))+2 \\ & =-4+(-2+2) \\ & =-4+0 \\ & =-4 \end{aligned}$
Observations/Documentation			

Activity 6 Assessment

Investigating Addition with Integers

Exploring Integers			
Describes integers in terms of a positive or negative distance from zero. " -5 is 5 units to the left of 0 on a horizontal number line. +3 is 3 units to the right of 0 ."	Understands that an integer and its opposite are the same distance from zero but on opposite sides of zero. "Negative 5 is the same distance from zero as positive 5."	Recognizes that the value of negative numbers decreases as the number of digits increases. " -8 is less than +3 because it is less than zero: $-8<3 . "$	Compares and orders positive and negative integers.
Observations/Documentation			

Activity 6 Assessment

Investigating Addition with Integers

Exploring Integers (cont'd)			
Adds integers with like signs concretely or pictorially (e.g., using counters or number lines). $\bigcirc \bigcirc+\bigcirc \bigcirc=\bigcirc \bigcirc \bigcirc 0$ $-3+(-2)=-5$ "The sum of two negative integers is negative."	Recognizes that the sum of a number and its additive inverse is 0 . "Adding an integer and its opposite gives 0 ."	Adds integers with different signs concretely (e.g., using counters and zero pairs or number lines). "I moved right to model +4 , then left to model -1 . I ended up at +3 ."	Flexibly adds integers and solves addition story problems. $-6+2$ "I think of it as the sum of 0 and another integer." $\begin{aligned} -6+2 & =(-4+(-2))+2 \\ & =-4+(-2+2) \\ & =-4+0 \\ & =-4 \end{aligned}$
Observations/Documentation			

Activity 7 Assessment

 Consolidating Integers| Exploring Integers | | | |
| :---: | :---: | :---: | :---: |
| Describes integers in terms of a positive or negative distance from zero.
 " -5 is 5 units to the left of 0 on a horizontal number line. +3 is 3 units to the right of 0 ." | Understands that an integer and its opposite are the same distance from zero but on opposite sides of zero.
 "Negative 5 is the same distance from zero as positive 5 " | Recognizes that the value of negative numbers decreases as the number of digits increases.
 " -8 is less than +3
 because it is less than zero:
 $-8<3$ " | Compares and orders positive and negative integers. $-5,0,-2,5,-1$
 "From least to greatest: $-5,-2,-1,0,5^{\prime \prime}$ |
| Observations/Documentation | | | |
| | | | |

Activity 7 Assessment

Consolidating Integers

Exploring Integers (cont'd)			
Adds integers with like signs concretely or pictorially (e.g., using counters or number lines). $\begin{gathered} +3+(-2)=-5 \\ -3+ \end{gathered}$ "The sum of two negative integers is negative."	Recognizes that the sum of a number and its additive inverse is 0 . "Adding an integer and its opposite gives $0 . "$	Adds integers with different signs concretely (e.g., using counters and zero pairs or number lines). "I moved right to model +4 , then left to model -1 . I ended up at +3 ."	Flexibly adds integers and solves addition story problems. $-6+2$ "I think of it as the sum of 0 and another integer." $\begin{aligned} -6+2 & =(-4+(-2))+2 \\ & =-4+(-2+2) \\ & =-4+0 \\ & =-4 \end{aligned}$
Observations/Documentation			

\qquad Date \qquad

Number
Unit 3 Line Master 1a

Electricity Usage

Appliance	On-Time per day	On-Time per day (decimal)	On-Time per day (fraction)	On-Time per day (\%)
Bathroom lighting	2 h 57 min		$\frac{12}{100}$	
Cooking stove, ventilation	2 h 12 min	0.09		
Dishwasher	1 h 7 min			5\%
Floor heating	4 h 5 min			17\%
Iron, vacuum cleaner	2 h 2 min		$\frac{8}{100}$	
Lighting	7 h 58 min	0.33		
Refrigerator	$15 \text { h } 36$ min		$\frac{65}{100}$	
TV, modem, PC, video	$\begin{gathered} 12 \mathrm{~h} 42 \\ \min \end{gathered}$			53\%
Washing machine	32 min	0.02		
Water heater	5 h 46 min		$\frac{24}{100}$	

[^1] appliances tbl1 268406195

Number
Unit 3 Line Master 1b

Electricity Usage
Grids

\qquad
\qquad

Number
Unit 3 Line Master 2a

Centre Tasks

Centre A: The Garden (Representing Fractions)

The residents of an apartment building decided to make a rectangular community garden.
Their design is shown below.
The walkway is part of the garden.
What fraction of the garden does each type of vegetable cover? Explain.

\qquad
\qquad

Number
Unit 3 Line Master 2b

Centre Tasks (cont'd)

Centre B: Planting Seeds (Comparing Fractions)

Seeds come in small packages, with different numbers of seeds in each, depending on the type of vegetable.

This table shows the fraction of the garden each package of seeds will cover.

Vegetable	Lettuce	Tomatoes	Corn	Peppers	Cucumbers	Beans
Fraction of garden covered with 1 package of seeds	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$

Use the fractions you identified in Centre A.
Determine how many packages of each seed the gardeners should buy.
\qquad
\qquad

Number
Unit 3 Line Master 2c

Centre Tasks (cont'd)

Centre C: Tending to the Garden (Working with Percents)

These tasks need to be completed daily to maintain the garden.

Task	Time (h)
Watering	2
Weeding	4
Fertilizing	0.5
Pruning	1
Maintenance of Walkway	1
Picking/Cleaning Crop	1.5

The gardeners want to divide up the tasks equally. To do this, they would like a visual that shows each time as a percent of the total daily time: 10 h . Create a visual to help the gardeners.
\qquad
\qquad

Number
Unit 3 Line Master 2d

Centre Tasks (cont'd)

Centre D: Harvesting Vegetables (Fractions of a Set)

One day in mid-August, 24 vegetables were harvested from the garden.
Here is the harvest:

- Show each type of vegetable as a fraction of the whole harvest for that day.
- Order the fractions from least to greatest.
- Create a visual to show the harvest.

Partition the rectangle to show the harvest
of each type of vegetable.

Today's Harvest

\qquad
\qquad

Number
Unit 3 Line Master 2e

Centre Tasks (cont'd)

Centre E: Applying Fertilizer

(Relating Fractions, Decimals, and Percents)
The gardeners want to use an organic fertilizer that is high in nitrogen and low in potash. Here are their options.

Natural Nutrients
Fertilizer
Nitrogen: $\frac{1}{5}$
Phosphate: $\frac{1}{10}$
Potash: $\frac{1}{20}$

Greener Growers
Fertilizer
Nitrogen: 0.15
Phosphate: 0.2
Potash: 0.05

Perfect Plants Fertilizer

Nitrogen: 5\%
Phosphate: 10\%
Potash: 5\%

- Which fertilizer best matches their needs?
- For the chosen fertilizer, express the value of each chemical as:
- a fraction
- a decimal
- a percent
- Identify the fertilizer that has the most phosphate.

Show your thinking.
\qquad
\qquad

Number
Unit 3 Line Master 2f

Centre Tasks (cont'd)

Centre F: Selling the Harvest (Ratios and Rates)

The gardeners decide to sell some of their harvest at the local farmer's market.

- One week they harvest 50 tomatoes, and 20 peppers. What is the ratio of tomatoes to peppers? peppers to tomatoes?
- The second week, their harvest of tomatoes and peppers is double the first week. The third week, the harvest is half the first week.
Write equivalent ratios to represent the numbers of tomatoes and peppers each week.

They package some of their produce into bunches to sell at the market.

- They sell 3 peppers for $\$ 3.60$. How much does one pepper cost?
- One cucumber costs 75ϕ. How much does it cost for 5 cucumbers?
- A 2 kg basket of tomatoes sells for $\$ 6.00$. What is the cost for a 1 kg basket? A 10 kg basket?
\qquad
\qquad

Number
Unit 3 Line Master 2g

Centre Tasks (cont'd)

Answers

Centre A:

Lettuce: $\frac{2}{18}$ or $\frac{1}{9}$; Tomatoes: $\frac{3}{18}$ or $\frac{1}{6}$; Corn: $\frac{3}{18}$ or $\frac{1}{6}$;
Cucumbers: $\frac{2}{18}$ or $\frac{1}{9}$; Peppers: $\frac{1}{18}$; Beans: $\frac{2}{18}$ or $\frac{1}{9}$

Centre B:

Lettuce: 1 package; Tomatoes: 2 packages; Corn: 1 package; Cucumbers: 1 package; Peppers: 1 package; Beans: 1 package

Centre C:

Visual to show: Watering: 20\%; Weeding: 40\%; Fertilizing: 5\%; Pruning: 10\%; Maintenance of Walkway: 10\%; Picking/Cleaning Crop: 15\%

Centre D:

Tomatoes: $\frac{10}{24}$, or $\frac{5}{12}$; Cucumbers: $\frac{6}{24}$, or $\frac{1}{4}$; Lettuce: $\frac{3}{24}$, or $\frac{1}{8}$;
Peppers: $\frac{5}{24}$;
Least to greatest: $\frac{1}{8}, \frac{5}{24}, \frac{1}{4}, \frac{5}{12}$
Today's Harvest

T	T	T
T	T	T
T	T	T
T	C	C
C	C	C
C	L	L
L	P	P
P	P	P

\qquad
\qquad

Number
Unit 3 Line Master 2h

Centre Tasks (cont'd)

Answers

Centre E: Natural Nutrients Fertilizer; Nitrogen: $\frac{1}{5}, 0.2,20 \%$;
Phosphate: $\frac{1}{10}, 0.1,10 \%$; Potash: $\frac{1}{20} ; 0.05,5 \%$;
Greener Growers Fertilizer; 20\%.

Centre F:
Tomatoes: Peppers
50:20 = 5:2
Peppers: Tomatoes
20:50 = 2:5

Week 2:
50:20 = 100:40
They harvest 100 tomatoes and 40 peppers in week 2.
Week 3:
50:20 = 25:10
They harvest 50 tomatoes and 10 peppers in week 3 .
$\frac{\$ 3.60}{3}=\frac{\$ 1.20}{1}$ Divide numerator and denominator by 3.
One pepper costs $\$ 1.20$.
80ϕ is the same as $\$ 0.80$
$\frac{\$ 0.80}{1}=\frac{\$ 4.00}{5} \quad$ Multiply numerator and denominator by 5 .
Five cucumbers cost $\$ 4.00$.
$\frac{\$ 6.00}{2}=\frac{\$ 3.00}{1} \quad \frac{\$ 3.00}{1}=\frac{\$ 30.00}{10}$
A 1 kg basket of tomatoes costs $\$ 3.00$.
A 10 kg basket of tomatoes costs $\$ 30.00$.
\qquad

Number Unit 3 Line Master 3

Relational Rods

Activity 8 Assessment

Relating Fractions to Quotients

Relating Fractions, Decimals, Percents, Ratios, and Rates			
Describes an equal-sharing situation using a fraction. "To share 4 granola bars among 3 friends, I draw a picture that shows 4 wholes each divided into thirds."	Describes a fraction as a division statement and vice versa. "To share 4 granola bars among 3 friends, I can write the division statement $4 \div 3$ or I can write a fraction $\frac{4}{3}$. The picture shows 4 wholes each divided into thirds. Each person gets 3 thirds and one more third or $1 \frac{1}{3}$."	Makes connections between fractions, decimals, and percents. "I see forty-eight hundredths, which is the same as 0.48 or $\frac{48}{100}$. Since percent is 'out of 100 ', it can also be thought of as 48% of something."	Determines the percent of a number. "I can determine 12% of 40 by multiplying 40 by 12 and dividing by 100 ." $\begin{aligned} 40 \times 12 \div 100 & =480 \div 100 \\ & =4.8 \end{aligned}$
Observations/Documentation			

Activity 8 Assessment

Relating Fractions to Quotients

Activity 9 Assessment

Relating Fractions, Decimals, and Percents

Relating Fractions, Decimals, Percents, Ratios, and Rates			
Describes an equal-sharing situation using a fraction. "To share 4 granola bars among 3 friends, I draw a picture that shows 4 wholes each divided into thirds."	Describes a fraction as a division statement and vice versa. "To share 4 granola bars among 3 friends, I can write the division statement $4 \div 3$ or I can write a fraction $\frac{4}{3}$. The picture shows 4 wholes each divided into thirds. Each person gets 3 thirds and one more third or $1 \frac{1}{3}$."	Makes connections between fractions, decimals, and percents. "I see forty-eight hundredths, which is the same as 0.48 or $\frac{48}{100}$. Since percent is 'out of 100 ', it can also be thought of as 48% of something."	Determines the percent of a number. "I can determine 12% of 40 by multiplying 40 by 12 and dividing by 100 ." $\begin{aligned} 40 \times 12 \div 100 & =480 \div 100 \\ & =4.8 \end{aligned}$
Observations/Documentation			

Activity 9 Assessment

Relating Fractions, Decimals, and Percents

Activity 10 Assessment

Equivalent Ratios and Rates

Relating Fractions, Decimals, Percents, Ratios, and Rates			
Describes an equal-sharing situation using a fraction. "To share 4 granola bars among 3 friends, I draw a picture that shows 4 wholes each divided into thirds."	Describes a fraction as a division statement and vice versa. "To share 4 granola bars among 3 friends, I can write the division statement $4 \div 3$ or I can write a fraction $\frac{4}{3}$. The picture shows 4 wholes each divided into thirds. Each person gets 3 thirds and one more third or $1 \frac{1}{3}$."	Makes connections between fractions, decimals, and percents. "I see forty-eight hundredths, which is the same as 0.48 or $\frac{48}{100}$. Since percent is 'out of 100 ', it can also be thought of as 48% of something."	Determines the percent of a number. "I can determine 12% of 40 by multiplying 40 by 12 and dividing by 100. " $\begin{aligned} 40 \times 12 \div 100 & =480 \div 100 \\ & =4.8 \end{aligned}$
Observations/Documentation			

Activity 10 Assessment

Equivalent Ratios and Rates

Activity 11 Assessment

Unit Rates

Relating Fractions, Decimals, Percents, Ratios, and Rates			
Describes an equal-sharing situation using a fraction. "To share 4 granola bars among 3 friends, I draw a picture that shows 4 wholes each divided into thirds."	Describes a fraction as a division statement and vice versa. "To share 4 granola bars among 3 friends, I can write the division statement $4 \div 3$ or I can write a fraction $\frac{4}{3}$. The picture shows 4 wholes each divided into thirds. Each person gets 3 thirds and one more third or $1 \frac{1}{3}$."	Makes connections between fractions, decimals, and percents. "I see forty-eight hundredths, which is the same as 0.48 or $\frac{48}{100}$. Since percent is 'out of 100 ', it can also be thought of as 48% of something."	Determines the percent of a number. "I can determine 12% of 40 by multiplying 40 by 12 and dividing by 100 ." $\begin{aligned} 40 \times 12 \div 100 & =480 \div 100 \\ & =4.8 \end{aligned}$
Observations/Documentation			

Activity 11 Assessment

 Unit Rates

Activity 12 Assessment

Fractions, Decimals, Percents, Ratios, and Rates Consolidation

Relating Fractions, Decimals, Percents, Ratios, and Rates			
Describes an equal-sharing situation using a fraction. "To share 4 granola bars among 3 friends, I draw a picture that shows 4 wholes each divided into thirds."	Describes a fraction as a division statement and vice versa. "To share 4 granola bars among 3 friends, I can write the division statement $4 \div 3$ or I can write a fraction $\frac{4}{3}$. The picture shows 4 wholes each divided into thirds. Each person gets 3 thirds and one more third or $1 \frac{1}{3}$."	Makes connections between fractions, decimals, and percents. "I see forty-eight hundredths, which is the same as 0.48 or $\frac{48}{100}$. Since percent is 'out of 100 ', it can also be thought of as 48% of something."	Determines the percent of a number. "I can determine 12% of 40 by multiplying 40 by 12 and dividing by 100 ." $\begin{aligned} 40 \times 12 \div 100 & =480 \div 100 \\ & =4.8 \end{aligned}$
Observations/Documentation			

Activity 12 Assessment

Fractions, Decimals, Percents, Ratios, and Rates Consolidation

\qquad
\qquad

Number Unit 4 Line Master 1

Double Number Lines

Number
Unit 4 Line Master 2
\square
\square
\square
\square
\qquad
\qquad

Number
 Unit 4 Line Master 3
 Question and Answer Cards

Questions

$\left\{\begin{array}{ll}\text { Question: } \\ \text { What is } 2 \times \frac{3}{8} ?\end{array}=\begin{array}{l}\text { Question: } \\ \text { What is } 3 \times \frac{5}{7} ?\end{array}\right.$

Answers

\qquad
\qquad

Top Tipper

\qquad
\qquad

Top Tipper (cont'd)

\qquad
\qquad

Top Tipper (cont'd)

\qquad

Lamp
\$17.87

Staple gun with staples \$39.95

What Can I Buy?

