

## Mathology 3 and Ontario Ministry of Education Long-Range Plan: by Question

| Ontario Ministry Long Range Plan | Pea                                                     | arson <i>Mathology</i>                              |
|----------------------------------|---------------------------------------------------------|-----------------------------------------------------|
| Who are we?                      | Big Ideas                                               |                                                     |
|                                  | <ul> <li>Numbers tell us how many and how</li> </ul>    | v much.                                             |
|                                  | <ul> <li>Quantities and numbers can be gro</li> </ul>   | uped by or partitioned into equal-sized units.      |
|                                  | <ul> <li>Numbers are related in many ways.</li> </ul>   |                                                     |
|                                  | • Formulating questions, collecting d                   | ata, and consolidating data in visual and graphical |
|                                  | displays help us understand, predic                     | t, and interpret situations that involve            |
|                                  | uncertainty, variability, and randor                    | nness.                                              |
|                                  | • 2-D shapes and 3-D solids can be tra                  | insformed in many ways and analyzed for change.     |
|                                  | <ul> <li>Objects can be located in space and</li> </ul> | viewed from multiple perspectives.                  |
| Time: September                  |                                                         |                                                     |
| Questions and Expectations       | What to Look For                                        | Little Books/Activity                               |
|                                  |                                                         | Welcome to The Nature Park                          |
|                                  |                                                         | - interpret charts, tables, pictographs, and bar    |
|                                  |                                                         | graphs                                              |
|                                  |                                                         | - draw conclusions from data displays               |
|                                  |                                                         | Gallery Tour                                        |
|                                  |                                                         | - describe and compare transformations              |
|                                  |                                                         | - identify, describe, and compare 2-D shapes        |

| Questions and Expectations                     | What to Look For                            | Little Books/Activity                        |
|------------------------------------------------|---------------------------------------------|----------------------------------------------|
| Data collection & organization, Data           | - Do students say 3-digit numbers           | Number Unit 1: Counting                      |
| visualization (many-to-one), Data              | without using the word "and"?               | 1: Numbers All Around Us                     |
| analysis (mode only), Likelihood,              | - Are students able to bridge tens and      | 2: Counting to 1000                          |
| Amounts to 1000, Skip counting & ratios        | hundreds when counting on and back?         | 3: Skip-Counting Forward and Backward        |
| Number: B1.1; B1.2; B1.4; B2.9                 | - Are students able to use patterns to      | 4: Consolidation (Counting)                  |
| Data: D1.1; D1.2; D1.3; D1.4; D1.5; D2.1;      | help them skip-count forward and            |                                              |
| D2.2                                           | backward?                                   | Number Unit 2: Number Relationships          |
|                                                | - Are students able to compare their        | 6: Composing and Decomposing Quantities      |
| They ask questions and gather information      | number to other numbers?                    | 8: Consolidation (Number Relationships)      |
| about their school community. They             | - Do students understand the                |                                              |
| research its history, sporting records, and    | relationship between the whole and the      | Data Management and Probability Unit 1: Data |
| trends, and build an online survey to gather   | parts and use it to decompose their         | Management                                   |
| current information, both qualitative and      | number in different ways?                   | 1: Sorting People and Things                 |
| quantitative, from students and teachers.      | - Are students able to choose an            | 2: Interpreting Graphs                       |
| They organize and represent data in a          | appropriate scale or key for the graph?     | 3: Collecting & Organizing Data              |
| variety of ways, and use different scales      | - Are students able to use the graphs to    | 4: Drawing Graphs                            |
| (e.g., 1:2, 1:5, and 1:10) to represent larger | answer questions and draw conclusions?      |                                              |
| sets of data.                                  |                                             |                                              |
| Maps, Location & movement                      | - Can students identify the three types of  | Geometry Unit 3: Mapping and Coding          |
| Spatial Sense: E1.4                            | transformations (translations,              | 11: Describing Location                      |
|                                                | reflections, rotations)?                    | 12: Exploring Movements                      |
| They look at maps of the school and write      | - Do students visualize a pathway from      | 13: Describing Movement on a Map             |
| instructions on how to get from one point      | Start to Finish before they start, or do    | 14: Coding on a Grid                         |
| to another. They collect their findings and    | they work step by step?                     |                                              |
| graphs and present them as an orientation      | -Are students using transformational        |                                              |
| guide to the school.                           | language (e.g., slide, flip, turn) and      |                                              |
|                                                | directional language (e.g., up, down, left, |                                              |
|                                                | right) in their codes?                      |                                              |
| <b>Reflection:</b> Who are we?                 |                                             |                                              |

| Ontario Ministry Long Range Plan | Pearson Mathology                                                                            |                                                        |
|----------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|
| How much is 1000?                | Big Ideas                                                                                    |                                                        |
|                                  | • Numbers are related in many w                                                              | ays.                                                   |
|                                  | • Quantities and numbers can be                                                              | grouped by or partitioned into equal-sized units.      |
|                                  | • Formulating questions, collectin                                                           | g data, and consolidating data in visual and graphical |
|                                  | displays help us understand, pro                                                             | edict, and interpret situations that involve           |
|                                  | uncertainty, variability, and ran                                                            | domness.                                               |
|                                  | <ul> <li>Assigning a unit to a continuous attribute allows us to measure and make</li> </ul> |                                                        |
|                                  | comparisons.                                                                                 |                                                        |
| Time: October                    |                                                                                              |                                                        |
| Questions and Expectations       | What to Look For                                                                             | Little Books/Activity                                  |
|                                  |                                                                                              | <u>Fantastic Journeys</u>                              |
|                                  |                                                                                              | - estimate quantities to 1000                          |
|                                  |                                                                                              | - compare/order quantities to 1000                     |
|                                  |                                                                                              | Finding Buster                                         |
|                                  |                                                                                              | - compose to 1000 based on place value                 |
|                                  |                                                                                              | - compare/order numbers to 1000                        |

