mathôlogy

Mathology 3 and Ontario Ministry of Education Long-Range Plan: by Question

Ontario Ministry Long Range Plan	Pearson Mathology	
Who are we?	Big Ideas - Numbers tell us how many and how much. - Quantities and numbers can be grouped by or partitioned into equal-sized units. - Numbers are related in many ways. - Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. - 2-D shapes and 3-D solids can be transformed in many ways and analyzed for change. - Objects can be located in space and viewed from multiple perspectives.	
Time: September		
Questions and Expectations	What to Look For	Little Books/Activity
		Welcome to The Nature Park - interpret charts, tables, pictographs, and bar graphs - draw conclusions from data displays
		Gallery Tour - describe and compare transformations - identify, describe, and compare 2-D shapes

Questions and Expectations	What to Look For	Little Books/Activity
Data collection \& organization, Data visualization (many-to-one), Data analysis (mode only), Likelihood, Amounts to 1000, Skip counting \& ratios Number: B1.1; B1.2; B1.4; B2.9 Data: D1.1; D1.2; D1.3; D1.4; D1.5; D2.1; D2.2 They ask questions and gather information about their school community. They research its history, sporting records, and trends, and build an online survey to gather current information, both qualitative and quantitative, from students and teachers. They organize and represent data in a variety of ways, and use different scales (e.g., 1:2, 1:5, and 1:10) to represent larger sets of data.	- Do students say 3-digit numbers without using the word "and"? - Are students able to bridge tens and hundreds when counting on and back? - Are students able to use patterns to help them skip-count forward and backward? - Are students able to compare their number to other numbers? - Do students understand the relationship between the whole and the parts and use it to decompose their number in different ways? - Are students able to choose an appropriate scale or key for the graph? - Are students able to use the graphs to answer questions and draw conclusions?	Number Unit 1: Counting 1: Numbers All Around Us 2: Counting to 1000 3: Skip-Counting Forward and Backward 4: Consolidation (Counting) Number Unit 2: Number Relationships 6: Composing and Decomposing Quantities 8: Consolidation (Number Relationships) Data Management and Probability Unit 1: Data Management 1: Sorting People and Things 2: Interpreting Graphs 3: Collecting \& Organizing Data 4: Drawing Graphs
Maps, Location \& movement Spatial Sense: E1.4 They look at maps of the school and write instructions on how to get from one point to another. They collect their findings and graphs and present them as an orientation guide to the school.	- Can students identify the three types of transformations (translations, reflections, rotations)? - Do students visualize a pathway from Start to Finish before they start, or do they work step by step? -Are students using transformational language (e.g., slide, flip, turn) and directional language (e.g., up, down, left, right) in their codes?	Geometry Unit 3: Mapping and Coding 11: Describing Location 12: Exploring Movements 13: Describing Movement on a Map 14: Coding on a Grid
Reflection: Who are we?		

Ontario Ministry Long Range Plan	Pearson Mathology	
How much is 1000?	Big Ideas - Numbers are related in many ways. - Quantities and numbers can be grouped by or partitioned into equal-sized units. - Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness. - Assigning a unit to a continuous attribute allows us to measure and make comparisons.	
Time: October		
Questions and Expectations	What to Look For	Little Books/Activity
		Fantastic Journeys - estimate quantities to 1000 - compare/order quantities to 1000
		Finding Buster - compose to 1000 based on place value - compare/order numbers to 1000