Paint brushes
$\$ 21.78$

Ladder
\$108.65

Sheet of plywood $\$ 62.40$

Saw
\$19.99

Paint tray $\$ 8.90$

Hammer $\$ 25.98$

Curtains \$26.56

Tablecloth $\$ 25.96$

Roll of kraft paper
$\$ 45.99$
\qquad

Number
 Unit 4 Line Master 6

Cross Canada Challenge! Gameboard

\qquad

Number Unit 4 Line Master 7a
 Cross Canada Challenge! Game Cards

Multiplication

\qquad

Number Unit 4 Line Master 7b
 Cross Canada Challenge! (cont'd) Game Cards

Division

\qquad

Number Unit 4 Line Master 7c

Cross Canada Challenge! (cont'd) Game Cards

Multiplication

\qquad

Number
 Unit 4 Line Master 7d
 Cross Canada Challenge! (cont'd) Game Cards

Addition

\qquad

Number Unit 4 Line Master 7e
 Cross Canada Challenge! (cont'd) Game Cards

Subtraction

Activity 13 Assessment

Multiplying Decimals by 2-Digit Numbers

Multiplying and Dividing Decimals by 2-Digit Numbers		
Models multiplication and division situations concretely and pictorially. $1.6 \times 3=?$ "I used Base Ten Blocks to make an array with length 3 and width 1.6. I then counted the blocks to get 4.8. I could also use repeated addition:. $1.6+1.6+1.6=4.8^{\prime \prime}$	Uses models and other strategies to solve multiplication and division situations. $\begin{aligned} & 4.15 \times 25=? \\ & 4.15 \times 25=(4.0+0.10+0.05) \times(20+5) \\ &=(4.0 \times 20)+(0.10 \times 20)+(0.05 \times 20) \\ &+(4.0 \times 5)+(0.10 \times 5)+(0.05 \times 5) \\ &= 80.0+2.0+1.0+20+0.5+0.25 \\ &= 103.75 \end{aligned}$	Uses the standard algorithm to multiply. $4.15 \times 25=?$ "First, I multiplied as if there was no decimal. Next, I counted the number of digits after the decimal point in each factor Then I placed the same number of digits after the decimal point in the product." $\begin{array}{rr} \begin{array}{r} 1 \\ 4.15 \\ 4 \end{array} & \\ \times \quad 25 \\ \hline 2075 & \text { Multiply : } 415 \times 5 \\ +8300 & \text { Multiply }: 415 \times 20 \end{array}$
Observations/Documentation		

Activity 13 Assessment

Multiplying Decimals by 2-Digit Numbers

Multiplying and Dividing Decimals by 2-Digit Numbers (cont'd)		
Decomposes numbers to use partial quotients to divide. $4.44 \div 12=?$ 12 $\longdiv { 4 4 4 }$ $\begin{aligned} \frac{-360}{84} & 30 \text { groups of } 12 \\ \frac{-84}{0} & 7 \text { groups } 12 \end{aligned}$ "I used partial quotients to divide as whole numbers, then estimated to place the decimal point. 4.44 is about 4 and 12 is about 10 . $\text { So, } 4 \div 10=0.40$ So, I placed the decimal point so 37 is close to $0.40: 0.37$."	Estimates to determine if answer to multiplication or division problem is reasonable. $\begin{array}{r} 0.37 \\ 1 2 \longdiv { 4 . 4 4 } \\ -36 \\ \hline 84 \\ -84 \\ \hline 0 \end{array}$ " $\$ 4.44$ is about $\$ 4$ and 12 is about 10. $\text { So, } \$ 4 \div 10=\$ 0.40$ So, the answer is reasonable."	Solves multiplication and division problems flexibly using a variety of strategies. The area of a rectangular garden plot is 95.2 m 2 . The length of the garden is 14 m . What is the width? "I divided as I would whole numbers, then used estimation to place the decimal point. $\begin{array}{r} 6.8 \\ 1 4 \longdiv { 9 5 . 2 } \\ \frac{-84}{112} \\ \frac{-112}{0} \end{array}$ 95.2 is about 100 , and 14 is about 10 . $100 \div 10=10 \text {. }$ I placed the decimal point so that 68 is close to 10: 6.8. The width of the garden is 6.8 m ."
Observations/Documentation		

Activity 14 Assessment

Dividing Decimals by 2-Digit Numbers

Multiplying and Dividing Decimals by 2-Digit Numbers		
Models multiplication and division situations concretely and pictorially. "I used Base Ten Blocks to make an array with length 3 and width 1.6. I then counted the blocks to get 4.8. I could also use repeated addition:. $1.6+1.6+1.6=4.8 "$	Uses models and other strategies to solve multiplication and division situations. $\begin{aligned} & 4.15 \times 25=? \\ & 4.15 \times 25=(4.0+0.10+0.05) \times(20+5) \\ &=(4.0 \times 20)+(0.10 \times 20)+(0.05 \times 20) \\ &+(4.0 \times 5)+(0.10 \times 5)+(0.05 \times 5) \\ &= 80.0+2.0+1.0+20+0.5+0.25 \\ &=103.75 \end{aligned}$	Uses the standard algorithm to multiply. $4.15 \times 25=?$ "First, I multiplied as if there was no decimal. Next, I counted the number of digits after the decimal point in each factor. Then I placed the same number of digits after the decimal point in the product." $\begin{aligned} & \\ \begin{array}{r} 1 \\ 4.15 \\ 4 \\ \times 25 \\ \hline 2075 \end{array} & \\ \hline+8300 & \text { Multiply : } 415 \times 5 \\ \hline 103.75 & \text { Multiply : } 415 \times 20 \end{aligned}$
Observations/Documentation		

Activity 14 Assessment

Dividing Decimals by 2-Digit Numbers

Multiplying and Dividing Decimals by 2-Digit Numbers (cont'd)		
Decomposes numbers to use partial quotients to divide. $\begin{aligned} & 4.44 \div 12=? \\ & 1 2 \longdiv { 4 4 4 } \\ & \frac{-360}{84} 30 \text { groups of } 12 \\ & \frac{-84}{0} 7 \text { groups } 12 \end{aligned}$ "I used partial quotients to divide as whole numbers, then estimated to place the decimal point. 4.44 is about 4 and 12 is about 10 . $\text { So, } 4 \div 10=0.40$ So, I placed the decimal point so 37 is close to $0.40: 0.37$."	Estimates to determine if answer to multiplication or division problem is reasonable. $\begin{array}{r} 0.37 \\ 1 2 \longdiv { 4 . 4 4 } \\ -36 \\ \hline 84 \\ -84 \\ \hline 0 \end{array}$ " $\$ 4.44$ is about $\$ 4$ and 12 is about 10. $\text { So, } \$ 4 \div 10=\$ 0.40$ So, the answer is reasonable."	Solves multiplication and division problems flexibly using a variety of strategies. The area of a rectangular garden plot is 95.2 m 2 . The length of the garden is 14 m . What is the width? "I divided as I would whole numbers, then used estimation to place the decimal point. 95.2 is about 100 , and 14 is about 10 . $100 \div 10=10$ I placed the decimal point so that 68 is close to 10: 6.8. The width of the garden is 6.8 m ."
Observations/Documentation		

Activity 15 Assessment

Adding and Subtracting Fractions

Addition and Subtraction	ctions with Unlike Denom	tors	
Concretely solves problems. $\frac{1}{3}+\frac{5}{6}=?$ "I used fraction strips. I can see that $\frac{1}{3}=\frac{2}{6}$ and that $\frac{1}{3}+\frac{5}{6}=\frac{7}{6}$, or $1 \frac{1}{6}$."	Models pictorially to solve problems. $\frac{7}{8}-\frac{3}{4}=?$ "I used a double number line. I modelled $\frac{7}{8}$ on the top line and $\frac{3}{4}$ on the bottom line, then found the difference. From the double number lines, I see the difference is $\frac{1}{8}$."	Uses equivalent fractions to symbolically solve problems. $\frac{1}{6}+\frac{1}{3}+\frac{1}{2}=?$ "I wrote equivalent fractions with a common denominator of 6 . $\begin{gathered} \frac{1}{3}=\frac{2}{6} \text { and } \frac{1}{2}=\frac{3}{6} \\ \begin{aligned} \frac{1}{6}+\frac{1}{3}+\frac{1}{2} & =\frac{1}{6}+\frac{2}{6}+\frac{3}{6} \\ & =\frac{6}{6}, \text { or } 1 \text { whole." } \end{aligned} \end{gathered}$	Fluently and flexibly solves problems. $3 \frac{1}{4}-2 \frac{7}{8}=?$ "I wrote $2 \frac{7}{8}$ as an improper fraction, $\frac{23}{8}$. Then I subtracted $\frac{13}{4}-\frac{23}{8}$ using a common denominator of 8 ." $\begin{aligned} \frac{13}{4}-\frac{23}{8} & =\frac{26}{8}-\frac{23}{8} \\ & =\frac{3}{8} \end{aligned}$
Observations/Documentation			

Activity 16 Assessment

Multiplying Natural Numbers by Proper Fractions

Multiplication with Proper Fractions			
Models multiplication situations concretely and pictorially. $4 \times \frac{3}{5}=?$ "I modelled the multiplication with fraction strips, then counted fifths: $4 \times \frac{3}{5}=\frac{12}{5}, \text { or } 2 \frac{2}{5}$	Uses models and think-addition strategies, to solve multiplication problems. $\overbrace{0}^{\frac{2}{5}} \underbrace{\frac{2}{5}}_{0}$ "I know that multiplication is like repeated addition, so I used a number with each whole partitioned into fifths, then took 5 jumps of two-fifths: $5 \times \frac{2}{5}=2$ "	Relates multiplication of a natural number by a unit fraction to division. $4 \times \frac{1}{5}=4 \div 5$	Flexibly solves multiplication problems. $\begin{aligned} 5 \times \frac{3}{4} & =\frac{5 \times 3}{4} \\ & =\frac{15}{4} \\ & =3 \frac{3}{4} \end{aligned}$
Observations/Documentation			

Activity 17 Assessment

Using Mental Math to Calculate Percents

Calculating Percents using Mental Math			
Explores number patterns and relationships. $\begin{gathered} 100 \% \text { of } 360=360 \\ 50 \% \text { of } 360=180 \\ 25 \% \text { of } 360=90 \\ 12.5 \% \text { of } 360=45 \end{gathered}$ What patterns do you see? "I see that the percent is halved each time and when this happens, the product is also halved."	Uses number patterns and relationships to solve problems. $50 \% \text { of } 80=?$ 10% is the same as 0.1 and 50% is the same as 0.5 . $\text { So, } \begin{aligned} 50 \% \text { of } 80 & =5 \times 0.1 \times 80 \\ & =5 \times 8 \\ & =40 \end{aligned}$	Uses mental math strategies and checks for reasonableness. $\begin{gathered} \text { Find } 14 \% \text { of } \$ 300 \\ 14 \%=10 \%+5 \%-1 \% \\ 10 \% \text { of } \$ 300=\$ 30 \\ 5 \% \text { of } \$ 300=\$ 15 \\ 1 \% \text { of } \$ 300=\$ 3 \\ \text { So } 14 \% \text { of } \$ 300=\$ 30+\$ 15-\$ 3 \\ =\$ 42 \end{gathered}$	Fluently calculates percents using a variety of mental math strategies. $8 \% \text { of } 260=?$ $\begin{aligned} 8 \% \text { of } 260 & =(10 \%-2 \%) \text { of } 260 \\ & =10 \% \text { of } 260-2 \% \text { of } 260 \\ & =26-2(2.6) \\ & =26-5.2 \\ & =20.8 \end{aligned}$
Observations/Documentation			

Activity 18 Assessment

Problem Solving with Money

Problem Solving with Money (Including Tax)			
Recognizes prices involving dollars and cents. "The price of a bag of apples is $\$ 3.85$. Apples don't have tax added."	Estimates the cost of transactions involving several items, including tax. "I made friendly numbers to estimate the total cost: $\$ 10+\$ 10+\$ 46=\$ 66 .$ Then for tax, 10% is about $\$ 7$ and 5% is about $\$ 3.50$. The total cost is about \$69.50."	Calculates the cost of several items with prices in dollars and cents, including tax. "I used an algorithm. $\begin{array}{r} 211.90 \\ 29.67 \\ +45.99 \\ \hline \$ 64.56 \end{array}$ Then I calculated the tax: 10% is $\$ 6.46$ and 5% is $\$ 3.23$. The total cost including tax: \$67.79."	Calculates total cost including tax, and determines change. "To find the change from $\$ 500$, I can use an algorithm or a calculator." $\begin{array}{r} 499.91 \\ 50 \emptyset . \emptyset 0 \\ -\quad 67.79 \\ \hline \$ 432.21 \end{array}$
Observations/Documentation			

Activity 19 Assessment

Operations with Fractions, Decimals, and Percents Consolidation

Multiplying and Dividing Decimals by 2-Digit Numbers		
Models multiplication and division situations concretely and pictorially. $1.6 \times 3=\text { ? }$ "I used Base Ten Blocks to make an array with length 3 and width 1.6. I then counted the blocks to get 4.8. I could also use repeated addition:. $1.6+1.6+1.6=4.8^{\prime \prime}$	Uses models and other strategies to solve multiplication and division situations. $4.15 \times 25=?$ $\begin{aligned} 4.15 \times 25= & (4.0+0.10+0.05) \times(20+5) \\ = & (4.0 \times 20)+(0.10 \times 20)+(0.05 \times 20) \\ & +(4.0 \times 5)+(0.10 \times 5)+(0.05 \times 5) \\ = & 80.0+2.0+1.0+20+0.5+0.25 \\ = & 103.75 \end{aligned}$	Uses the standard algorithm to multiply. $4.15 \times 25=?$ "First, I multiplied as if there was no decimal. Next, I counted the number of digits after the decimal point in each factor. Then I placed the same number of digits after the decimal point in the product." $\begin{array}{r} \begin{array}{r} 1 \\ 2.15 \\ \\ \times \quad 25 \end{array} \\ \hline 2075 \end{array} \text { Multiply : } 415 \times 5$
Observations/Documentation		

Activity 19 Assessment

Operations with Fractions, Decimals, and Percents Consolidation

Multiplying and Dividing Decimals by 2-Digit Numbers (cont'd)		
Decomposes numbers to use partial quotients to divide. $4.44 \div 12=?$ 12 $\longdiv { 4 4 4 }$ $\begin{aligned} \frac{-360}{84} & 30 \text { groups of } 12 \\ \frac{-84}{0} & 7 \text { groups } 12 \end{aligned}$ "I used partial quotients to divide as whole numbers, then estimated to place the decimal point. 4.44 is about 4 and 12 is about 10 . $\text { So, } 4 \div 10=0.40$ So, I placed the decimal point so 37 is close to $0.40: 0.37$."	Estimates to determine if answer to multiplication or division problem is reasonable. $\begin{array}{r} 0.37 \\ 1 2 \longdiv { 4 . 4 4 } \\ -36 \\ \hline 84 \\ -84 \\ \hline 0 \end{array}$ " $\$ 4.44$ is about $\$ 4$ and 12 is about 10. $\text { So, } \$ 4 \div 10=\$ 0.40$ So, the answer is reasonable."	Solves multiplication and division problems flexibly using a variety of strategies. The area of a rectangular garden plot is 95.2 m 2 . The length of the garden is 14 m . What is the width? "I divided as I would whole numbers, then used estimation to place the decimal point. $\begin{array}{r} 6.8 \\ 1 4 \longdiv { 9 5 . 2 } \\ \frac{-84}{112} \\ \frac{-112}{0} \end{array}$ 95.2 is about 100 , and 14 is about 10 . $100 \div 10=10 .$ I placed the decimal point so that 68 is close to 10: 6.8. The width of the garden is 6.8 m ."
Observations/Documentation		