| Questions and Expectations                    | What to Look For                        | Little Books/Activity                             |
|-----------------------------------------------|-----------------------------------------|---------------------------------------------------|
| Compose, decompose & count amounts            | - Are students able to compare their    | Number Unit 2: Number Relationships               |
| to 1000, Compare & round amounts,             | number to other numbers?                | 7: Comparing and Ordering Quantities              |
| Place value, Number relationships,            | - Are students able to represent their  | 8: Consolidation (Number Relationships)           |
| Analyzing data                                | number in different ways?               |                                                   |
| Number: B1.1; B1.2; B1.3; B1.4; B1.5; B2.3    | - Are students able to choose an        | Number Unit 3: Place Value                        |
| Algebra: C1.4; C2.3                           | appropriate scale or key for the        | 9: Building Numbers                               |
| Data: D1.3; D1.5                              | graph?                                  | 10: Representing Numbers in Different Ways        |
| They consider ways to represent 1000 They     | - Do students include all the different | 11: What's the Number?                            |
| visualize 1000 and use that benchmark to      | features on the graph?                  | 12: Rounding Numbers                              |
| estimate other amounts. They create a class   | - Are students able to use the graphs   | 13: Consolidation (Place Value)                   |
| "thousands chart" and use that to count to    | to answer questions and draw            |                                                   |
| 1000 in different ways. They reaffirm the     | conclusions?                            | Data Management and Probability Unit 1: Data      |
| counting patterns through each of the         |                                         | Management                                        |
| bundreds and round numbers to nearby          |                                         | 1: Sorting People and Things                      |
| intervals. They compose and decompose         |                                         | 4: Drawing Graphs                                 |
| amounts to 1000 and use addition and          |                                         |                                                   |
| subtraction to make comparisons. They         |                                         |                                                   |
| identify place-value relationships, including |                                         |                                                   |
| the "times 10" relationships between the      |                                         |                                                   |
| columns. They look at bar graphs involving    |                                         |                                                   |
| populations up to 1000 and cut out and        |                                         |                                                   |
| reassemble the bars to show how the           |                                         |                                                   |
| population is composed and decomposed.        |                                         |                                                   |
| Metric units (km, m, mm)                      | - Are students using combinations of    | Measurement Unit 1: Length, Perimeter, and Time   |
| Spatial Sense: E2.1                           | metres and centimetres?                 | 1: Estimating Length                              |
| They use measurement units (km m mm)          | - Do students understand there are      | 2: Relating Millimetres, Centimetres, Metres, and |
| to visualize and compare what 1000 looks      | 100 centimetres in 1 metre?             | Kilometres                                        |
| like with different units. They recognize     | - Can students use objects of known     |                                                   |
| that the actual size of 1000 depends on the   | lengths to help them estimate the       |                                                   |
| unit being counted                            | lengths of other objects?               |                                                   |
| Reflection: How Much is 10002                 |                                         |                                                   |

| Ontario Ministry Long Range Plan            | Pearson Mathology                                                                                 |                                                         |
|---------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| What comes first? What comes next?          | Big Ideas                                                                                         |                                                         |
|                                             | <ul> <li>Regularity and repetition form patterns that can be generalized and predicted</li> </ul> |                                                         |
|                                             | mathematically.                                                                                   |                                                         |
|                                             | • Patterns and relations can be re                                                                | presented with symbols, equations, and expressions.     |
|                                             | • Assigning a unit to a continuous                                                                | attribute allows us to measure and make comparisons.    |
|                                             | Formulating questions, collecting                                                                 | g data, and consolidating data in visual and graphical  |
|                                             | displays neip us understand, pre                                                                  | down one of the situations that involve                 |
| Time: November                              | uncertainty, variability, and rand                                                                | domness.                                                |
| Ouestions and Expectations                  | What to Look For                                                                                  | Little Books/Activity                                   |
|                                             |                                                                                                   | Namir's Marvellous Masternieces                         |
|                                             |                                                                                                   | - investigate growing and shrinking patterns (further   |
|                                             |                                                                                                   | developed)                                              |
|                                             |                                                                                                   | - use equations to represent simple growing and         |
|                                             |                                                                                                   | shrinking patterns                                      |
|                                             |                                                                                                   | Chance                                                  |
|                                             |                                                                                                   | - explore the likelihood of different outcomes          |
|                                             |                                                                                                   | - investigate the fairness of games                     |
| Patterns & rules, Code events,              | - Are students able to write and                                                                  | Number Unit 1: Counting                                 |
| Number sequences to 1000                    | explain the pattern rule?                                                                         | 3: Skip-Counting Forward and Backward                   |
| Number: B1.2; B1.3; B1.4; B1.5              | - Are students able to extend increasing                                                          |                                                         |
| Algebra: C1.1; C1.2; C1.3; C1.4; C3.1; C3.2 | and decreasing patterns?                                                                          | Patterning and Algebra Unit 1: Patterns and Expressions |
| Data: D1.3; D1.4                            | - Are students able to show patterns in                                                           | 1: Describing and Extending Patterns                    |
| Spatial Sense: E2.3; E2.4; E2.5; E2.7       | different ways?                                                                                   | 2: Representing Patterns                                |
|                                             | - Can students apply the pattern rule to                                                          | 3: Creating Patterns                                    |
| They describe how things are ordered.       | identify missing terms and errors?                                                                | 4: Identifying Errors and Missing Terms                 |
| They identify pattern rules to predict what | - Do students associate the equal sign                                                            | 5: Solving Problems                                     |
| comes next. They see patterns in the        | with balance and understand that                                                                  | 6: Exploring Multiplicative Patterns                    |
| counting sequence to 1000 and use this to   | both sides of the equation must have                                                              | 9: Consolidation (Patterns and Expressions)             |
| order numbers and amounts.                  | the same value?                                                                                   |                                                         |
|                                             | - Are students able to use different                                                              |                                                         |
|                                             | strategies to solve for an unknown?                                                               |                                                         |

| Questions and Expectations                            | What to Look For                        | Little Books/Activity                                   |
|-------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|
| Measure mass, Measure capacity,                       | - Do students realize that the area     | Measurement Unit 3: Area, Mass, and Capacity            |
| Compare areas of shapes, Data analysis,               | measures for the rectangle are          | 9: Measuring Area Using Non-Standard Units              |
| Order by likelihood                                   | different because the squares on the    |                                                         |
| Spatial Sense: E2.1, E2.2                             | grids are of different sizes?           | Data Management and Probability Unit 1: Data            |
| Data: D1.5, D2.1, D2.2                                | - How are students estimating           | <u>Management</u>                                       |
|                                                       | mass/capacity? Are they using           | 1: Sorting People and Things                            |
| They compare and order different objects              | referents? Are their estimates          | 2: Interpreting Graphs                                  |
| by their mass and capacity after measuring            | reasonable?                             | 3: Collecting & Organizing Data                         |
| them with different non-standard units.               | - Are students able to use              | 4: Drawing Graphs                                       |
| They notice that, although different units            | mathematical language to describe       | 5: Identifying the Mode and the Mean                    |
| may produce different counts, the order               | the likelihood of winning the game?     | 6: Consolidation (Data Management)                      |
| remains constant.                                     | - Do students connect the fairness of a |                                                         |
| They compare and order the areas of                   | game to equally likely outcomes?        | Data Management and Probability Unit 2: Probability and |
| shapes by matching or rearranging the                 | - Are students able to choose an        | <u>Chance</u>                                           |
| areas and show that the same area can                 | appropriate scale or key for the        | 7: Making Predictions                                   |
| come in different shapes. They put code in            | graph?                                  | 8. Describing the Likelihood of Outcomes                |
| the right order so as to reach a desired              | - How are students identifying the      | 9: Who's Likely to Win?                                 |
| destination. They analyze different graphs            | mode?                                   | 10: Consolidation (Probability and Chance)              |
| and frequency tables and use them to                  | - Are students able to use the graphs   |                                                         |
| predict the likelihood that an event would            | to answer questions and draw            |                                                         |
| happen                                                | conclusions?                            |                                                         |
| <b>Reflection:</b> What comes first? What comes next? |                                         |                                                         |

| Ontario Ministry Long Range Plan       | Pearson Mathology                                                                                                                   |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| When is addition & subtraction useful? | Big Ideas                                                                                                                           |
|                                        | <ul> <li>Quantities and numbers can be added and subtracted to determine how many or how<br/>much.</li> </ul>                       |
|                                        | • Patterns and relations can be represented with symbols, equations, and expressions.                                               |
|                                        | <ul> <li>Many things in our world (e.g., objects, spaces, events) have attributes that can be<br/>measured and compared.</li> </ul> |
|                                        | • Assigning a unit to a continuous attribute allows us to measure and make comparisons.                                             |
| Time: December                         |                                                                                                                                     |

| Questions and Expectations                  | What to Look For                        | Little Books/Activity                                 |
|---------------------------------------------|-----------------------------------------|-------------------------------------------------------|
|                                             |                                         | Math Makes Me Laugh                                   |
|                                             |                                         | - add/subtract to 1000                                |
|                                             |                                         | - estimate, compare, and order numbers to 1000        |
|                                             |                                         | The Bunny Challenge                                   |
|                                             |                                         | - estimate, measure, and compare area                 |
|                                             |                                         | - estimate, measure, and compare perimeter            |
| Change, combine, & compare situations,      | - How are students                      | Number Unit 5: Addition and Subtraction               |
| Make change, Mental math & algorithms       | adding/subtracting?                     | 19: Modelling Addition and Subtraction                |
| Number: B1.1; B1.5; B2.1; B2.3; B2.4; B2.5  | - Are students able to use the          | 23: Creating and Solving Problems                     |
| Financial Literacy: F1.1                    | information in the problem to write a   | 24: Creating and Solving Problems with Larger Numbers |
|                                             | number sentence?                        | 25: Consolidation (Addition and Subtraction)          |
| They come to see that addition and          | - Are students able to round the prices |                                                       |
| subtraction are useful when needing to join | to help them estimate?                  | Number Unit 7: Financial Literacy                     |
| and separate amounts, combine amounts,      | - How are students finding the total    | 35: Estimating and Counting Money                     |
| or compare amounts. These include           | cost?                                   | 36: Adding and Subtracting Money Amounts              |
| situations where they must make change.     | - How do students find the amount left  | 37: Purchasing and Making Change                      |
| They represent these problem types with     | over?                                   | 38: Consolidation (Financial Literacy)                |
| part-whole models and number sentences.     |                                         |                                                       |
| They use mental math strategies and basic   |                                         |                                                       |
| facts to solve for unknown quantities. They |                                         |                                                       |
| also learn to use standard addition and     |                                         |                                                       |
| subtraction algorithms when quantities are  |                                         |                                                       |
| too large to manipulate mentally.           |                                         |                                                       |