Activity 19 Assessment

Operations with Fractions, Decimals, and Percents Consolidation

Addition and Subtraction of	actions with Unlike Denom	ators	
Concretely solves problems. $\frac{1}{3}+\frac{5}{6}=?$ "I used fraction strips. I can see that $\frac{1}{3}=\frac{2}{6}$ and that $\frac{1}{3}+\frac{5}{6}=\frac{7}{6}$, or $1 \frac{1}{6}$."	Models pictorially to solve problems. $\frac{7}{8}-\frac{3}{4}=?$ "I used a double number line. I modelled $\frac{7}{8}$ on the top line and $\frac{3}{4}$ on the bottom line, then found the difference. From the double number lines, I see the difference is $\frac{1}{8}$."	Uses equivalent fractions to symbolically solve problems. $\frac{1}{6}+\frac{1}{3}+\frac{1}{2}=?$ "I wrote equivalent fractions with a common denominator of 6 . $\begin{gathered} \frac{1}{3}=\frac{2}{6} \text { and } \frac{1}{2}=\frac{3}{6} \\ \begin{aligned} \frac{1}{6}+\frac{1}{3}+\frac{1}{2} & =\frac{1}{6}+\frac{2}{6}+\frac{3}{6} \\ & =\frac{6}{6}, \text { or } 1 \text { whole." } \end{aligned} \end{gathered}$	Fluently and flexibly solves problems. $3 \frac{1}{4}-2 \frac{7}{8}=?$ "I wrote $2 \frac{7}{8}$ as an improper fraction, $\frac{23}{8}$. Then I subtracted $\frac{13}{4}-\frac{23}{8}$ using a common denominator of 8 ." $\begin{aligned} \frac{13}{4}-\frac{23}{8} & =\frac{26}{8}-\frac{23}{8} \\ & =\frac{3}{8} \end{aligned}$
Observations/Documentation			

Number

Unit 5 Line Master 1a

Borrowing Scenario Cards

Scenario 1

Jane wants a $\$ 200$ loan to buy a new bicycle. Jane plans to pay it back in 3 monthly installments. Jane earns $\$ 50$ per week from their part-time job.

Scenario 3

Sarah wants to borrow $\$ 1000$ from a bank to pay for a school trip. The bank offers a loan with an interest rate of 8% and a repayment period of 1 year. Sarah does not have a part-time job.

Scenario 5

Emilio wants to borrow $\$ 50$ from their best friend to buy a concert ticket. They plan to repay their friend within 2 weeks using money from a part-time babysitting job.

Scenario 7

Dom wants to borrow $\$ 300$ from an online lender to buy a new smartphone. The lender charges 15% interest and requires repayment within 3 months. Dom makes $\$ 200$ a month working at a golf course.

Scenario 9

Mia wants to borrow $\$ 100$ from their older brother to buy a birthday gift for their parents. Mia plans to repay the loan within 1 month by doing extra chores around the house.

Scenario 11

Oliver wants to borrow $\$ 200$ from their parents to participate in an extracurricular activity at school. They agree that it would be an interestfree loan and they would allow Oliver to repay them in weekly installments over 2 months.

Oliver has a part-time job.

Scenario 2

Antonio wants to borrow $\$ 500$ from their older sister to buy a new video game console. Antonio plans to repay the loan within 6 months by giving the sister $\$ 100$ each month. Antonio receives $\$ 80$ each month from a paper route.

Scenario 4

Alexi wants to start a small lawn care business and needs to borrow $\$ 500$ from a bank to purchase tools and supplies. The bank offers a loan with a 10% interest rate and repayment period of 2 years.

Scenario 6

Jose wants to borrow $\$ 2000$ from their grandparents to help pay the university tuition.

They plan to repay their grandparents in monthly payments over 2 years, using money from a part-time job at the grocery store. The grandparents are not charging interest.

Scenario 8

David wants to borrow $\$ 1500$ from a bank to invest in a business idea. The bank offers a loan with an interest rate of 12% and a repayment period of 5 years. David currently has two other loans.

Scenario 10

Ethan wants to borrow $\$ 7000$ from a bank to get new windows in their house. The bank offers a loan with an interest rate of 6% and a repayment period of 3 years. Ethan works full time and makes $\$ 4000$ a month.

Scenario 12

Ryan wants to borrow $\$ 500$ from a friend to start a small online business. Ryan agrees to repay their friend by giving them a percent of his profits for the first 6 months.
\qquad
\qquad

Number Unit 5 Line Master 1b Borrowing Scenario Cards (cont'd)

Scenario 13

Lily wants to borrow $\$ 1200$ from a bank to buy a laptop for school. The bank offers a loan with an interest rate of 9% and a repayment period of 2 years. Lily just lost her part-time job at a dance studio.

Scenario 15

Ava wants to borrow $\$ 1500$ from a financial institution to buy snow tires for their car. The institution offers a loan with an interest rate of 7% and a repayment period of 2 years. Ava works full-time at a dental office.

Write your own scenario:

Scenario 14

Marco wants to borrow $\$ 50$ from their neighbour to buy a new video game. Marco plans to repay the neighbour within 2 weeks by helping with household chores. Marco defaulted on a loan from another neighbour.

Scenario 16

Bertha wants to borrow $\$ 5000$ from a financial institution to go on a cruise with some friends.
The institution offers a loan with an interest rate of 9% and a repayment period of 2 years.

Bertha does not have a steady job.
Write your own scenario:

Write your own scenario:

Write your own scenario:

Write your own scenario:
Write your own scenario:
\qquad
\qquad

Number
 Unit 5 Line Master 2
 Risk or Reward? Gameboard

\qquad

Number

Unit 5 Line Master 3a

Risk Game Cards

\&

Risk 1

The stock you invested in has experienced a significant drop in value. Lose $\$ 200$.

Risk 3

The digital currency you invested in has been hacked, resulting in a loss of funds. Lose $\$ 150$.

Risk 5

The mutual fund you invested in has underperformed, resulting in a lower return. Lose \$100.

Risk 7

The government has raised interest rates, negatively affecting the value of your bonds. Lose $\$ 150$.

Risk 9

The real estate property you invested in has incurred significant damage, reducing its value. Lose $\$ 200$.

Risk 2

The real estate market has crashed, and the property you invested in has lost value. Lose $\$ 300$.

Risk 4

The company you bought bonds from has filed for bankruptcy. Lose $\$ 250$.

Risk 6

The startup company you invested in has failed, and your investment has become worthless. Lose $\$ 400$.

Risk 8

The stock market has experienced a major crash, causing a significant decline in your portfolio value.

Lose \$300.

Risk 10

The digital currency you invested in has been banned in your country, making it worthless. Lose $\$ 250$.
\qquad
\qquad

Number
Unit 5 Line Master 3a

Risk Game Cards (cont'd)

Risk 11

The company you invested in has been hit with a major lawsuit, resulting in a decline in stock value. Lose \$150.

The bond issuer you invested in has defaulted on their payments. Lose $\$ 200$.

Risk 12
The mutual fund you invested in has suffered losses due to poor investment decisions. Lose $\$ 100$.

Risk 14

The stock you invested in has been affected by negative news, causing a drop in value. Lose \$100.

Write your own risk:
Risk 15
The real estate market in the area you invested in has become saturated, leading to decreased rental income. Lose $\$ 150$.

Write your own risk:
Write your own risk:

Write your own risk:
\qquad Date \qquad

Number
Unit 5 Line Master 4a

Reward Game Cards

Reward 1 The stock you invested in has surged in value. Gain $\$ 250$.	Reward 2 The real estate property you invested in has been rented out, generating steady monthly income. Gain $\$ 200$.
Reward 3 The digital currency you invested in has experienced a major increase in value. Gain $\$ 300$.	Reward 4 The company you bought bonds from has experienced significant growth, resulting in higher interest payments. Gain $\$ 150$.
Reward 5 The mutual fund you invested in has outperformed expectations, resulting in a higher return. Gain \$100.	Reward 6 The startup company you invested in has been acquired by a larger company, resulting in a substantial return on investment. Gain $\$ 400$.
Reward 7 The government has lowered interest rates, positively impacting the value of your bonds. Gain $\$ 150$.	Reward 8 The stock market has experienced a significant surge, leading to an increase in the value of your portfolio. Gain \$300.
Reward 9 The real estate property you invested in has appreciated in value. Gain \$200.	Reward 10 The digital currency you invested in has gained widespread acceptance, increasing its value. Gain $\$ 250$.

\qquad

Number
Unit 5 Line Master 4b

Reward Game Cards (cont'd)

Reward 11 The company you invested in has announced record-breaking profits, causing a surge in stock value. Gain \$150.	Reward 12 The mutual fund you invested in has received positive media coverage and attracted more investors, resulting in higher returns. Gain \$100.
Reward 13 The bond issuer you invested in has improved its financial standing, leading to higher interest payments. Gain $\$ 200$.	Reward 14 The stock you invested in has received positive analyst recommendations, causing an increase in value. Gain $\$ 100$.
Reward 15 The real estate market in the area you invested in has experienced high demand, leading to increased rental income. Gain \$150.	Write your own reward:
Write your own reward:	Write your own reward:
Write your own reward:	Write your own reward:

Number

Unit 5 Line Master 5

Money Smart Scenario Cards

Entrepreneurial Scenario: Starting a Small Business

You and your group members have decided to start a small business. You require additional funds to cover the initial setup costs, like purchasing equipment and inventory. Discuss and determine the most suitable borrowing option and investment strategy to secure the necessary funds.

Home Renovation Scenario: Home Renovation

Your group has plans to renovate a house to increase its value, then rent the house out to make money. As a team, explore the various ways to obtain funds for the renovation, considering borrowing options and investment avenues.

Higher Education Scenario: Funding Schooling

You and your group members are pursuing higher education and need to pay for tuition fees, accommodation, and other expenses. Analyze the potential borrowing options and other ways you could invest money to help finance your education.

Retirement Scenario: Saving for the Future

Your group is exploring different strategies to accumulate sufficient funds for retirement, including borrowing and investing money wisely. Consider the risk level of each member, age of desired retirement, and desired retirement lifestyle and develop an approach to borrow/invest.

Non-profit Scenario: Animal Shelter

Your group is passionate about animals and would like to establish a nonprofit animal shelter to support your furry friends. Discuss the options for borrowing and investing money to support the dogs or cats. Make sure you think of how you can make the shelter sustainable.

Activity 20 Assessment

Borrowing Money

| Borrowing Money | | |
| :--- | :--- | :--- | :--- |
| Defines the term loan and identifies some
 reasons why people might borrow money.
 "I know that vehicles are a lot of money
 and people may need to borrow money
 to purchase one." | Identifies basic sources of loans and
 understands that borrowing money involves
 repayment.
 "I know that a bank or financial institution may
 Iend money and that in teeds to be repaid. If fot
 repaid, there will be penalties and it will be
 difficult for me to get a loan in the future." | Identifies factors to consider when deciding to
 borrow money.
 "I have a full-time job with a regular income
 and the interest rate is quite low, I can afford
 the monthly payments and would be able
 to pay the loan back on time." |
| Observations/Documentation | | |

Activity 20 Assessment

 Borrowing Money| Borrowing Money (cont'd) | | |
| :---: | :---: | :---: |
| Identifies factors used by banks and financial institutions when making decisions about loans.
 "They have a full-time job, a good loan history, and very little debt. I think the bank would grant them the loan." | Analyzes the risks and benefits of borrowing money in a variety of situations.
 Jane wants a $\$ 200$ loan to buy a new bicycle. Jane plans to pay it back in 3 monthly installments. Jane earns $\$ 50$ per week from their part-time job.
 "Jane makes about $\$ 200$ per month from their part-time job. A new bicycle will get Jane to and from their job. The repayment time is reasonable. There is a risk that Jane loses her job and source of income." | Identifies situations where an individual can responsibly take on debt.
 "Jane makes about $\$ 200$ per month, so they should be able to pay back $\$ 200$ over 3 months. It seems unlikely that Jane will lose their job, and the risk of Jane not repaying the money seems low. I think Jane can responsibly take on the debt." |
| Observations/Documentation | | |
| | | |

Activity 21 Assessment Investing Money

Investing Money			
Defines the term investing and identifies some reasons why people invest money. "I know that investing involves purchasing something that is expected to earn additional money or increase in value. Many people invest money for their retirement."	Identifies different types of investments and describes the general purpose/benefits of each. "People can buy stocks and when they do, they have ownership in the company. They can earn money through dividends and capital gains."	Analyzes the risks associated with each type of investment. "Stocks can provide relatively high returns, but there is a higher risk of losing some or all of the investment. They are affected by the economy and by the company's performance."	Analyzes the risks and benefits associated with different investment opportunities to make reasonable investment choices. "I know stocks often involve high risk, but I think electric vehicles are the way of the future. So, I will buy stocks in a company that makes electric vehicle battery cells. I will only spend $\$ 2000$ because I can afford to lose that if 1 am wrong."
Observations/Documentation			

Activity 22 Assessment

Financial Literacy Consolidation

Borrowing Money		
Defines the term loan and identifies some reasons why people might borrow money. "I know that vehicles are a lot of money and people may need to borrow money to purchase one."	Identifies basic sources of loans and understands that borrowing money involves repayment. "I know that a bank or financial institution may lend money and that it needs to be repaid. If not repaid, there will be penalties and it will be difficult for me to get a loan in the future."	Identifies factors to consider when deciding to borrow money. "I have a full-time job with a regular income and the interest rate is quite low. I can afford the monthly payments and would be able to pay the loan back on time."
Observations/Documentation		

Activity 22 Assessment

 Financial Literacy Consolidation| Borrowing Money (cont'd) | | |
| :---: | :---: | :---: |
| Identifies factors used by banks and financial institutions when making decisions about loans.
 "They have a full-time job, a good loan history, and very little debt. I think the bank would grant them the loan." | Analyzes the risks and benefits of borrowing money in a variety of situations.
 Jane wants a $\$ 200$ loan to buy a new bicycle. Jane plans to pay it back in 3 monthly installments. Jane earns $\$ 50$ per week from their part-time job.
 "Jane makes about $\$ 200$ per month from their part-time job. A new bicycle will get Jane to and from their job. The repayment time is reasonable. There is a risk that Jane loses her job and source of income." | Identifies situations where an individual can responsibly take on debt.
 "Jane makes about $\$ 200$ per month, so they should be able to pay back $\$ 200$ over 3 months. It seems unlikely that Jane will lose their job, and the risk of Jane not repaying the money seems low. I think Jane can responsibly take on the debt." |
| Observations/Documentation | | |
| | | |

Activity 22 Assessment

Financial Literacy Consolidation

Investing Money			
Defines the term investing and identifies some reasons why people invest money. "I know that investing involves purchasing something that is expected to earn additional money or increase in value. Many people invest money for their retirement."	Identifies different types of investments and describes the general purpose/benefits of each. "People can buy stocks and when they do, they have ownership in the company. They can earn money through dividends and capital gains."	Analyzes the risks associated with each type of investment. "Stocks can provide relatively high returns, but there is a higher risk of losing some or all of the investment. They are affected by the economy and by the company's performance."	Analyzes the risks and benefits associated with different investment opportunities to make reasonable investment choices. "I know stocks often involve high risk, but I think electric vehicles are the way of the future. So, I will buy stocks in a company that makes electric vehicle battery cells. I will only spend $\$ 2000$ because I can afford to lose that if I am wrong."
Observations/Documentation			

\qquad
\qquad

Patterning and Algebra Unit 1 Line Master 1

Representing a Function

Day, \boldsymbol{d}	Number of Club Members, \boldsymbol{M}
1	8
2	11
3	14
4	
5	

\qquad
\qquad

Patterning and Algebra Unit 1 Line Master 2a

In 14 weeks, Zac earned $\$ 504$ to buy some video games for a children's hospital. Each game costs $\$ 64$.

Complete the table to show how many games Zac can buy.

Number of Games Bought, n	Total Money Spent (\$), S	Money Left Over (\$), L

Write a rule and algebraic expression that relate the number of games and the total money spent.

Is it an increasing or a decreasing function?
\qquad

Patterning and Algebra Unit 1 Line Master 2b

Buying Video Games (cont'd)
Write a rule and algebraic expression that relate the number of games and the money left over.

Is it an increasing or a decreasing function?

How many video games can Zac buy? Show your work.
Is there money left over? Explain.

Patterning and

 Algebra
Activity 1 Assessment

Investigating Functions

Investigating Functions

Identifies variables (dependent and independent) as changing quantities in a given situation.

Kaspar earned \$20 to spend on loot bags for their party guests. They want to put a mini flashlight in each loot bag. A flashlight costs $\$ 3$.

Number of Flashlights, \boldsymbol{n}	Money Left, \boldsymbol{M} (\$)
1	17
2	14
3	11
4	8
5	5
6	2

"The money left depends on the number of flashlights bought. So, M is the dependent variable and n is the independent variable."

Describes the rule that relates the values of the dependent variable to the values of the independent variable.

Number of Flashlights, \boldsymbol{n}	Money Left, \boldsymbol{M} (\$)
1	17
2	14
3	11
4	8
5	5
6	2

"Multiply the number of flashlights bought by 3, then subtract from 20 to get the money left in dollars."

Represents corresponding values of the dependent and independent variables of a function (table of values, points on the Cartesian plane).

"From the graph, I can see that as the number of flashlights increases by 1 , the money left decreases by 3."

Represents a function as an
algebraic expression.
"I used the rule to write an algebraic expression: Multiply the number of flashlights purchased, n, by 3 then subtract from 20 to get the money left in dollars, M.
The expression is $20-3 n$."

Observations/Documentation

Patterning and

 Algebra
Activity 1 Assessment

Investigating Functions

Investigating Functions (cont'd)			
Relates between various representations of the same function. Add 1 to the term number, n, to get the term value, v. "The graph and the rule both represent the same function because on the graph, each term value is one more than the term number."	Determines a value of the dependent variable given the independent variable. Bikes are available for rent for $\$ 10$, plus $\$ 3$ per hour. How much would it cost to rent a bike for 9 hours? "An expression that relates the total cost, C, to the number of hours, n, $\text { is } 3 n+10 \text {. }$ To find the cost for 9 hours, I evaluated the expression for $n=9$. $3(9)+10=37$ It would cost \$37."	Uses strategies flexibly to determine a value of the independent variable given the value of the dependent variable. A person paid \$43. For how many hours did they rent the bike? "I set the expression equal to 43, then used inverse operations to solve the equation." $\begin{aligned} 3 n+10 & =43 \\ 3 n+10-10 & =43-10 \\ 3 n & =33 \\ \frac{3 n}{3} & =\frac{33}{3} \\ n & =11 \end{aligned}$	Flexibly solves problems involving functions. Yuri has $\$ 455$ in the bank. To buy tickets, Yuri takes out \$15 each week, for 20 weeks. After 20 weeks, will Yuri have enough money left to donate $\$ 175$ to the Terry Fox Run? "An expression that relates the amount left in the bank in dollars, A, to the number of weeks, w, is: $455-15 w$ After 20 weeks, the amount left in the bank will be: $455-15(20)=$ $455-300$, or 155 ; $\$ 155$. Yuri will not be able to donate $\$ 175$ to the Terry Fox Run."
Observations/Documentation			

Patterning and Algebra

Activity 2 Assessment

Representing Functions Algebraically

Investigating Functions

Identifies variables (dependent and independent) as changing quantities in a given situation.

Kaspar earned \$20 to spend on loot bags for their party guests. They want to put a mini flashlight in each loot bag. A flashlight costs $\$ 3$.

Number of Flashlights, \boldsymbol{n}	Money Left, \boldsymbol{M} (\$)
1	17
2	14
3	11
4	8
5	5
6	2

"The money left depends on the number of flashlights bought. So, M is the dependent variable and n is the independent variable."

Describes the rule that relates the values of the dependent variable to the values of the independent variable.

Number of Flashlights, \boldsymbol{n}	Money Left, \boldsymbol{M} (\$)
1	17
2	14
3	11
4	8
5	5
6	2

"Multiply the number of flashlights bought by 3, then subtract from 20 to get the money left in dollars."

Represents corresponding values of the dependent and independent variables of a function (table of values, points on the Cartesian plane)

"From the graph, I can see that as the number of flashlights increases by 1 , the money left decreases by $3 . "$

Represents a function as an
algebraic expression.
"I used the rule to write an algebraic expression: Multiply the number of flashlights purchased, n, by 3 then subtract from 20 to get the money left in dollars, M
The expression is $20-3 n$."

Observations/Documentation

Patterning and Algebra

Activity 2 Assessment

Representing Functions Algebraically

Investigating Functions (cont'd)			
Relates between various representations of the same function. Add 1 to the term number, n, to get the term value, v. "The graph and the rule both represent the same function because on the graph, each term value is one more than the term number."	Determines a value of the dependent variable given the independent variable. Bikes are available for rent for $\$ 10$, plus $\$ 3$ per hour. How much would it cost to rent a bike for 9 hours? "An expression that relates the total cost, C, to the number of hours, n, is $3 n+10$. To find the cost for 9 hours, I evaluated the expression for $n=9$. $3(9)+10=37$ It would cost $\$ 37$."	Uses strategies flexibly to determine a value of the independent variable given the value of the dependent variable. A person paid $\$ 43$. For how many hours did they rent the bike? "I set the expression equal to 43, then used inverse operations to solve the equation." $\begin{aligned} 3 n+10 & =43 \\ 3 n+10-10 & =43-10 \\ 3 n & =33 \\ \frac{3 n}{3} & =\frac{33}{3} \\ n & =11 \end{aligned}$	Flexibly solves problems involving functions. Yuri has $\$ 455$ in the bank. To buy tickets, Yuri takes out \$15 each week, for 20 weeks. After 20 weeks, will Yuri have enough money left to donate $\$ 175$ to the Terry Fox Run? "An expression that relates the amount left in the bank in dollars, A, to the number of weeks, w, is: $455-15 w$ After 20 weeks, the amount left in the bank will be: $455-15(20)=$ $455-300$, or $155 ; \$ 155$. Yuri will not be able to donate $\$ 175$ to the Terry Fox Run."
Observations/Documentation			

Patterning and Algebra

Activity 3 Assessment

Solving Problems Involving Functions

Investigating Functions			
Identifies variables (dependent and independent) as changing quantities in a given situation. Kaspar earned \$20 to spend on loot bags for their party guests. They want to put a mini flashlight in each loot bag. A flashlight costs $\$ 3$. "The money left depends on the number of flashlights bought. So, M is the dependent variable and n is the independent variable."	Describes the rule that relates the values of the dependent variable to the values of the independent variable. "Multiply the number of flashlights bought by 3 , then subtract from 20 to get the money left in dollars."	Represents corresponding values of the dependent and independent variables of a function (table of values, points on the Cartesian plane). "From the graph, I can see that as the number of flashlights increases by 1 , the money left decreases by $3 . "$	Represents a function as an algebraic expression. "I used the rule to write an algebraic expression: Multiply the number of flashlights purchased, n, by 3 , then subtract from 20 to get the money left in dollars, M. The expression is $20-3 n$."
Observations/Documentatio			

Patterning and

 Algebra
Activity 3 Assessment

Solving Problems Involving Functions

Investigating Functions (cont'd)			
Relates between various representations of the same function. Add 1 to the term number, n, to get the term value, v. "The graph and the rule both represent the same function because on the graph, each term value is one more than the term number."	Determines a value of the dependent variable given the independent variable. Bikes are available for rent for $\$ 10$, plus $\$ 3$ per hour. How much would it cost to rent a bike for 9 hours? "An expression that relates the total cost, C, to the number of hours, n, $\text { is } 3 n+10 \text {. }$ To find the cost for 9 hours, I evaluated the expression for $n=9$. $3(9)+10=37$ It would cost \$37."	Uses strategies flexibly to determine a value of the independent variable given the value of the dependent variable. A person paid \$43. For how many hours did they rent the bike? "I set the expression equal to 43, then used inverse operations to solve the equation." $\begin{aligned} 3 n+10 & =43 \\ 3 n+10-10 & =43-10 \\ 3 n & =33 \\ \frac{3 n}{3} & =\frac{33}{3} \\ n & =11 \end{aligned}$	Flexibly solves problems involving functions. Yuri has $\$ 455$ in the bank. To buy tickets, Yuri takes out $\$ 15$ each week, for 20 weeks. After 20 weeks, will Yuri have enough money left to donate $\$ 175$ to the Terry Fox Run? "An expression that relates the amount left in the bank in dollars, A, to the number of weeks, w, is: $455-15 w$ After 20 weeks, the amount left in the bank will be: $455-15(20)=$ $455-300$, or 155 ; $\$ 155$. Yuri will not be able to donate $\$ 175$ to the Terry Fox Run."
Observations/Documentation			

Patterning and Algebra

Activity 4 Assessment

Functions Consolidation

Investigating Functions

Identifies variables (dependent and independent) as changing quantities in a given situation.

Kaspar earned \$20 to spend on loot bags for their party guests. They want to put a mini flashlight in each loot bag. A flashlight costs $\$ 3$.

Number of Flashlights, \boldsymbol{n}	Money Left, \boldsymbol{M} (\$)
1	17
2	14
3	11
4	8
5	5
6	2

"The money left depends on the number of flashlights bought. So, M is the dependent variable and n is the independent variable."

Describes the rule that relates the values of the dependent variable to the values of the independent variable.

Number of Flashlights, \boldsymbol{n}	Money Left, \boldsymbol{M} (\$)
1	17
2	14
3	11
4	8
5	5
6	2

"Multiply the number of flashlights bought by 3, then subtract from 20 to get the money left in dollars."

Represents corresponding values of the dependent and independent variables of a function (table of values, points on the Cartesian plane).

"From the graph, I can see that as the number of flashlights increases by 1 , the money left decreases by 3 .

Represents a function as an
algebraic expression.
"I used the rule to write an algebraic expression: Multiply the number of flashlights purchased, n, by 3 then subtract from 20 to get the
money left in dollars, M
The expression is $20-3 n$."

Observations/Documentation

Patterning and

 Algebra
Activity 4 Assessment

Functions Consolidation

Investigating Functions (cont'd)			
Relates between various representations of the same function. Add 1 to the term number, n, to get the term value, v. "The graph and the rule both represent the same function because on the graph, each term value is one more than the term number."	Determines a value of the dependent variable given the independent variable. Bikes are available for rent for $\$ 10$, plus $\$ 3$ per hour. How much would it cost to rent a bike for 9 hours? "An expression that relates the total cost, C, to the number of hours, n, $\text { is } 3 n+10 \text {. }$ To find the cost for 9 hours, I evaluated the expression for $n=9$. $3(9)+10=37$ It would cost \$37."	Uses strategies flexibly to determine a value of the independent variable given the value of the dependent variable. A person paid \$43. For how many hours did they rent the bike? "I set the expression equal to 43, then used inverse operations to solve the equation." $\begin{aligned} 3 n+10 & =43 \\ 3 n+10-10 & =43-10 \\ 3 n & =33 \\ \frac{3 n}{3} & =\frac{33}{3} \\ n & =11 \end{aligned}$	Flexibly solves problems involving functions. Yuri has $\$ 455$ in the bank. To buy tickets, Yuri takes out \$15 each week, for 20 weeks. After 20 weeks, will Yuri have enough money left to donate $\$ 175$ to the Terry Fox Run? "An expression that relates the amount left in the bank in dollars, A, to the number of weeks, w, is: $455-15 w$ After 20 weeks, the amount left in the bank will be: $455-15(20)=$ $455-300$, or 155 ; $\$ 155$. Yuri will not be able to donate $\$ 175$ to the Terry Fox Run."
Observations/Documentation			

\qquad
\qquad

Patterning and Algebra Unit 2 Line Master 1

Claim Your Prize!

\qquad
\qquad

Patterning and Algebra Unit 2 Line Master 2

Story Problems

1. In one week, Jess ran 4 times as many laps of the track as Tyson. Jess ran 24 laps.
How many laps did Tyson run?

2. 35 students went on a field trip. Three small buses were filled, and 5 students travelled in cars.
How many students were in each bus?

3. Ashton has $\$ 20$ in their savings account.
They decide to deposit $\$ 5$ per week, with a goal of saving $\$ 50$.
After how many weeks will Ashton reach their goal?

Patterning and Algebra Unit 2 Line Master 3

Connect Four Game Board

\qquad

Patterning and Algebra Unit 2 Line Master 4a

Connect Four Game Cards

Simplifying Expressions

$7(a+2)+5 a-1$	$5 b+3-b+7$
$2(3 c)+4(5 c)$	$5(6 d)+5 d$
$2(e+4)+3(e+3)$	$f+11+4(f+1)$
$9 g+2 g-g+6$	$3 h+2+4 h-1$
$7(j+3)+j-3$	$k+14+10(k+1)$
$3 m+2 n+6 m+n$	$4(5 p)+9+2 p+1$
$7(3+r)+2(r+3)$	$5 s+7-4+2 s+3$
$2 t+6+t-2+t$	$4(3 u)+5 v+3 u+2(8 v)$

\qquad

Patterning and Algebra Unit 2 Line Master 4b

Connect Four Game Cards
Solving Equations

$a-7=15$	$3 b=39$
$2 c+5=13$	$4 d-9=31$
$5 e+2+3 e+1=40+3$	$3(2 f+1)+2(f+3)=5^{2}$
$2(7 g)+6(2 g)=100-22$	$6^{2}=2 h+5+4 h-5$
$7(j+1)+3(j+4)=25+34$	$11 k+16+2 k-9=8 \times 9$
$5 m+9+2(m+1)-7=8 \times 11$	$3(6 n)+3(2 n)=12 \times 14$
$p+2(p+3)-5=70-18$	$6 q+3=3 q+4 \times 6$
$8(r+1)+3(2 r+1)=13 \times 3$	$5 s+2 s=10+4 \times 8$

Patterning and Algebra Unit 2 Line Master 4c

Connect Four Game Cards

Skill-Testing Questions

$2 \times(9-4)+4^{2}-3$	$35 \div(6-1) \times 2^{3}+1$
$5+3 \times 2+3^{2} \times(13-9)$	$2^{2} \times(12-7) \div(7-5) \times 3$
$5^{2} \times(6-2) \div 10$	$(3+1) \times 2+2^{2}$

\qquad

Patterning and Algebra Unit 2 Line Master 4d

Connect Four Game Cards

Simplifying Expressions: Answers

$7(a+2)+5 a-1=12 a+13$	$5 b+3-b+7=4 b+10$
$2(3 c)+4(5 c)=26 c$	$5(6 d)+5 d=35 d$
$2(e+4)+3(e+3)=5 e+17$	$f+11+4(f+1)=5 f+15$
$9 g+2 g-g+6=10 g+6$	$3 h+2+4 h-1=7 h+1$
$7(j+3)+j-3=8 j+18$	$k+14+10(k+1)=11 k+24$
$3 m+2 n+6 m+n=9 m+3 n$	$4(5 p)+9+2 p+1=22 p+10$
$7(3+r)+2(r+3)=9 r+27$	$5 s+7-4+2 s+3=7 s+6$
$2 t+6+t-2+t=4 t+4$	$4(3 u)+5 v+3 u+2(8 v)$ $=15 u+21 v$