| Questions and Expectations                                | What to Look For                       | Little Books/Activity                           |
|-----------------------------------------------------------|----------------------------------------|-------------------------------------------------|
| Measure perimeter, Compare                                | - Are students making reasonable       | Measurement Unit 1: Length, Perimeter, and Time |
| measurements                                              | estimates? Are they using personal     | 3: Measuring Length                             |
| Spatial Sense: E2.1; E2.3; E2.4; E2.8; E2.9               | referents?                             | 4: Introducing Perimeter                        |
|                                                           | - Do students recognize equal sides on | 5: Measuring Perimeter                          |
| They use addition and subtraction to solve                | a shape, or do they measure all        | 6: How Many Can You Make?                       |
| perimeter problems and see them as the                    | sides?                                 | 8: Consolidation (Length, Perimeter, and Time)  |
| joining or separating of lengths. They add                | - Are students able to make different  |                                                 |
| and subtract to compare measurements                      | shapes with the same perimeter?        |                                                 |
| involving length, mass, and capacity.                     |                                        |                                                 |
| <b>Reflection:</b> When is addition & subtraction useful? |                                        |                                                 |

| Ontario Ministry Long Range Plan    | Pearson Mathology                                    |                                                      |
|-------------------------------------|------------------------------------------------------|------------------------------------------------------|
| How can we describe 3-D objects and | Big Ideas                                            |                                                      |
| space?                              | • 2-D shapes and 3-D solids can be                   | e analyzed and classified in different ways by their |
|                                     | attributes.                                          |                                                      |
|                                     | <ul> <li>Assigning a unit to a continuous</li> </ul> | attribute allows us to measure and make              |
|                                     | comparisons.                                         |                                                      |
| Time: January                       |                                                      |                                                      |
| Questions and Expectations          | What to Look For                                     | Little Books/Activity                                |
|                                     |                                                      | <u>Goat Island</u>                                   |
|                                     |                                                      | - measure time, temperature, and length              |
|                                     |                                                      | - explore units of measure and their relationships   |
|                                     |                                                      | Measurements About YOU!                              |
|                                     |                                                      | - estimate, measure, and compare attributes          |
|                                     |                                                      | - identify and relate measures                       |
|                                     |                                                      | WONDERful Buildings                                  |
|                                     |                                                      | - identify, describe, and compare 2-D shapes and 3-D |
|                                     |                                                      | solids                                               |
|                                     |                                                      | - compose and decompose 2-D shapes and 3-D solids    |

| Questions and Expectations                   | What to Look For                         | Little Books/Activity                       |
|----------------------------------------------|------------------------------------------|---------------------------------------------|
| Measure 3-D objects (lengths, mass,          | - Are students able to identify the      | Geometry Unit 1: 2-D Shapes                 |
| capacity), Venn, Carroll, & tree diagrams,   | attributes of the different shapes?      | 1: Sorting Polygons                         |
| Compare, describe, & identify 3-D objects    | Are they able to sort by different       | 2: Exploring Congruency                     |
| Data: D1.1                                   | attributes?                              | 3: What's the Sorting Rule?                 |
| Spatial Sense: E1.1; E1.2; E1.3; E2.1; E2.2; | - Are students able to name the same     | 4: Composing Shapes                         |
| E2.3; E2.4; E2.5; E2.8; E2.9                 | shape in more than one way?              | 5: Consolidation (2-D Shapes)               |
|                                              | - Are students able to describe the      |                                             |
| They compare, describe, identify and         | geometric attributes of their solid?     | Geometry Unit 2: 3-D Solids                 |
| measure 3-D objects and space. They use      | Are they using mathematical              | 6: Exploring Geometric Attributes of Solids |
| Venn, Carroll, and tree diagrams to show     | language?                                | 7: Building Solids                          |
| relationships among prisms, pyramids,        | - Are students able to recognize real-   | 8: Constructing Skeletons                   |
| cylinders, and cones and their attributes.   | world examples of their solid?           | 9: Working with Nets                        |
|                                              | - Are students thinking about the        | 10: Consolidation (3-D Solids)              |
|                                              | numbers of edges and vertices when       |                                             |
|                                              | they pick the materials to make a        | Geometry Unit 4: Angles                     |
|                                              | skeleton?                                | 18: Investigating Angles                    |
|                                              | - What strategies are students using to  | 19: Comparing Angles                        |
|                                              | identify the net of their solid?         | 20: Consolidation (Angles)                  |
|                                              | - How are students comparing angles      |                                             |
|                                              | (e.g., using the geometric attributes    |                                             |
|                                              | of shapes, directly testing each angle,  |                                             |
|                                              | visualizing a benchmark angle)?          |                                             |
|                                              | - Are students able to identify an angle |                                             |
|                                              | as being a right angle, less than a      |                                             |
|                                              | right angle, or greater than a right     |                                             |
|                                              | angle?                                   |                                             |