\qquad

Patterning and Algebra Unit 2 Line Master 4e

Connect Four Game Cards

Solving Equations: Answers

$\begin{gathered} a-7=15 \\ a=22 \end{gathered}$	$\begin{gathered} 3 b=39 \\ b=13 \end{gathered}$
$\begin{gathered} 2 c+5=13 \\ c=4 \end{gathered}$	$\begin{gathered} 4 d-9=31 \\ d=10 \end{gathered}$
$\begin{gathered} 5 e+2+3 e+1=40+3 \\ e=5 \end{gathered}$	$\begin{gathered} 3(2 f+1)+2(f+3)=5^{2} \\ f=2 \end{gathered}$
$\begin{gathered} 2(7 g)+6(2 g)=100-22 \\ g=3 \end{gathered}$	$\begin{gathered} 6^{2}=2 h+5+4 h-5 \\ h=6 \end{gathered}$
$\begin{gathered} 7(j+1)+3(j+4)=25+34 \\ j=4 \end{gathered}$	$\begin{gathered} 11 k+16+2 k-9=8 \times 9 \\ k=5 \end{gathered}$
$\begin{gathered} 5 m+9+2(m+1)-7=8 \times 11 \\ m=12 \end{gathered}$	$\begin{gathered} 3(6 n)+3(2 n)=12 \times 14 \\ n=7 \end{gathered}$
$\begin{gathered} p+2(p+3)-5=70-18 \\ p=17 \end{gathered}$	$\begin{gathered} 6 q+3=3 q+4 \times 6 \\ q=7 \end{gathered}$
$\begin{gathered} 8(r+1)+3(2 r+1)=13 \times 3 \\ r=2 \end{gathered}$	$\begin{aligned} 5 s+2 s & =10+4 \times 8 \\ s & =6 \end{aligned}$

\qquad

Patterning and Algebra Unit 2 Line Master $4 f$

Connect Four Game Cards

Skill-Testing Questions: Answers

$2 \times(9-4)+4^{2}-3=23$	$35 \div(6-1) \times 2^{3}+1=57$
$5+3 \times 2+3^{2} \times(13-9)=47$	$2^{2} \times(12-7) \div(7-5) \times 3=30$
$5^{2} \times(6-2) \div 10=10$	$(3+1) \times 2+2^{2}=12$

Patterning and Algebra

Activity 5 Assessment

The Order of Operations

Variables and Equations			
Evaluates a numerical expression using the order of operations. $\begin{aligned} & 80 \div 5 \times(2+3)-23 \\ & =80 \div 5 \times 5-23 \\ & =80 \div 5 \times 5-8 \\ & =16 \times 5-8 \\ & =80-8 \\ & =72 \end{aligned}$ "I have to do the operation in parentheses first, then the power, then the multiplication and division in the order they appear, and then the subtraction."	Models an algebraic expression and combines like terms. $\begin{gathered} 3 q+2 r+4 r+q \\ \boxed{q \sqrt{q} \sqrt{q}}+\sqrt{r \backslash r}+ \\ \sqrt[r \backslash r \backslash r]{ }+\boxed{q} \\ \boxed{q} \sqrt{q} \sqrt{q}+\sqrt{q} \\ \boxed{r \backslash r \backslash r}+\sqrt{\backslash r} \\ " 3 q+2 r+4 r+q=4 q+6 r " \end{gathered}$	Uses algebraic properties to rearrange terms in an algebraic expression. $\begin{aligned} & 6(b+3)+7 b \\ & =6 \times b+6 \times 3+7 b \\ & =6 b+18+7 b \\ & =6 b+7 b+18 \end{aligned}$ "I used the distributive property to eliminate the parentheses, then I used the commutative property to rearrange the terms."	Simplifies algebraic expressions by combining like terms. $\begin{aligned} & 6(b+3)+7 b \\ & =6 \times b+6 \times 3+7 b \\ & =6 b+18+7 b \\ & =6 b+7 b+18 \\ & =13 b+18 \end{aligned}$ " $6 b$ and $7 b$ are like terms so I can add them."
Observations/Documentation			

Patterning and Algebra

Activity 5 Assessment

The Order of Operations

Variables and Equations (cont'd)			
Simplifies expressions on both sides of an equation. $\begin{aligned} 2(3 d+4)-1 & =100 \div 4 \\ 6 d+2 \times 4-1 & =25 \\ 6 d+8-1 & =25 \\ 6 d+7 & =25 \end{aligned}$ "I used algebraic properties to simplify the expressions on both sides of the equation. Now I have an equation with two operations."	Solves equations involving one or two operations using different strategies. $\begin{aligned} & 6 d+7=25 \\ & 6 d+7=18+7 \\ & \text { So, } 6 d=18 \end{aligned}$ "I used a balance model. Then, I know $6 \times 3=18$, so $d=3$."	Verifies the solution to an equation. $\begin{aligned} 2(3 d+4)-1 & =100 \div 4 \\ 6 d+7 & =25 \end{aligned}$ To check, substitute $d=3$. $\begin{aligned} \text { Left side } & =2(3 d+4)-1 \\ & =2(3 \times 3+4)-1 \\ & =2(13)-1 \\ & =26-1 \\ & =25 \\ \text { Right side } & =100 \div 4 \\ & =25 \end{aligned}$ "Since the left side equals the right side, my solution is correct."	Flexibly works with equations to solve problems using a variety of strategies. Ava rents a bicycle to ride around the city. There is a flat fee of $\$ 10$, plus $\$ 3$ per hour. Ava pays a total of $\$ 28$. For how many hours did Ava rent the bicycle? $10+3 n=28$, where n is the number of hours that Ava rented the bicycle. $\begin{aligned} 10-10+3 n & =28-10 \\ 3 n & =18 \\ n & =6 \end{aligned}$ "I know $3 \times 6=18$, so $n=6$. Ava rented the bicycle for 6 hours."
Observations/Documentation			

Patterning and Algebra

Activity 6 Assessment

Investigating Algebraic Expressions

Variables and Equations			
Evaluates a numerical expression using the order of operations. $\begin{aligned} & 80 \div 5 \times(2+3)-23 \\ & =80 \div 5 \times 5-23 \\ & =80 \div 5 \times 5-8 \\ & =16 \times 5-8 \\ & =80-8 \\ & =72 \end{aligned}$ "I have to do the operation in parentheses first, then the power, then the multiplication and division in the order they appear, and then the subtraction."	Models an algebraic expression and combines like terms.	Uses algebraic properties to rearrange terms in an algebraic expression. $\begin{aligned} & 6(b+3)+7 b \\ & =6 \times b+6 \times 3+7 b \\ & =6 b+18+7 b \\ & =6 b+7 b+18 \end{aligned}$ "I used the distributive property to eliminate the parentheses, then I used the commutative property to rearrange the terms."	Simplifies algebraic expressions by combining like terms. $\begin{aligned} & 6(b+3)+7 b \\ & =6 \times b+6 \times 3+7 b \\ & =6 b+18+7 b \\ & =6 b+7 b+18 \\ & =13 b+18 \end{aligned}$ " $6 b$ and $7 b$ are like terms so I can add them."
Observations/Documentation			

Patterning and Algebra

Activity 6 Assessment

Investigating Algebraic Expressions

Variables and Equations (cont'd)			
Simplifies expressions on both sides of an equation. $\begin{aligned} 2(3 d+4)-1 & =100 \div 4 \\ 6 d+2 \times 4-1 & =25 \\ 6 d+8-1 & =25 \\ 6 d+7 & =25 \end{aligned}$ "I used algebraic properties to simplify the expressions on both sides of the equation. Now I have an equation with two operations."	Solves equations involving one or two operations using different strategies. $\begin{aligned} & 6 d+7=25 \\ & 6 d+7=18+7 \\ & \text { So, } 6 d=18 \end{aligned}$ "I used a balance model. Then, I know $6 \times 3=18$, so $d=3$."	Verifies the solution to an equation. $\begin{aligned} 2(3 d+4)-1 & =100 \div 4 \\ 6 d+7 & =25 \end{aligned}$ To check, substitute $d=3$. $\begin{aligned} \text { Left side } & =2(3 d+4)-1 \\ & =2(3 \times 3+4)-1 \\ & =2(13)-1 \\ & =26-1 \\ & =25 \end{aligned}$ $\begin{aligned} \text { Right side } & =100 \div 4 \\ & =25 \end{aligned}$ "Since the left side equals the right side, my solution is correct."	Flexibly works with equations to solve problems using a variety of strategies. Ava rents a bicycle to ride around the city. There is a flat fee of $\$ 10$, plus $\$ 3$ per hour. Ava pays a total of $\$ 28$. For how many hours did Ava rent the bicycle? $10+3 n=28$, where n is the number of hours that Ava rented the bicycle. $\begin{aligned} 10-10+3 n & =28-10 \\ 3 n & =18 \\ n & =6 \end{aligned}$ "I know $3 \times 6=18$, so $n=6$. Ava rented the bicycle for 6 hours."
Observations/Documentation			

```
Patterning and
Algebra
```


Activity 7 Assessment Investigating Algebraic Properties

Variables and Equations			
Evaluates a numerical expression using the order of operations. $\begin{aligned} & 80 \div 5 \times(2+3)-23 \\ & =80 \div 5 \times 5-23 \\ & =80 \div 5 \times 5-8 \\ & =16 \times 5-8 \\ & =80-8 \\ & =72 \end{aligned}$ "I have to do the operation in parentheses first, then the power, then the multiplication and division in the order they appear, and then the subtraction."	Models an algebraic expression and combines like terms. $\begin{gathered} 3 q+2 r+4 r+q \\ \boxed{q \sqrt{q} \sqrt{q}}+\sqrt{r \backslash r}+ \\ \boxed{r \backslash r \backslash r}+\boxed{q} \\ \boxed{q} \sqrt{q} \sqrt{q}+\boxed{q} \\ \boxed{r \backslash r \backslash r \backslash r}+\sqrt{r} \\ \text { " } 3 q+2 r+4 r+q=4 q+6 r \text { " } \end{gathered}$	Uses algebraic properties to rearrange terms in an algebraic expression. $\begin{aligned} & 6(b+3)+7 b \\ & =6 \times b+6 \times 3+7 b \\ & =6 b+18+7 b \\ & =6 b+7 b+18 \end{aligned}$ "I used the distributive property to eliminate the parentheses, then I used the commutative property to rearrange the terms."	Simplifies algebraic expressions by combining like terms. $\begin{aligned} & 6(b+3)+7 b \\ & =6 \times b+6 \times 3+7 b \\ & =6 b+18+7 b \\ & =6 b+7 b+18 \\ & =13 b+18 \end{aligned}$ " $6 b$ and $7 b$ are like terms so I can add them."
Observations/Documentation			

Patterning and Algebra

Activity 7 Assessment Investigating Algebraic Properties

Variables and Equations (cont'd)			
Simplifies expressions on both sides of an equation. $\begin{aligned} 2(3 d+4)-1 & =100 \div 4 \\ 6 d+2 \times 4-1 & =25 \\ 6 d+8-1 & =25 \\ 6 d+7 & =25 \end{aligned}$ "I used algebraic properties to simplify the expressions on both sides of the equation. Now I have an equation with two operations."	Solves equations involving one or two operations using different strategies. $\begin{aligned} & 6 d+7=25 \\ & 6 d+7=18+7 \\ & \text { So, } 6 d=18 \end{aligned}$ "I used a balance model. Then, I know $6 \times 3=18$, so $d=3$."	Verifies the solution to an equation. $\begin{aligned} 2(3 d+4)-1 & =100 \div 4 \\ 6 d+7 & =25 \end{aligned}$ To check, substitute $d=3$. $\begin{aligned} \text { Left side } & =2(3 d+4)-1 \\ & =2(3 \times 3+4)-1 \\ & =2(13)-1 \\ & =26-1 \\ & =25 \end{aligned}$ $\begin{aligned} \text { Right side } & =100 \div 4 \\ & =25 \end{aligned}$ "Since the left side equals the right side, my solution is correct."	Flexibly works with equations to solve problems using a variety of strategies. Ava rents a bicycle to ride around the city. There is a flat fee of $\$ 10$, plus $\$ 3$ per hour. Ava pays a total of $\$ 28$. For how many hours did Ava rent the bicycle? $10+3 n=28$, where n is the number of hours that Ava rented the bicycle. $\begin{aligned} 10-10+3 n & =28-10 \\ 3 n & =18 \\ n & =6 \end{aligned}$ "I know $3 \times 6=18$, so $n=6$. Ava rented the bicycle for 6 hours."
Observations/Documentation			

Patterning and Algebra

Activity 8 Assessment

Writing and Solving Equations

Variables and Equations			
Evaluates a numerical expression using the order of operations. $\begin{aligned} & 80 \div 5 \times(2+3)-23 \\ & =80 \div 5 \times 5-23 \\ & =80 \div 5 \times 5-8 \\ & =16 \times 5-8 \\ & =80-8 \\ & =72 \end{aligned}$ "I have to do the operation in parentheses first, then the power, then the multiplication and division in the order they appear, and then the subtraction."	Models an algebraic expression and combines like terms. $\begin{gathered} 3 q+2 r+4 r+q \\ \boxed{q \sqrt{q} \sqrt{q}}+\sqrt{r \backslash r}+ \\ \boxed{r \backslash r \backslash r}+\boxed{q} \\ \boxed{q} \sqrt{q} \sqrt{q}+\boxed{q} \\ \boxed{r \backslash r \backslash r \backslash r}+\sqrt{r} \\ \text { "3q+2r+4r+q=4q+6r"} \end{gathered}$	Uses algebraic properties to rearrange terms in an algebraic expression. $\begin{aligned} & 6(b+3)+7 b \\ & =6 \times b+6 \times 3+7 b \\ & =6 b+18+7 b \\ & =6 b+7 b+18 \end{aligned}$ "I used the distributive property to eliminate the parentheses, then I used the commutative property to rearrange the terms."	Simplifies algebraic expressions by combining like terms. $\begin{aligned} & 6(b+3)+7 b \\ & =6 \times b+6 \times 3+7 b \\ & =6 b+18+7 b \\ & =6 b+7 b+18 \\ & =13 b+18 \end{aligned}$ " $6 b$ and $7 b$ are like terms so I can add them."
Observations/Documentation			

Patterning and

 Algebra
Activity 8 Assessment

Writing and Solving Equations

Variables and Equations (cont'd)			
Simplifies expressions on both sides of an equation. $\begin{aligned} 2(3 d+4)-1 & =100 \div 4 \\ 6 d+2 \times 4-1 & =25 \\ 6 d+8-1 & =25 \\ 6 d+7 & =25 \end{aligned}$ "I used algebraic properties to simplify the expressions on both sides of the equation. Now I have an equation with two operations."	Solves equations involving one or two operations using different strategies. $\begin{aligned} & 6 d+7=25 \\ & 6 d+7=18+7 \\ & \text { So, } 6 d=18 \end{aligned}$ "I used a balance model. Then, I know $6 \times 3=18$, so $d=3$."	Verifies the solution to an equation. $\begin{aligned} 2(3 d+4)-1 & =100 \div 4 \\ 6 d+7 & =25 \end{aligned}$ To check, substitute $d=3$. $\begin{aligned} \text { Left side } & =2(3 d+4)-1 \\ & =2(3 \times 3+4)-1 \\ & =2(13)-1 \\ & =26-1 \\ & =25 \end{aligned}$ $\begin{aligned} \text { Right side } & =100 \div 4 \\ & =25 \end{aligned}$ "Since the left side equals the right side, my solution is correct."	Flexibly works with equations to solve problems using a variety of strategies. Ava rents a bicycle to ride around the city. There is a flat fee of $\$ 10$, plus $\$ 3$ per hour. Ava pays a total of $\$ 28$. For how many hours did Ava rent the bicycle? $10+3 n=28$, where n is the number of hours that Ava rented the bicycle. $\begin{aligned} 10-10+3 n & =28-10 \\ 3 n & =18 \\ n & =6 \end{aligned}$ "I know $3 \times 6=18$, so $n=6$. Ava rented the bicycle for 6 hours."
Observations/Documentation			

```
Patterning and
Algebra
```