| Questions and Expectations                                        | What to Look For                     | Little Books/Activity                           |
|-------------------------------------------------------------------|--------------------------------------|-------------------------------------------------|
| Measure areas, Compare cm <sup>2</sup> & m <sup>2</sup>           | - Do students realize that the area  | Measurement Unit 3: Area, Mass, and Capacity    |
| Spatial Sense: E2.2; E2.3; E2.4; E2.5; E2.8;                      | measures for the rectangle are       | 10: Measuring Area Using Standard Units         |
| E2.9                                                              | different because the squares on the | 11: Measuring Mass Using Non-Standard Units     |
|                                                                   | grids are of different sizes?        | 12: Measuring Capacity Using Non-Standard Units |
| They measure the mass and capacity of 3-D                         | - Are students using the measuring   | 13: Consolidation (Area, Mass, and Capacity)    |
| objects as well as their different lengths.                       | tools correctly?                     |                                                 |
| They measure the areas of different spaces                        | - Do students know the relationships |                                                 |
| and shapes, including those with curved                           | among the different standard units   |                                                 |
| sides. They use non-standard and standard                         | (e.g., g and kg, mL and L, two 250-g |                                                 |
| units of area (cm <sup>2</sup> and m <sup>2</sup> ) and decompose | masses are the same as one 500-g     |                                                 |
| and recompose units to avoid gaps and                             | mass)?                               |                                                 |
| overlaps. They compare the area of a                              |                                      |                                                 |
| square centimetre to a square metre and                           |                                      |                                                 |
| create different shapes with those same                           |                                      |                                                 |
| areas. They use these benchmark shapes                            |                                      |                                                 |
| to estimate the areas of shapes and                               |                                      |                                                 |
| spaces.                                                           |                                      |                                                 |
| <b>Reflection:</b> How can we describe 3-D objects and space?     |                                      |                                                 |

| Ontario Ministry Long Range Plan                |                                                                                   | Pearson Mathology                                      |
|-------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------|
| Are they the same?                              | Big Ideas                                                                         |                                                        |
|                                                 | • Quantities and numbers can be grouped by or partitioned into equal-sized units. |                                                        |
|                                                 | <ul> <li>Patterns and relations can be re</li> </ul>                              | presented with symbols, equations, and expressions.    |
|                                                 | • Objects can be located in space                                                 | and viewed from multiple perspectives.                 |
|                                                 | • Formulating questions, collectin                                                | g data, and consolidating data in visual and graphical |
|                                                 | displays help us understand, pro                                                  | edict, and interpret situations that involve           |
| Time: Fabruary                                  | uncertainty, variability, and ran                                                 | aomness.                                               |
| Ouestions and Expectations                      | What to Look For                                                                  | Little Books (Activity                                 |
|                                                 | What to Look For                                                                  | How Numbers Work                                       |
|                                                 |                                                                                   | <u>How Numbers Work</u>                                |
|                                                 |                                                                                   | - find and use number natterns                         |
| Translate/renresent natterns                    | - Can students represent their thinking                                           | Number Unit 1: Counting                                |
| Faujvalent expressions Compose                  | concretely nictorially and                                                        | 3: Skip-Counting Forward and Backward                  |
| decompose Compare & equalize                    | symbolically?                                                                     | 5. Skip-counting forward and backward                  |
| situations Skin counting repeated               | - Are students able to use their                                                  | Number Unit 2. Number Relationships                    |
| addition & multiplication                       | numbers to make a real-life story                                                 | 6: Composing and Decomposing Quantities                |
| Number: B1.1: B1.4: B1.5: B1.6: B1.7: B2.2      | problem?                                                                          |                                                        |
| Algebra: C1.1: C1.2: C1.3: C1.4                 |                                                                                   |                                                        |
|                                                 |                                                                                   |                                                        |
| They determine if quantities, patterns, shapes, |                                                                                   |                                                        |
| expressions, and movements are equal, and if    |                                                                                   |                                                        |
| not, how they might be equalized. They decide   |                                                                                   |                                                        |
| if repeating elements in patterns, translated   |                                                                                   |                                                        |
| into different forms, are equivalent. They      |                                                                                   |                                                        |
| compare different expressions, represented      |                                                                                   |                                                        |
| with different operations and amounts, and      |                                                                                   |                                                        |
| determine if they are equal. If they are not,   |                                                                                   |                                                        |
| they adjust the expressions to make them the    |                                                                                   |                                                        |
| same. They show how skip counting, repeated     |                                                                                   |                                                        |
| addition, and multiplication are the same, and  |                                                                                   |                                                        |
| do the same with division.                      |                                                                                   |                                                        |

| Questions and Expectations                     | What to Look For                        | Little Books/Activity                        |
|------------------------------------------------|-----------------------------------------|----------------------------------------------|
| Equivalent fractions & ratios, Coding          | - Are students able to use Pattern      | Number Unit 4: Fractions                     |
| events                                         | Blocks and rods to show different       | 15: Comparing Fractions 1                    |
| Number: B1.6; B1.7                             | fractions of a whole?                   | 16: Comparing Fractions 2                    |
| Algebra: C3.1, C3.2                            | - Are students able to label the parts  |                                              |
|                                                | with fraction words or symbols?         | Geometry Unit 4: Mapping and Coding          |
| They compare two different equal share         | - How do students compare fractions     | 14: Coding on a Grid                         |
| situations involving fractions and equalize    | of the same whole (e.g., by             | 15: Exploring Loops in Coding                |
| them so that all people in both situations     | comparing the parts concretely, by      | 16: Altering Code                            |
| receive the same amount. From this, they       | comparing the numerators)?              |                                              |
| identify equivalent fractions and ratios. They | - Are students using loops to show      |                                              |
| compare code and use repeating events to       | moves that repeat?                      |                                              |
| produce the same result.                       | - Do students understand that a         |                                              |
|                                                | symbol can be used to represent a       |                                              |
|                                                | series of moves?                        |                                              |
| Congruent 3-D objects, Mean as                 | - How are students identifying the      | Data Management and Probability Unit 1: Data |
| equalizing amounts, Mean, mode &               | mode and the mean?                      | Management                                   |
| likelihood                                     | - Are students able to use              | 1: Sorting People and Things                 |
| Spatial Sense: E1.3                            | mathematical language to describe       | 5: Identifying the Mode and the Mean         |
| Data: D1.4, D2.2                               | the likelihood of winning the game?     | 6: Consolidation (Data Management)           |
|                                                | - Do students connect the fairness of a |                                              |
| They identify congruent elements in 3-D        | game to equally likely outcomes?        |                                              |
| objects and determine if the objects           |                                         |                                              |
| themselves are congruent. They look at bar     |                                         |                                              |
| graphs, rearrange the bars to level and        |                                         |                                              |
| equalize them, and use this to explain the     |                                         |                                              |
| mean. They compare the mean and the            |                                         |                                              |
| mode and discuss how each might be used        |                                         |                                              |
| to describe likelihood.                        |                                         |                                              |
| <b>Reflection:</b> Are they the same?          |                                         |                                              |

| Ontario Ministry Long Range Plan        | Pearson Mathology                                                                          |                                     |
|-----------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------|
| How can we describe things that repeat? | Big Ideas                                                                                  |                                     |
|                                         | <ul> <li>Objects can be located in space and viewed from multiple perspectives.</li> </ul> |                                     |
|                                         | • Quantities and numbers can be grouped by, and partitioned into, units to determine       |                                     |
|                                         | how many or how much.                                                                      |                                     |
|                                         | • Assigning a unit to a continuous attribute allows us to measure and make comparisons.    |                                     |
|                                         | • Many things in our world (e.g., objects, spaces, events) have attributes that can be     |                                     |
|                                         | measured and compared.                                                                     |                                     |
| Time: March                             |                                                                                            |                                     |
| Questions and Expectations              | What to Look For                                                                           | Little Books/Activity               |
|                                         |                                                                                            | Planting Seeds                      |
|                                         |                                                                                            | - add/subtract to 1000              |
|                                         |                                                                                            | - develop concept of multiplication |

| Questions and Expectations                   | What to Look For                        | Little Books/Activity                             |
|----------------------------------------------|-----------------------------------------|---------------------------------------------------|
| Repeating elements & operations,             | - Are students able to follow a code to | Geometry Unit 3: Mapping and Coding               |
| Code repeating events, Skip count,           | perform a workout routine created by    | 11: Describing Location                           |
| Multiplication & division facts,             | other students?                         | 13: Describing Movement on a Map                  |
| Repeated unit fractions, Multiplication      | - Are students able to alter the code   | 14: Coding on a Grid                              |
| & division; ratio, Equivalent expressions    | and describe how the changes affect     | 15: Exploring Loops in Coding                     |
| Number: B1.4; B2.1; B2.2; B2.6; B2.7; B2.8;  | the outcomes?                           | 16: Altering Code                                 |
| B2.9                                         | - Are students able to give/interpret   | 20: Consolidation (Mapping and Coding)            |
| Algebra: C1.1; C1.2; C1.3; C2.1; C2.2; C2.3; | instructions using positional and       |                                                   |
| C3.1; C3.2                                   | directional language to accurately      | Number Unit 6: Multiplication and Division        |
| Financial Literacy: F1.1                     | describe/follow a route?                | 26: Exploring Multiplication                      |
|                                              | - Are students considering perspective  | 27: Exploring Division                            |
| They describe and represent repeating        | when giving directions, especially      | 28: Relating Multiplication and Division          |
| elements, movements, and operations,         | when they are sitting on opposite       | 29: Properties of Multiplication                  |
| including through the use of code. They      | sides of the map?                       | 30: Multiplying and Dividing Larger Numbers       |
| connect skip counting and repeated           | - Are students able to write a          | 31: Creating and Solving Problems                 |
| addition to multiplication and division as   | multiplication/division sentence for    | 33: Investigating Ratios                          |
| they learn their 2, 5, and 10 multiplication | an array?                               | 34: Consolidation (Multiplication and Division)   |
| and division facts. They also represent the  | - Do students recognize the             |                                                   |
| multiplication and division of numbers up    | relationship between multiplication     | Patterning and Algebra Unit 2: Repeating Patterns |
| to 10 × 10. They see how the repeated        | and division?                           | 10. Sorting with Attributes                       |
| addition of a unit fraction can be           | - Are students able to create a story   | 11: Identifying and Extending Patterns            |
| represented with a numerator. They           | problem to match a given                | 12: Creating Patterns                             |
| extend the idea of repeated groups to        | multiplication/division sentence?       | 13: Consolidation (Repeating Patterns)            |
| visualize situations involving ratios where  | - Are students able to choose the       |                                                   |
| they must scale quantities up.               | correct operation to solve a problem?   |                                                   |
|                                              | - Can students recognize a ratio as a   |                                                   |
|                                              | comparison of two numbers or            |                                                   |
|                                              | quantities measured in the same         |                                                   |
|                                              | unit?                                   |                                                   |