Activity 9 Assessment

Variables and Equations Consolidation

Variables and Equations			
Evaluates a numerical expression using the order of operations. $\begin{aligned} & 80 \div 5 \times(2+3)-23 \\ & =80 \div 5 \times 5-23 \\ & =80 \div 5 \times 5-8 \\ & =16 \times 5-8 \\ & =80-8 \\ & =72 \end{aligned}$ "I have to do the operation in parentheses first, then the power, then the multiplication and division in the order they appear, and then the subtraction."	Models an algebraic expression and combines like terms. $\begin{gathered} 3 q+2 r+4 r+q \\ \boxed{q \sqrt{q} \sqrt{q}}+\sqrt{r \backslash r}+ \\ \boxed{r \backslash r \backslash r}+\boxed{q} \\ \boxed{q} \sqrt{q} \sqrt{q}+\boxed{q} \\ \boxed{r \backslash r \backslash r \backslash r}+\sqrt{r} \\ \text { "3q+2r+4r+q=4q+6r"} \end{gathered}$	Uses algebraic properties to rearrange terms in an algebraic expression. $\begin{aligned} & 6(b+3)+7 b \\ & =6 \times b+6 \times 3+7 b \\ & =6 b+18+7 b \\ & =6 b+7 b+18 \end{aligned}$ "I used the distributive property to eliminate the parentheses, then I used the commutative property to rearrange the terms."	Simplifies algebraic expressions by combining like terms. $\begin{aligned} & 6(b+3)+7 b \\ & =6 \times b+6 \times 3+7 b \\ & =6 b+18+7 b \\ & =6 b+7 b+18 \\ & =13 b+18 \end{aligned}$ " $6 b$ and $7 b$ are like terms so I can add them."
Observations/Documentation			

```
Patterning and
Algebra
```


Activity 9 Assessment

Variables and Equations Consolidation

Variables and Equations (cont'd)			
Simplifies expressions on both sides of an equation. $\begin{aligned} 2(3 d+4)-1 & =100 \div 4 \\ 6 d+2 \times 4-1 & =25 \\ 6 d+8-1 & =25 \\ 6 d+7 & =25 \end{aligned}$ "I used algebraic properties to simplify the expressions on both sides of the equation. Now I have an equation with two operations."	Solves equations involving one or two operations using different strategies. $\begin{aligned} & 6 d+7=25 \\ & 6 d+7=18+7 \\ & \text { So, } 6 d=18 \end{aligned}$ "I used a balance model. Then, 1 know $6 \times 3=18$, $\text { so } d=3 . "$	Verifies the solution to an equation. $\begin{aligned} 2(3 d+4)-1 & =100 \div 4 \\ 6 d+7 & =25 \end{aligned}$ To check, substitute $d=3$. $\begin{aligned} \text { Left side } & =2(3 d+4)-1 \\ & =2(3 \times 3+4)-1 \\ & =2(13)-1 \\ & =26-1 \\ & =25 \end{aligned}$ $\begin{aligned} \text { Right side } & =100 \div 4 \\ & =25 \end{aligned}$ "Since the left side equals the right side, my solution is correct."	Flexibly works with equations to solve problems using a variety of strategies. Ava rents a bicycle to ride around the city. There is a flat fee of $\$ 10$, plus $\$ 3$ per hour. Ava pays a total of \$28. For how many hours did Ava rent the bicycle? $10+3 n=28$, where n is the number of hours that Ava rented the bicycle. $\begin{aligned} 10-10+3 n & =28-10 \\ 3 n & =18 \\ n & =6 \end{aligned}$ "I know $3 \times 6=18$, so $n=6$. Ava rented the bicycle for 6 hours."
Observations/Documentation			

\qquad

Measurement Unit 1 Line Master 1
 Area of Parallelograms

		Parallelogram A												

\qquad

Measurement Unit 1 Line Master 2

Area of Triangles

Shape A

\qquad

Measurement Unit 1 Line Master 3b Area of Composite Shapes (cont'd)

Shape B

\qquad
\qquad

Measurement
Unit 1 Line Master 4

Measuring Volume

Part A

Box	Estimate	Actual

Part B

Box	Estimate	Cubes in Bottom Layer	Number of Layers	Volume

Order from least to greatest volume:
\qquad
\qquad

Unit 1 Line Master 5 Volume of Rectangular Prisms

Length	Width	Base Area	Height	Volume

Activity 1 Assessment

Areas of Parallelograms and Triangles

Measuring Area of Parallelograms and	Triangles	
Determines the area of a rectangle. "A rectangle is an array of squares. To find the area, I multiply the number of rows by the number of columns or use the formula $A=b \times h$. This rectangle has area $5 \mathrm{~cm} \times 3 \mathrm{~cm}=15 \mathrm{~cm}^{2}$." \square	Partitions and rearranges a parallelogram to form a rectangle with the same base and height. "I partitioned the parallelogram and moved the triangle to create a rectangle. I then found the area of the rectangle: $A=b \times h=12 \mathrm{~cm} \times 3 \mathrm{~cm}=36 \mathrm{~cm}^{2} .$ The area of the parallelogram is also $36 \mathrm{~cm}^{2}$."	Doubles a triangle to create a parallelogram (area of triangle is one-half that of parallelogram). "I rotated the triangle to make a parallelogram with the same base and height. The area of the triangle is one-half the area of the parallelogram. Area of parallelogram: $15 \mathrm{~cm} \times 4 \mathrm{~cm}=60 \mathrm{~cm}^{2}$ Area of triangle: $60 \mathrm{~cm}^{2} \div 2=30 \mathrm{~cm}^{2}$ So, the formula for the area of a triangle is: $A=b \times h \div 2 . "$
Observations/Documentation		

Activity 1 Assessment

Areas of Parallelograms and Triangles

Measuring Area of Parallelograms and Triangles (cont'd)

Determines area by decomposing shapes into smaller shapes (rectangles, triangles, parallelograms), then adding their areas.

10 cm
"I decomposed the shape into a triangle and 2 rectangles
Area of small rectangle: $3 \mathrm{~cm} \times 6 \mathrm{~cm}=18 \mathrm{~cm}^{2}$ Area of large rectangle: $6 \mathrm{~cm} \times 10 \mathrm{~cm}=60 \mathrm{~cm}^{2}$ Area of triangle: $6 \mathrm{~cm} \times 5 \mathrm{~cm} \div 2=15 \mathrm{~cm}^{2}$

Area of composite shape:
$18 \mathrm{~cm}^{2}+60 \mathrm{~cm}^{2}+15 \mathrm{~cm}^{2}=93 \mathrm{~cm}^{2 "}$

Decomposes a composite shape in different ways and realizes that its area doesn't change (conservation of area).

"I decomposed the shape into a triangle and 2 rectangles.
Area of small rectangle: $4 \mathrm{~cm} \times 6 \mathrm{~cm}=24 \mathrm{~cm}^{2}$ Area of large rectangle: $9 \mathrm{~cm} \times 6 \mathrm{~cm}=54 \mathrm{~cm}^{2}$ Area of triangle: $6 \mathrm{~cm} \times 5 \mathrm{~cm} \div 2=15 \mathrm{~cm}^{2}$ Area of composite shape:
$24 \mathrm{~cm}^{2}+54 \mathrm{~cm}^{2}+15 \mathrm{~cm}^{2}=93 \mathrm{~cm}^{2}$ The area is always the same no matter how I decompose the shape.

Flexibly solves problems involving the relationships among the areas of rectangles, parallelograms, and triangles.

What is the area of the sail on the toy boat?
"I doubled the triangular sail to make a parallelogram with the same base and height.

I found the area of the parallelogram:
$34 \mathrm{~cm} \times 32 \mathrm{~cm}=1088 \mathrm{~cm}^{2}$, then divided the area in half to find the area of the triangle: $1088 \mathrm{~cm}^{2} \div 2=544 \mathrm{~cm}^{2}$."

Observations/Documentation

Activity 2 Assessment

Determining Area of Composite Shapes

Measuring Area of Parallelograms an	riangles	
Determines the area of a rectangle. "A rectangle is an array of squares. To find the area, I multiply the number of rows by the number of columns or use the formula $A=b \times h$. This rectangle has area $5 \mathrm{~cm} \times 3 \mathrm{~cm}=15 \mathrm{~cm}^{2} . "$	Partitions and rearranges a parallelogram to form a rectangle with the same base and height. "I partitioned the parallelogram and moved the triangle to create a rectangle. I then found the area of the rectangle: $A=b \times h=12 \mathrm{~cm} \times 3 \mathrm{~cm}=36 \mathrm{~cm}^{2} .$ The area of the parallelogram is also $36 \mathrm{~cm}^{2}$."	Doubles a triangle to create a parallelogram (area of triangle is one-half that of parallelogram). "I rotated the triangle to make a parallelogram with the same base and height. The area of the triangle is one-half the area of the parallelogram. Area of parallelogram: $15 \mathrm{~cm} \times 4 \mathrm{~cm}=60 \mathrm{~cm}^{2}$ Area of triangle: $60 \mathrm{~cm}^{2} \div 2=30 \mathrm{~cm}^{2}$ So, the formula for the area of a triangle is: $A=b \times h \div 2 . "$
Observations/Documentation		

Activity 2 Assessment

Determining Area of Composite Shapes

Measurement

Activity 3 Assessment
 Investigating Volume

Interpreting and Expressing Volume			
Explores volume as the amount of space occupied by a 3-D shape. "This cube occupies a space that can be measured. Each edge has a length of 1 cm and it has a volume of $1 \mathrm{~cm}^{3}$."	Recognizes volume of 3-D shapes in familiar contexts. "Everyday objects have volume; for example, a loaf of bread and a cereal box."	Models volume using concrete materials (non-standard units). "The volume of the box is about 12 marbles. Marbles aren't the greatest unit because they leave gaps."	Expresses volume of 3-D shapes using standard units (cubic metres, cubic centimetres). "I filled the box with centimetre cubes. The volume of the box is about $24 \mathrm{~cm}^{3}$."
Observations/Documentation			

Activity 3 Assessment

Investigating Volume

Interpreting and Expressing Volume (cont'd)			
Models volume of a rectangular prism as a 3-D array of cubic units. "The prism is a 3-D array of centimetre cubes. There are 12 cubes in each layer and 3 layers: $12+12+12=36$ The prism has volume $36 \mathrm{~cm}^{3}$."	Recognizes that volume remains the same when decomposed or rearranged. "I rearranged the 36 centimetre cubes to make a different prism. The number of cubes didn't change so, the volume is still $36 \mathrm{~cm}^{3}$."	Determines the volume of a rectangular prism using multiplication. "The prism has length 4 cm , width 3 cm and height 3 cm . The area of the base is $4 \mathrm{~cm} \times 3 \mathrm{~cm}=12 \mathrm{~cm}^{2}$, and the volume of the prism is: Area of the base \times height $=12 \mathrm{~cm}^{2} \times 3 \mathrm{~cm}$ $=36 \mathrm{~cm}^{3} . .$	Flexibly solves problems in various contexts that involve the volume of rectangular prisms. A square prism has height 11 cm and volume $539 \mathrm{~cm}^{3}$. Determine the side length of the square base. "Volume $=$ area of base \times height $539 \mathrm{~cm}^{3}=$ Area of the base $\times 11 \mathrm{~cm}$ $539 \div 11=49$ So, the area of the base is $49 \mathrm{~cm}^{2}$. The base is a square, so all sides are equal: $49 \mathrm{~cm}^{2}=s \times s$ Since $7 \times 7=49$, the side length of the square base is 7 cm ."
Observations/Documentation			

Activity 4 Assessment

Investigating Volume with Rectangular Prisms

Interpreting and Expressing Volume			
Explores volume as the amount of space occupied by a 3-D shape. "This cube occupies a space that can be measured. Each edge has a length of 1 cm and it has a volume of $1 \mathrm{~cm}^{3}$."	Recognizes volume of 3-D shapes in familiar contexts. "Everyday objects have volume; for example, a loaf of bread and a cereal box."	Models volume using concrete materials (non-standard units). "The volume of the box is about 12 marbles. Marbles aren't the greatest unit because they leave gaps."	Expresses volume of 3-D shapes using standard units (cubic metres, cubic centimetres). "I filled the box with centimetre cubes. The volume of the box is about $24 \mathrm{~cm}^{3}$."
Observations/Documentation			

Activity 4 Assessment

Investigating Volume with Rectangular Prisms

Interpreting and Expressing Volume (cont'd)			
Models volume of a rectangular prism as a 3-D array of cubic units. "The prism is a 3-D array of centimetre cubes. There are 12 cubes in each layer and 3 layers: $12+12+12=36$ The prism has volume $36 \mathrm{~cm}^{3}$."	Recognizes that volume remains the same when decomposed or rearranged. "I rearranged the 36 centimetre cubes to make a different prism. The number of cubes didn't change so, the volume is still $36 \mathrm{~cm}^{3}$."	Determines the volume of a rectangular prism using multiplication. "The prism has length 4 cm , width 3 cm and height 3 cm . The area of the base is $4 \mathrm{~cm} \times 3 \mathrm{~cm}=12 \mathrm{~cm}^{2}$, and the volume of the prism is: Area of the base \times height $=12 \mathrm{~cm}^{2} \times 3 \mathrm{~cm}$ $=36 \mathrm{~cm}^{3} . .$	Flexibly solves problems in various contexts that involve the volume of rectangular prisms. A square prism has height 11 cm and volume $539 \mathrm{~cm}^{3}$. Determine the side length of the square base. "Volume $=$ area of base \times height $539 \mathrm{~cm}^{3}=$ Area of the base $\times 11 \mathrm{~cm}$ $539 \div 11=49$ So, the area of the base is $49 \mathrm{~cm}^{2}$. The base is a square, so all sides are equal: $49 \mathrm{~cm}^{2}=s \times s$ Since $7 \times 7=49$, the side length of the square base is 7 cm ."
Observations/Documentation			

Activity 5 Assessment

Area and Volume Consolidation

Measuring Area of Parallelograms and Triangles

Determines the area of a rectangle. "A rectangle is an array of squares. To find the area, I multiply the number of rows by the number of columns or use the formula $A=b \times h$. This rectangle has area $5 \mathrm{~cm} \times 3 \mathrm{~cm}=15 \mathrm{~cm}^{2}$."	Partitions and rearranges a parallelogram to form a rectangle with the same base and height. "I partitioned the parallelogram and moved the triangle to create a rectangle. I then found the area of the rectangle: $A=b \times h=12 \mathrm{~cm} \times 3 \mathrm{~cm}=36 \mathrm{~cm}^{2} .$ The area of the parallelogram is also $36 \mathrm{~cm}^{2}$."	Doubles a triangle to create a parallelogram (area of triangle is one-half that of parallelogram). "I rotated the triangle to make a parallelogram with the same base and height. The area of the triangle is one-half the area of the parallelogram. Area of parallelogram: $15 \mathrm{~cm} \times 4 \mathrm{~cm}=60 \mathrm{~cm}^{2}$ Area of triangle: $60 \mathrm{~cm}^{2} \div 2=30 \mathrm{~cm}^{2}$ So, the formula for the area of a triangle is: $A=b \times h \div 2 . "$
Observations/Documen		

Activity 5 Assessment

Area and Volume Consolidation

Measuring Area of Parallelograms and Triangles (cont'd)

Determines area by decomposing shapes into smaller shapes (rectangles, triangles,
parallelograms), then adding their areas.

10 cm
"I decomposed the shape into a triangle and 2 rectangles.
Area of small rectangle: $3 \mathrm{~cm} \times 6 \mathrm{~cm}=18 \mathrm{~cm}^{2}$ Area of large rectangle: $6 \mathrm{~cm} \times 10 \mathrm{~cm}=60 \mathrm{~cm}^{2}$ Area of triangle: $6 \mathrm{~cm} \times 5 \mathrm{~cm} \div 2=15 \mathrm{~cm}^{2}$

Area of composite shape:
$18 \mathrm{~cm}^{2}+60 \mathrm{~cm}^{2}+15 \mathrm{~cm}^{2}=93 \mathrm{~cm}^{2 \prime}$

Decomposes a composite shape in different ways and realizes that its area doesn't change (conservation of area).