| Questions and Expectations                                 | What to Look For                      | Little Books/Activity                           |
|------------------------------------------------------------|---------------------------------------|-------------------------------------------------|
| Clocks, scales & units                                     | - Do students understand the          | Measurement Unit 1: Length, Perimeter, and Time |
| Spatial Sense: E2.2                                        | relationships between different units | 7: Telling Time                                 |
|                                                            | of time?                              | 8: Consolidation (Length, Perimeter, and Time)  |
| They use the idea of scale to understand                   | - Are students able to read the time  |                                                 |
| and read the scales on an analogue clock                   | shown on the analogue clock?          |                                                 |
| to tell time, one hand at a time. They                     |                                       |                                                 |
| compare analogue clocks with digital clocks                |                                       |                                                 |
| and practise telling time throughout the                   |                                       |                                                 |
| year.                                                      |                                       |                                                 |
| <b>Reflection:</b> How can we describe things that repeat? |                                       |                                                 |

| Ontario Ministry Long Range Plan      | Pearson Mathology                                                                       |                                                                                                                                |  |
|---------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| What are different ways to get there? | Big Ideas                                                                               |                                                                                                                                |  |
|                                       | • Quantities and numbers can be added and subtracted to determine how many or how much. |                                                                                                                                |  |
|                                       | • Patterns and relations can be represented with symbols, equations, and expressions.   |                                                                                                                                |  |
|                                       | • Objects can be located in space and viewed from multiple perspectives.                |                                                                                                                                |  |
| Time: April                           |                                                                                         |                                                                                                                                |  |
| Questions and Expectations            | What to Look For                                                                        | Little Books/Activity                                                                                                          |  |
|                                       |                                                                                         | The Street Party                                                                                                               |  |
|                                       |                                                                                         | - add/subtract to 1000                                                                                                         |  |
|                                       |                                                                                         |                                                                                                                                |  |
|                                       |                                                                                         | - compare/order numbers to 1000 (further developed)                                                                            |  |
|                                       |                                                                                         | A Week of Challenges                                                                                                           |  |
|                                       |                                                                                         | - compare/order numbers to 1000 (further developed) <u>A Week of Challenges</u> - use properties of equality to solve problems |  |

| Questions and Expectations                               | What to Look For                         | Little Books/Activity                        |
|----------------------------------------------------------|------------------------------------------|----------------------------------------------|
| Mental math, Equivalent expressions,                     | - What strategies are students using to  | Number Unit 5: Addition and Subtraction      |
| Coding events, Logic & tree diagrams                     | add/subtract (e.g., making friendly      | 20: Estimating Sums and Differences          |
| Number: B2.3; B2.4; B2.5                                 | numbers, using doubles,                  | 22: Using Mental Math to Add and Subtract    |
| Algebra: C2.1; C2.2; C2.3; C3.1; C3.2                    | decomposing, counting on or back)?       |                                              |
| Data: D1.1                                               | - Are students using estimation to help  | Geometry Unit 3: Mapping and Coding          |
| Spatial Sense: E1.4                                      | them decide if their answers are         | 14: Coding on a Grid                         |
| Financial Literacy: F1.1                                 | reasonable?                              | 15: Exploring Loops in Coding                |
|                                                          | - Do students visualize a pathway from   |                                              |
| They use and describe different strategies               | Start to Finish before they start, or do | Data Management and Probability Unit 1: Data |
| be spatial or numerical. They describe                   | they work step by step?                  | Management                                   |
| different paths to move from one location                | - Are students using transformational    | 1: Sorting People and Things                 |
| to another, using distances and turns in                 | language (e.g., slide, flip, turn) and   | 3: Collecting & Organizing Data              |
| their instructions. They create concurrent               | directional language (e.g., up, down,    | 6: Consolidation (Data Management)           |
| code, with repeating and non-repeating                   | <i>left, right) in their codes?</i>      |                                              |
| events, and determine the most efficient                 | - How do students decide how to          |                                              |
| path (and code). They use logic diagrams                 | decompose a number?                      |                                              |
| and flowcharts to describe sequences and                 | - Once students have decomposed a        |                                              |
| choices. They also compare different ways                | number, how do they find the sum         |                                              |
| to get to a numerical calculation, or ways               | (e.g., using a number line, using        |                                              |
| that an amount might be composed or                      | mental math, adding tens and then        |                                              |
| decomposed. They model equivalent                        | adding ones)?                            |                                              |
| expressions using tools such as number                   |                                          |                                              |
| lines. They compare mental math strategies               |                                          |                                              |
| and various standard algorithms as                       |                                          |                                              |
| different approaches to the same end.                    |                                          |                                              |
| <b>Reflection:</b> What are different ways to get there? |                                          |                                              |

| Ontario Ministry Long Range Plan | Pearson Mathology                                                                     |                                                         |
|----------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|
| How can we share things equally? | Big Ideas                                                                             |                                                         |
|                                  | • Quantities and numbers can be grouped by or partitioned into equal-sized units.     |                                                         |
|                                  | how many or how much.                                                                 |                                                         |
|                                  | • Patterns and relations can be represented with symbols, equations, and expressions. |                                                         |
| Time: May                        |                                                                                       |                                                         |
| Questions and Expectations       | What to Look For                                                                      | Little Books/Activity                                   |
|                                  |                                                                                       | Hockey Homework                                         |
|                                  |                                                                                       | - split wholes into equal parts (fractions)             |
|                                  |                                                                                       | - compare fractions                                     |
|                                  |                                                                                       | Sports Camp                                             |
|                                  |                                                                                       | - model and solve equal grouping/sharing problems       |
|                                  |                                                                                       | - relate adding to multiplying, subtracting to dividing |