"I decomposed the shape into a triangle and 2 rectangles.
Area of small rectangle: $4 \mathrm{~cm} \times 6 \mathrm{~cm}=24 \mathrm{~cm}^{2}$ Area of large rectangle: $9 \mathrm{~cm} \times 6 \mathrm{~cm}=54 \mathrm{~cm}^{2}$ Area of triangle: $6 \mathrm{~cm} \times 5 \mathrm{~cm} \div 2=15 \mathrm{~cm}^{2}$ Area of composite shape:
$24 \mathrm{~cm}^{2}+54 \mathrm{~cm}^{2}+15 \mathrm{~cm}^{2}=93 \mathrm{~cm}^{2}$
The area is always the same no matter how I decompose the shape."

Flexibly solves problems involving the relationships among the areas of rectangles, parallelograms, and triangles.

What is the area of the sail on the toy boat?
"I doubled the triangular sail to make a parallelogram with the same base and height.

I found the area of the parallelogram:
$34 \mathrm{~cm} \times 32 \mathrm{~cm}=1088 \mathrm{~cm}^{2}$, then divided
the area in half to find the area of the triangle: $1088 \mathrm{~cm}^{2} \div 2=544 \mathrm{~cm}^{2}$.'

Observations/Documentation

Activity 5 Assessment

Area and Volume Consolidation

Interpreting and Expressing Volume			
Explores volume as the amount of space occupied by a 3-D shape. "This cube occupies a space that can be measured. Each edge has a length of 1 cm and it has a volume of $1 \mathrm{~cm}^{3}$."	Recognizes volume of 3-D shapes in familiar contexts. "Everyday objects have volume; for example, a loaf of bread and a cereal box."	Models volume using concrete materials (non-standard units). "The volume of the box is about 12 marbles. Marbles aren't the greatest unit because they leave gaps."	Expresses volume of 3-D shapes using standard units (cubic metres, cubic centimetres). "I filled the box with centimetre cubes. The volume of the box is about $24 \mathrm{~cm}^{3}$."
Observations/Documentation			

Activity 5 Assessment

Area and Volume Consolidation

Interpreting and Expressing Volume (cont'd)			
Models volume of a rectangular prism as a 3-D array of cubic units. "The prism is a 3-D array of centimetre cubes. There are 12 cubes in each layer and 3 layers: $12+12+12=36$ The prism has volume $36 \mathrm{~cm}^{3}$."	Recognizes that volume remains the same when decomposed or rearranged. "I rearranged the 36 centimetre cubes to make a different prism. The number of cubes didn't change so, the volume is still $36 \mathrm{~cm}^{3}$."	Determines the volume of a rectangular prism using multiplication. "The prism has length 4 cm , width 3 cm and height 3 cm . The area of the base is $4 \mathrm{~cm} \times 3 \mathrm{~cm}=12 \mathrm{~cm}^{2}$, and the volume of the prism is: Area of the base \times height $\begin{aligned} & =12 \mathrm{~cm}^{2} \times 3 \mathrm{~cm} \\ & =36 \mathrm{~cm}^{3} . " \end{aligned}$	Flexibly solves problems in various contexts that involve the volume of rectangular prisms. A square prism has height 11 cm and volume $539 \mathrm{~cm}^{3}$. Determine the side length of the square base. "Volume $=$ area of base \times height $539 \mathrm{~cm}^{3}=$ Area of the base $\times 11 \mathrm{~cm}$ $539 \div 11=49$ So, the area of the base is $49 \mathrm{~cm}^{2}$. The base is a square, so all sides are equal: $49 \mathrm{~cm}^{2}=s \times s$ Since $7 \times 7=49$, the side length of the square base is 7 cm ."
Observations/Documentation			

\qquad
\qquad

Geometry Unit 1 Line Master 1a S. Symmetry in Tessellations
 Tessellation A

\qquad
\qquad

Tessellation B

\qquad

Tessellation C

\qquad

Geometry Unit 1 Line Master 1d Symmetry in Tessellations
 (Accommodation)

Tessellation D

\qquad
Geometry
Unit 1 Line Master 2 Congruent Shapes

\qquad

Stories through Tessellations

1. Create a tessellation to tell your own story.
\square
2. What is the meaning and significance of your tessellation? What story does it tell?
\qquad
\qquad

Geometry Unit 1 Line Master 4
 At the Amusement Park

Geometry Unit 1 Line Master 5a

Fill the Cartesian Plane

\qquad
\qquad

Geometry
Unit 1 Line Master 5b

Fill the Cartesian Plane

Coordinates of the vertices of rectangle ABCD	Translations Horizontal Left/right		Vertical Up/down vertices of image rectangle

\qquad

Geometry
Unit 1 Line Master 5c

Fill the Cartesian Plane

Coordinates of the vertices of rectangle ABCD	Translations		Coordinates of the vertices of image rectangle
	Left/right	Vertical Up/down	

Geometry
Unit 1 Line Master 5c \quad Fill the Cartesian Plane

Coordinates of the vertices of rectangle ABCD	Translations		Coordinates of the vertices of image rectangle Left/right
		Vertical Up/down	

Geometry
 Unit 1 Line Master 6a
 Reflecting a Polygon

\qquad

Unit 1 Line Master 6b
Reflecting a Polygon (cont'd)

Reflection Image 1		
Description	Coordinates of Vertices of Polygon	Coordinates of Vertices of Image 1
Reflection Image 2		
Description	Coordinates of Vertices of Polygon	Coordinates of Vertices of Image 2

Rotating a Polygon

\qquad
\qquad

Geometry
Unit 1 Line Master 7b
Rotating a Polygon (cont'd)

Rotation Image 1		
Description	Coordinates of Vertices of Polygon	Coordinates of Vertices of Image 1
Rotation Image 2		
Description	Coordinates of Vertices of Polygon	Coordinates of Vertices of Image 2
Rotation Image 3		
Description	Coordinates of Vertices of Polygon	Coordinates of Vertices of Image 3

Activity 1 Assessment

Exploring Congruence and Symmetry

Exploring Symmetry and Congruence			
Verifies symmetry of two shapes by reflecting or rotating one shape onto another. "I reflected one trapezoid in a vertical line of reflection so that it mapped onto the other trapezoid exactly. So, the two shapes are symmetrical."	Describes the symmetry between two shapes as reflection symmetry or rotation symmetry, or a combination of two transformations. "These two symmetrical shapes are related by a combination of transformations. I could reflect the shape on the left in a vertical line, then rotate the image counterclockwise until it has the same orientation as the other shape."	Demonstrates congruence between two shapes in any orientation by superimposing. "The two shapes are congruent even though they have different orientations. I traced Shape B and placed the tracing on Shape D and they matched exactly. They have the same size and shape."	Understands that shapes related by symmetry are congruent to each other. "These two shapes are related by rotation symmetry. I can map one shape onto the other through rotation so that they match exactly. This means the shapes are congruent as they have the same size and shape."
Observations/Documentation			

Activity 2 Assessment Investigating Tessellations

$\left.\begin{array}{|l|l|l|l|}\hline \text { Investigating Tessellations in Star Blankets } \\ \hline \begin{array}{l}\text { Describes features of First Nations or Métis star } \\ \text { blankets. } \\ \text { "I see many colours, patterns of colours, fabric, } \\ \text { thread, an 8-pointed star, diamonds or } \\ \text { rhombuses, and tessellations." }\end{array} & \begin{array}{l}\text { Identifies components of a tessellation on First } \\ \text { Nations or Métis star blankets. }\end{array} & \begin{array}{l}\text { "Star blankets have tessellations that are created } \\ \text { by shapes that are spaced closely together." }\end{array} & \begin{array}{c}\text { Understs the significance of meaning of First } \\ \text { Nations or Métis star blankets. }\end{array} \\ \hline \text { "First Nation and Métis star blankets symbolize } \\ \text { cultural teachings and traditions within the } \\ \text { colours, designs, and learning." }\end{array}\right]$

Activity 2 Assessment Investigating Tessellations

Investigating Tessellations in Star Blankets (cont'd)			
Describes the significance of gifting and receiving a First Nations or Métis star blanket.	Creates a tessellation that has personal meaning and significance.	Shares the significance of the 8-pointed star. "Gifting and/or receiving a First Nations or Métis star blanket is a great honour. They may be given for a milestone, an achievement, or as a celebration."	"Different shapes can be used to share a personal story through a tessellation."
Observations/Documentation		"Each point of the star shares a story for First Nations or Métis peoples. The eighth point was added to honour Star Woman."	

Activity 3 Assessment

 Introduction to Cartesian Planes

Activity 3 Assessment

 Introduction to Cartesian Planes| Location and Transformations in the Cartesian Plane (cont'd) | | | |
| :---: | :---: | :---: | :---: |
| Describes and performs transformations of polygons on a Cartesian plane.
 "I translated $\triangle \mathrm{ABC}$ right 3 squares and down 5 squares to get $\triangle A^{\prime} B^{\prime} C^{\prime}$.' | Identifies transformation used to move a polygon on a Cartesian plane.
 "The shape was rotated 90° counterclockwise about T to get the image. The shape and its image are congruent but have different orientations. | Relates the coordinates of a polygon and its image after a translation, reflection, or rotation.
 "After a reflection in the y-axis, the x-coordinates of the vertices change sign, and the y-coordinates stay the same. | Flexibly visualizes and predicts where the image of a polygon will be after a transformation.
 "I can picture the Polygon's reflection, Image 1, on the other side of the y-axis, and the Polygon's reflection, Image 2, on the other side of the x-axis. Each time, matching vertices will be the same distance from the line of reflection and the polygon, and its image will have opposite orientations |
| Observations/Documentation | | | |
| | | | |

Activity 4 Assessment

Translating Polygons on a Cartesian Plane

Activity 4 Assessment

Translating Polygons on a Cartesian Plane

Activity 5 Assessment

Reflecting and Rotating Polygons on a Cartesian Plane

Activity 5 Assessment

Reflecting and Rotating Polygons on a Cartesian Plane

Activity 6 Assessment

2-D Shapes, Transformations, and the Cartesian Plane Consolidation

Exploring Symmetry and Congruence			
Verifies symmetry of two shapes by reflecting or rotating one shape onto another. "I reflected one trapezoid in a vertical line of reflection so that it mapped onto the other trapezoid exactly. So, the two shapes are symmetrical."	Describes the symmetry between two shapes as reflection symmetry or rotation symmetry, or a combination of two transformations. "These two symmetrical shapes are related by a combination of transformations. I could reflect the shape on the left in a vertical line, then rotate the image counterclockwise until it has the same orientation as the other shape."	Demonstrates congruence between two shapes in any orientation by superimposing. "The two shapes are congruent even though they have different orientations. I traced Shape B and placed the tracing on Shape D and they matched exactly. They have the same size and shape."	Understands that shapes related by symmetry are congruent to each other. "These two shapes are related by rotation symmetry. I can map one shape onto the other through rotation so that they match exactly. This means the shapes are congruent as they have the same size and shape."
Observations/Documentation			

Activity 6 Assessment

2-D Shapes, Transformations, and the Cartesian Plane Consolidation

Geometry

Activity 6 Assessment

2-D Shapes, Transformations, and the Cartesian Plane Consolidation

\qquad
\qquad

Data Management Unit 1 Line Master 1

Event Cards

Likelihood Cards

Event Cards

\qquad

Data Management
Unit 1 Line Master 2a

My Events

My Events

\qquad

Data Management Unit 1 Line Master 2b

Likelihood Line

My Events (cont'd)

\qquad
\qquad

Data Management
Unit 1 Line Master 3
Representing Likelihoods with Fractions
The pointer on this spinner is spun.
Represent the likelihood of each event below as a fraction.

Event	Likelihood
A: landing on 2	
B: landing on 3	
C: landing on 4	
D: landing on 5	
E: landing on 6	
F: landing on $2,3,4$, or 5	
G: landing on an even number	
H: landing on 3,4 , or 5	

Likelihood Line

Place each event on the likelihood line to show how likely it is to happen.

\qquad
\qquad

Data Management Unit 1 Line Master 4

Relative-Frequency Table

	Tally	Frequency	Relative Frequency

\qquad
\qquad

Data Management Unit 1 Line Master 5

Experiment Recording Sheet

Possible Outcomes	Likelihood	Prediction	Results	Combined Results

\qquad
\qquad

Data Management
Unit 1 Line Master 6a

Analyzing Relative Frequency

Part A

The pointer on this spinner is spun.
Determine the likelihood of each event.

Likelihoods

Event	Fraction	Decimal	Percent
not an even number			
12			
a number between 4 and 9			
a number less than 3			
a number less than 10			

\qquad
\qquad

Data Management
Unit 1 Line Master 6b

Analyzing Relative Frequency (cont'd)

Part B

Use the likelihoods from Part A.
Predict the results of spinning the pointer 100 times.

Event	Prediction
not an even number	
12	
a number between 4 and 9	
a number less than 3	
a number less than 10	

A student conducted the experiment 100 times.

Event	Results
not an even number	18
12	0
a number between 4 and 9	26
a number less than 3	6
a number less than 10	100

How do your predictions compare with these results?
\qquad
\qquad

Data Management Unit 1 Line Master 6c

Analyzing Relative Frequency (cont'd)

Use the results of the experiment to determine the relative frequency of each event.

Relative Frequencies

Event	Results	Fraction	Decimal	Percent
not an even number	18			
12	0			
a number between 4 and 9	26			
a number less than 3	6			
a number less than 10	100			

Compare the relative frequencies with the expected likelihoods. What do you notice? Why might this be?
\qquad
\qquad

Data Management Unit 1 Line Master 7a

Rolling a Die and Relative Frequency

Let's use coding to explore the likelihood of rolling a 3 on a die.

Part 1

We'll start by rolling a die in Scratch and checking to see if a 3 is rolled.

1. Click the link to access Scratch: Simple Dice Roll Completed:

https://scratch.mit.edu/projects/878484676/editor/

$>$ Click the green flag to see what happens.
A die is rolled each time the green flag is clicked.
2. Let's alter the code to check if a 3 is rolled.

We will need to use a conditional structure.
Conditional structures are statements that tell computers to complete different actions based on different situations.

In Scratch, conditional structures, or if statements, are found in the Control tab. The if statement will check if a condition is true and if it is, it will execute the code after the word then. If the condition is not true, then nothing will happen.

\qquad
\qquad

Data Management
Unit 1 Line Master 7b

Rolling a Die and Relative Frequency

From the Control tab, select the if block and drag it below the switch costume block:

3. Now we will add the condition for the if statement.
> From the Operators tab, select the equal comparison $\operatorname{operator}(\bigcirc=50$) and drag it inside of the conditional part of the if block.
> From the Variables tab, select the diceRoll variable, and place it inside the first part of the equal comparison operator.
$>$ Type 3 in the second part of the equal comparison operator.
$>$ From the Looks tab, select the say block and place it inside of the if block.
> Type 3! inside the say block.
\qquad
\qquad

Data Management Unit 1 Line Master 7c

Rolling a Die and Relative Frequency

Here is a screenshot of the completed code.

$>$ Test the application by clicking the green flag many times. Does it say "3!" each time the number three is rolled? If not, debug the application by carefully looking through the code.
\qquad
\qquad

Data Management Unit 1 Line Master 7d

Rolling a Die and Relative Frequency

Part 2

Let's use code to calculate the relative frequency of rolling a 3.

1. We can calculate the likelihood of rolling a 3 using simple math:

There are 6 possible outcomes when rolling a die:
1, 2, 3, 4, 5, 6
So, the likelihood of rolling each of the numbers is 1 in 6 , or $\frac{1}{6}$, or about 0.17.

So, the likelihood of rolling a 3 is $\frac{1}{6}$.
2. We can describe the likelihood of an outcome in an experiment using relative frequency.

Frequency can be a count of categorized observations or trials in an experiment. Relative frequency of outcomes can be used to estimate the likelihood of an event.

In our code, we will keep track of the number of times a 3 is rolled and the total number of rolls.

Each time we click the green flag to roll the die, we will calculate the relative frequency of rolling a 3 .
\qquad

Data Management Unit 1 Line Master 7e

Rolling a Die and Relative Frequency

We will need three more variables in our application. We already have one variable called diceRoll, which holds the number that is rolled on the die.

We will create these additional variables:

- numRolls to keep track of the number of times the die is rolled, which is also the number of times the green flag is clicked.
- num3Rolled to keep track of the number of times a 3 is rolled.
- relativeFrequency to keep track of the relative frequency of rolling a 3.

Everything will be reset when we click the space bar.
\qquad
\qquad

Data Management Unit 1 Line Master 7f

Rolling a Die and Relative Frequency

You can alter your code from Part A, as shown below, or you can click the link to the completed code with which you can experiment.

Link to completed code: https://scratch.mit.edu/projects/878489604/editor

Screenshot of code:

In Master 8, we'll add a loop so we can simulate rolling a die hundreds, thousands, and even millions of times!
\qquad Date \qquad

Data Management Unit 1 Line Master 8a
 Simulating Multiple Rolls of a Die

Let's alter our code from Master 7 to include a loop, or a repeat, which will simulate rolling a die hundreds, thousands, and even millions of times!

A loop is a repetition of instructions used in code. In Scratch, a repeat is used to make code blocks loop through multiple times.

What do you think will happen to the relative frequency of rolling a 3 with so many rolls?

Relative frequency provides a better estimate of the likelihood of an event with larger amounts of data.

1. We will start by adding a repeat block so that the die rolls 10 times at once.
> Click the link to access the completed code from Master 7:
https://scratch.mit.edu/projects/878489604/editor
$>$ From the Control tab, select the Repeat 10 block and place it around all the code under the green flag block.
$>$ Since we are rolling the die 10 times and are keeping track of the number of times a 3 is rolled in the num3Rolled variable, we can remove the say 3! block.
$>$ Click on the green flag multiple times to see what happens! Don't forget that if you'd like to reset the variables to 0 , you can click on the space bar.
\qquad
\qquad

Data Management

 Unit 1 Line Master 8b
Simulating Multiple Rolls of a Die

Here is a screenshot of the completed code.

2. Let's loop the code even more times!
$>$ Try changing the repeat number to 100 and then 1000.
$>$ What do you notice about the relative frequency of rolling a 3 ?
> Does it get closer to the expected likelihood of $\frac{1}{6}$ or about 0.17 ?
\qquad
\qquad

Simulating Multiple Rolls of a Die

3. When you changed the repeat to 1000 , you might have noticed that you had to wait a while for the 1000 rolls to happen.
We can use Turbo Mode in Scratch to make this happen faster!
> To turn on Turbo Mode, select Edit and Turn on Turbo Mode.

> Try clicking the green flag with 1000 in the repeat to see what happens.
> Change the repeat to 10000 and even 1000000 or more!
> What do you notice about the relative frequency when you roll the die so many times?
\qquad

Statistics Game

Block Coding Program

Click the link to access Scratch: Dice Game - Doubles:
https://scratch.mit.edu/projects/484777128/

The starts the game, and the space bar rolls the dice.
Play until you win. Play again.
Compare your results with the class results when students rolled number cubes.
\qquad

Data Management Unit 1 Line Master 9b

Statistics Game (cont'd)
 Block Coding Program

Examine the Code

- Click See Inside. Look at the code.

(c) See inside

 What do you think the different blocks mean? How do they relate to the statistics experiment?
\qquad
\qquad

Data Management Unit 1 Line Master 9c

Statistics Game (cont'd)

Block Coding Program

- Connect the blocks to what happened during the experiment. For example,
has Cat facing right (looking from Start to Finish).
go to $x:-100$ y: -50
has Cat starting at $(-100,50)$.

has Cat go back to Start if the dice match.

If the dice don't match, the numbers rolled are added.
Then Cat takes that many steps.

has the roll tracked each time, and random numbers are chosen from 1 to 10.

has the Cat being declared the Winner!
when the Cat touches the red Finish Line.

Note:

Cat starts at -100 and ends up at 150.
Thinking about the distance on each side of 0 ,
100 pixels +150 pixels $=250$ pixels.
\qquad

- Our Spinner

- Expected Likelihoods of Favourable Outcomes
\qquad

Number of Trials: \qquad

- Predictions
- Results of Experiment
- Relative Frequencies
- Comparing Results with Predictions

Activity 1 Assessment

Describing the Likelihood of Events

Investigating Relative Frequency through Experiments			
Lists all possible outcomes for an experiment with equally likely outcomes. These counters are in a bag. "I could get a red, green, yellow, or blue counter."	Determines expected likelihood of an event. "Red: most likely, $\frac{7}{12}$; green: unlikely, $\frac{2}{12}$ or $\frac{1}{6}$; yellow: unlikely, $\frac{2}{12}$ or $\frac{1}{6}$; blue: least likely: $\frac{1}{12}$,	Uses the possible outcomes of an experiment to predict the likelihood of an event. "There are 12 counters and 7 are red. $12 \times 4=48$, which is close to 50 . So, in 50 trials I think I will get a red counter about 7×4, or 28 times."	Conducts experiment and organizes collected data. "I conducted the experiment. In 50 trials, I got a red counter 35 times."
Observations/Documentation			

Activity 1 Assessment

Describing the Likelihood of Events

Investigating Relative Frequency through Experiments (cont'd)			
Uses outcomes of experiment to determine relative frequencies. "I got a red counter 35 times in 50 trials. So, the relative frequency of getting red is $\frac{35}{50}$, or $\frac{70}{100}$, or 0.7 , or 70%."	Realizes that relative frequencies vary among sets of collected data. "The relative frequency of getting red was different for other pairs of students. I got $\frac{35}{50}$, but others got $\frac{29}{50}, \frac{33}{50}$, and $\frac{37}{50}$."	Understands that with more trials of an experiment, the closer the actual results may be to expected likelihoods. "When I conducted more trials, I noticed that the results got closer to the expected likelihoods, but they still didn't match exactly."	Flexibly performs experiments, analyzes results, and compares and justifies predictions. "The likelihood of drawing a 6 or a 7 is $\frac{5}{6}$. So, when I conduct the experiment 60 times, I would expect to get a 6 or 7 about 50 times. I got 6 or 7 forty-four times. I have to do more trials."
Observations/Documentation			

Activity 2 Assessment

Exploring Relative Frequency

Investigating Relative Frequency through Experiments			
Lists all possible outcomes for an experiment with equally likely outcomes. These counters are in a bag. "I could get a red, green, yellow, or blue counter."	Determines expected likelihood of an event. "Red: most likely, $\frac{7}{12}$; green: unlikely, $\frac{2}{12}$ or $\frac{1}{6}$; yellow: unlikely, $\frac{2}{12}$ or $\frac{1}{6}$; blue: least likely: $\frac{1}{12}$ "	Uses the possible outcomes of an experiment to predict the likelihood of an event. "There are 12 counters and 7 are red. $12 \times 4=48$, which is close to 50 . So, in 50 trials I think I will get a red counter about 7×4, or 28 times."	Conducts experiment and organizes collected data. "I conducted the experiment. In 50 trials, I got a red counter 35 times."
Observations/Documentation			

Activity 2 Assessment

Exploring Relative Frequency

Investigating Relative Frequency through Experiments (cont'd)			
Uses outcomes of experiment to determine relative frequencies. "I got a red counter 35 times in 50 trials. So, the relative frequency of getting red $\text { is } \frac{35}{50} \text {, or } \frac{70}{100} \text {, or } 0.7 \text {, or } 70 \% . "$	Realizes that relative frequencies vary among sets of collected data. "The relative frequency of getting red was different for other pairs of students. I got $\frac{35}{50}$, but others got $\frac{29}{50}, \frac{33}{50}$, and $\frac{37}{50}$."	Understands that with more trials of an experiment, the closer the actual results may be to expected likelihoods. "When I conducted more trials, I noticed that the results got closer to the expected likelihoods, but they still didn't match exactly."	Flexibly performs experiments, analyzes results, and compares and justifies predictions. "The likelihood of drawing a 6 or a 7 is $\frac{5}{6}$. So, when I conduct the experiment 60 times, I would expect to get a 6 or 7 about 50 times. I got 6 or 7 forty-four times. I have to do more trials."
Observations/Documentation			

Activity 3 Assessment

Conducting Experiments

Investigating Relative Frequency through Experiments			
Lists all possible outcomes for an experiment with equally likely outcomes. These counters are in a bag. "I could get a red, green, yellow, or blue counter."	Determines expected likelihood of an event. "Red: most likely, $\frac{7}{12}$; green: unlikely, $\frac{2}{12}$ or $\frac{1}{6}$; yellow: unlikely, $\frac{2}{12}$ or $\frac{1}{6}$; blue: least likely: $\frac{1}{12}$ "	Uses the possible outcomes of an experiment to predict the likelihood of an event. "There are 12 counters and 7 are red. $12 \times 4=48$, which is close to 50 . So, in 50 trials I think I will get a red counter about 7×4, or 28 times."	Conducts experiment and organizes collected data. "I conducted the experiment. In 50 trials, I got a red counter 35 times."
Observations/Documentation			

Activity 3 Assessment

Conducting Experiments

Investigating Relative Frequency through Experiments (cont'd)			
Uses outcomes of experiment to determine relative frequencies. "I got a red counter 35 times in 50 trials. So, the relative frequency of getting red is $\frac{35}{50}$, or $\frac{70}{100}$, or 0.7 , or 70%."	Realizes that relative frequencies vary among sets of collected data. "The relative frequency of getting red was different for other pairs of students. I got $\frac{35}{50}$, but others got $\frac{29}{50}, \frac{33}{50}$, and $\frac{37}{50}$."	Understands that with more trials of an experiment, the closer the actual results may be to expected likelihoods. "When I conducted more trials, I noticed that the results got closer to the expected likelihoods, but they still didn't match exactly."	Flexibly performs experiments, analyzes results, and compares and justifies predictions. "The likelihood of drawing a 6 or a 7 is $\frac{5}{6}$. So, when I conduct the experiment 60 times, I would expect to get a 6 or 7 about 50 times. I got 6 or 7 forty-four times. I have to do more trials."
Observations/Documentation			

Activity 4 Assessment

Analyzing Relative Frequency

Investigating Relative Frequency through Experiments			
Lists all possible outcomes for an experiment with equally likely outcomes. These counters are in a bag. "I could get a red, green, yellow, or blue counter."	Determines expected likelihood of an event. "Red: most likely, $\frac{7}{12}$; green: unlikely, $\frac{2}{12}$ or $\frac{1}{6}$; yellow: unlikely, $\frac{2}{12}$ or $\frac{1}{6}$; blue: least likely: $\frac{1}{12}$ "	Uses the possible outcomes of an experiment to predict the likelihood of an event. "There are 12 counters and 7 are red. $12 \times 4=48$, which is close to 50 . So, in 50 trials I think I will get a red counter about 7×4, or 28 times."	Conducts experiment and organizes collected data. "I conducted the experiment. In 50 trials, I got a red counter 35 times."
Observations/Documentation			

Activity 4 Assessment

Analyzing Relative Frequency

Investigating Relative Frequency through Experiments (cont'd)			
Uses outcomes of experiment to determine relative frequencies. "I got a red counter 35 times in 50 trials. So, the relative frequency of getting red is $\frac{35}{50}$, or $\frac{70}{100}$, or 0.7 , or 70%."	Realizes that relative frequencies vary among sets of collected data. "The relative frequency of getting red was different for other pairs of students. I got $\frac{35}{50}$, but others got $\frac{29}{50}, \frac{33}{50}$, and $\frac{37}{50}$."	Understands that with more trials of an experiment, the closer the actual results may be to expected likelihoods. "When I conducted more trials, I noticed that the results got closer to the expected likelihoods, but they still didn't match exactly."	Flexibly performs experiments, analyzes results, and compares and justifies predictions. "The likelihood of drawing a 6 or a 7 is $\frac{5}{6}$. So, when I conduct the experiment 60 times, I would expect to get a 6 or 7 about 50 times. I got 6 or 7 forty-four times. I have to do more trials."
Observations/Documentation			

Activity 5 Assessment

Coding: Exploring Statistics with Coding

Investigating Relative Frequency through Experiments			
Lists all possible outcomes for an experiment with equally likely outcomes. These counters are in a bag. "I could get a red, green, yellow, or blue counter."	Determines expected likelihood of an event. "Red: most likely, $\frac{7}{12}$; green: unlikely, $\frac{2}{12}$ or $\frac{1}{6}$; yellow: unlikely, $\frac{2}{12}$ or $\frac{1}{6}$; blue: least likely: $\frac{1}{12}$ "	Uses the possible outcomes of an experiment to predict the likelihood of an event. "There are 12 counters and 7 are red. $12 \times 4=48$, which is close to 50 . So, in 50 trials I think I will get a red counter about 7×4, or 28 times."	Conducts experiment and organizes collected data. "I conducted the experiment. In 50 trials, I got a red counter 35 times."
Observations/Documentation			

Activity 5 Assessment

Coding: Exploring Statistics with Coding

Investigating Relative Frequency through Experiments (cont'd)			
Uses outcomes of experiment to determine relative frequencies. "I got a red counter 35 times in 50 trials. So, the relative frequency of getting red is $\frac{35}{50}$, or $\frac{70}{100}$, or 0.7 , or 70%."	Realizes that relative frequencies vary among sets of collected data. "The relative frequency of getting red was different for other pairs of students. I got $\frac{35}{50}$, but others got $\frac{29}{50}, \frac{33}{50}$, and $\frac{37}{50}$."	Understands that with more trials of an experiment, the closer the actual results may be to expected likelihoods. "When I conducted more trials, I noticed that the results got closer to the expected likelihoods, but they still didn't match exactly."	Flexibly performs experiments, analyzes results, and compares and justifies predictions. "The likelihood of drawing a 6 or a 7 is $\frac{5}{6}$. So, when I conduct the experiment 60 times, I would expect to get a 6 or 7 about 50 times. I got 6 or 7 forty-four times. I have to do more trials."
Observations/Documentation			

Activity 6 Assessment

Statistics Consolidation

Investigating Relative Frequency through Experiments			
Lists all possible outcomes for an experiment with equally likely outcomes. These counters are in a bag. "I could get a red, green, yellow, or blue counter."	Determines expected likelihood of an event. "Red: most likely, $\frac{7}{12}$; green: unlikely, $\frac{2}{12}$ or $\frac{1}{6}$; yellow: unlikely, $\frac{2}{12}$ or $\frac{1}{6}$; blue: least likely: $\frac{1}{12}$,	Uses the possible outcomes of an experiment to predict the likelihood of an event. "There are 12 counters and 7 are red. $12 \times 4=48$, which is close to 50 . So, in 50 trials I think I will get a red counter about 7×4, or 28 times."	Conducts experiment and organizes collected data. "I conducted the experiment. In 50 trials, I got a red counter 35 times."
Observations/Documentation			

Activity 6 Assessment

Statistics Consolidation

Investigating Relative Frequency through Experiments (cont'd)			
Uses outcomes of experiment to determine relative frequencies. "I got a red counter 35 times in 50 trials. So, the relative frequency of getting red is $\frac{35}{50}$, or $\frac{70}{100}$, or 0.7 , or 70%."	Realizes that relative frequencies vary among sets of collected data. "The relative frequency of getting red was different for other pairs of students. I got $\frac{35}{50}$, but others got $\frac{29}{50}, \frac{33}{50}$, and $\frac{37}{50}$."	Understands that with more trials of an experiment, the closer the actual results may be to expected likelihoods. "When I conducted more trials, I noticed that the results got closer to the expected likelihoods, but they still didn't match exactly."	Flexibly performs experiments, analyzes results, and compares and justifies predictions. "The likelihood of drawing a 6 or a 7 is $\frac{5}{6}$. So, when I conduct the experiment 60 times, I would expect to get a 6 or 7 about 50 times. I got 6 or 7 forty-four times. I have to do more trials."
Observations/Documentation			

[^0]: Source: https://en.wikipedia.org/wiki/List of places on land with elevations below sea level

[^1]: Source: h ttps://www.researchgate.net/figure/Operation-times-and-energy-consumption-of-home-