| Questions and Expectations                          | What to Look For                       | Little Books/Activity                                   |
|-----------------------------------------------------|----------------------------------------|---------------------------------------------------------|
| Fractions, Partitive division,                      | - Are students able to use different   | Number Unit 4: Fractions                                |
| Relationship between division &                     | materials to model fractions?          | 14: Exploring Equal Parts                               |
| multiplication, Equivalent expressions,             | - Are students able to flexibly change | 15: Comparing Fractions 1                               |
| Many-to-one scales                                  | the whole to show different            | 16: Comparing Fractions 2                               |
| Number: B1.6; B1.7; B2.1; B2.6; B2.7                | fractions?                             | 17: Partitioning Sets                                   |
| Algebra: C2.2                                       | - Do students understand that when     | 18: Consolidation (Fractions)                           |
| Data: D1.3; D1.5                                    | working with a whole (area or          |                                                         |
|                                                     | length), the size of the parts must be | Number Unit 6: Multiplication and Division              |
| They connect equal sharing to fractions,            | equal, but when working with a set,    | 28: Relating Multiplication and Division                |
| (partitive) division, and multiplication. They      | the parts don't have to be equal       | 29: Properties of Multiplication                        |
| solve equal share problems involving                | sizes?                                 | 32: Building Fluency: The Games Room                    |
| fractions and use this to identify equivalent       | -Are students able to partition a      |                                                         |
| fractions. They solve equal share problems          | shape into halves, fourths, eighths,   | Patterning and Algebra Unit 1: Patterns and Expressions |
| involving whole numbers and represent               | thirds, and sixths?                    | 8: Equivalent Expressions                               |
| situations with drawings, concrete                  | - Do students realize that the number  |                                                         |
| materials, as well as with multiplication           | of equal parts names the unit (e.g.,   | Data Management and Probability Unit 1: Data            |
| and division expressions. They see how the          | an item cut into 3 equal parts shows   | Management                                              |
| same situation can be described with                | thirds)?                               | 4: Drawing Graphs                                       |
| multiplication and division. They use these         | - What strategies are students using   |                                                         |
| types of situations to continue practicing 2,       | to multiply/divide?                    |                                                         |
| 5, and 10 multiplication and division facts         | - Are students using the relationship  |                                                         |
| and to extend these to include                      | between multiplication and division?   |                                                         |
| multiplication facts to 10 and related              |                                        |                                                         |
| division facts. They apply this                     |                                        |                                                         |
| understanding as they choose a scale to             |                                        |                                                         |
| represent a set of data along an axis.              |                                        |                                                         |
| <b>Reflection:</b> How can we share things equally? |                                        |                                                         |

| Ontario Ministry Long Range Plan                 | Pearson Mathology                                                                    |                                                         |
|--------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------|
| How much is that?                                | Big Ideas                                                                            |                                                         |
|                                                  | • Quantities and numbers can be grouped by, and partitioned into, units to determine |                                                         |
|                                                  | how many or how much.                                                                |                                                         |
|                                                  | • Regularity and repetition form p                                                   | atterns that can be generalized and predicted           |
|                                                  | mathematically.                                                                      |                                                         |
| Time: June                                       |                                                                                      |                                                         |
| Questions and Expectations                       | What to Look For                                                                     | Little Books/Activity                                   |
|                                                  |                                                                                      | Calla's Jingle Dress                                    |
|                                                  |                                                                                      | - multiply and divide to 50                             |
|                                                  |                                                                                      | - add and subtract to 100                               |
| Skip count, Multiplication, Quotative            | -Do students recognize the relationship                                              | Number Unit 4: Fractions                                |
| division, including with fractions,              | between multiplication and division?                                                 | 17: Partitioning Sets                                   |
| Relationship between multiplication &            | -How do students deal with any                                                       |                                                         |
| division, Equivalent expressions,                | leftovers?                                                                           | Number Unit 6: Multiplication and Division              |
| Repeating operations                             | -Are students able to show patterns in                                               | 26: Exploring Multiplication                            |
| Number: B2.1; B2.2; B2.6; B2.7; B2.8             | different ways?                                                                      | 27: Exploring Division                                  |
| Algebra: C1.1; C2.2                              | -Are students able to use different                                                  | 31: Creating and Solving Problems                       |
| They work with ratios and equal groups as they   | strategies to solve for an unknown?                                                  |                                                         |
| extend their understanding of multiplication     | -Can students extend a repeating                                                     | Patterning and Algebra Unit 1: Patterns and Expressions |
| and division. They solve problems with equal     | pattern involving 2 attributes?                                                      | 1: Describing and Extending Patterns                    |
| groups and make connections between              | -Are students able to translate the                                                  | 5: Solving Problems                                     |
| multiplication and skip counting as they learn   | patterns?                                                                            | 6: Exploring Multiplicative Patterns                    |
| that multiplication determines the total product |                                                                                      | 9: Consolidation (Patterns and Expressions)             |
| when the number of groups and size of the        |                                                                                      |                                                         |
| groups are known. They also solve problems,      |                                                                                      | Patterning and Algebra Unit 2: Repeating Patterns       |
| where a total must be split into equal groups,   |                                                                                      | 10. Sorting with Attributes                             |
| and learn that division can be used to solve     |                                                                                      | 11: Identifying and Extending Patterns                  |
| both equal group and sharing situations. They    |                                                                                      | 12: Creating Patterns                                   |
| describe the relationship between multiplication |                                                                                      | 13: Consolidation (Repeating Patterns)                  |
| and division and work with quantities involving  |                                                                                      |                                                         |
| whole numbers, fractions, and fractions > 1.     |                                                                                      |                                                         |
| <b>Reflection:</b> How much is that?             |                                                                                      |                                                         |