Questions and Expectations	What to Look For	Little Books/Activity
Compose, decompose \& count amounts to 1000, Compare \& round amounts, Place value, Number relationships, Analyzing data Number: B1.1; B1.2; B1.3; B1.4; B1.5; B2.3 Algebra: C1.4; C2.3 Data: D1.3; D1.5 They consider ways to represent 1000. They visualize 1000 and use that benchmark to estimate other amounts. They create a class "thousands chart" and use that to count to 1000 in different ways. They reaffirm the counting patterns through each of the hundreds and round numbers to nearby intervals. They compose and decompose amounts to 1000 and use addition and subtraction to make comparisons. They identify place-value relationships, including the "times 10" relationships between the columns. They look at bar graphs involving populations up to 1000 and cut out and reassemble the bars to show how the population is composed and decomposed.	- Are students able to compare their number to other numbers? - Are students able to represent their number in different ways? - Are students able to choose an appropriate scale or key for the graph? - Do students include all the different features on the graph? - Are students able to use the graphs to answer questions and draw conclusions?	Number Unit 2: Number Relationships 7: Comparing and Ordering Quantities 8: Consolidation (Number Relationships) Number Unit 3: Place Value 9: Building Numbers 10: Representing Numbers in Different Ways 11: What's the Number? 12: Rounding Numbers 13: Consolidation (Place Value) Data Management and Probability Unit 1: Data Management 1: Sorting People and Things 4: Drawing Graphs
Metric units ($\mathbf{k m}, \mathbf{m}, \mathbf{m m}$) Spatial Sense: E2.1 They use measurement units (km, m, mm) to visualize and compare what 1000 looks like with different units. They recognize that the actual size of 1000 depends on the unit being counted.	- Are students using combinations of metres and centimetres? - Do students understand there are 100 centimetres in 1 metre? - Can students use objects of known lengths to help them estimate the lengths of other objects?	Measurement Unit 1: Length, Perimeter, and Time 1: Estimating Length 2: Relating Millimetres, Centimetres, Metres, and Kilometres
Reflection: How Much is 1000?		

Ontario Ministry Long Range Plan	Pearson Mathology	
What comes first? What comes next?	Big Ideas - Regularity and repetition form patterns that can be generalized and predicted mathematically. - Patterns and relations can be represented with symbols, equations, and expressions. - Assigning a unit to a continuous attribute allows us to measure and make comparisons. - Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness.	
Time: November		
Questions and Expectations	What to Look For	Little Books/Activity
		Namir's Marvellous Masterpieces - investigate growing and shrinking patterns (further developed) - use equations to represent simple growing and shrinking patterns
		Chance - explore the likelihood of different outcomes - investigate the fairness of games
Patterns \& rules, Code events, Number sequences to 1000 Number: B1.2; B1.3; B1.4; B1.5 Algebra: C1.1; C1.2; C1.3; C1.4; C3.1; C3.2 Data: D1.3; D1.4 Spatial Sense: E2.3; E2.4; E2.5; E2.7 They describe how things are ordered. They identify pattern rules to predict what comes next. They see patterns in the counting sequence to 1000 and use this to order numbers and amounts.	- Are students able to write and explain the pattern rule? - Are students able to extend increasing and decreasing patterns? - Are students able to show patterns in different ways? - Can students apply the pattern rule to identify missing terms and errors? - Do students associate the equal sign with balance and understand that both sides of the equation must have the same value? - Are students able to use different strategies to solve for an unknown?	Number Unit 1: Counting 3: Skip-Counting Forward and Backward Patterning and Algebra Unit 1: Patterns and Expressions 1: Describing and Extending Patterns 2: Representing Patterns 3: Creating Patterns 4: Identifying Errors and Missing Terms 5: Solving Problems 6: Exploring Multiplicative Patterns 9: Consolidation (Patterns and Expressions)

Questions and Expectations	What to Look For	Little Books/Activity
Measure mass, Measure capacity, Compare areas of shapes, Data analysis, Order by likelihood Spatial Sense: E2.1, E2.2 Data: D1.5, D2.1, D2.2 They compare and order different objects by their mass and capacity after measuring them with different non-standard units. They notice that, although different units may produce different counts, the order remains constant. They compare and order the areas of shapes by matching or rearranging the areas and show that the same area can come in different shapes. They put code in the right order so as to reach a desired destination. They analyze different graphs and frequency tables and use them to predict the likelihood that an event would happen	- Do students realize that the area measures for the rectangle are different because the squares on the grids are of different sizes? - How are students estimating mass/capacity? Are they using referents? Are their estimates reasonable? - Are students able to use mathematical language to describe the likelihood of winning the game? - Do students connect the fairness of a game to equally likely outcomes? - Are students able to choose an appropriate scale or key for the graph? - How are students identifying the mode? - Are students able to use the graphs to answer questions and draw conclusions?	Measurement Unit 3: Area, Mass, and Capacity 9: Measuring Area Using Non-Standard Units Data Management and Probability Unit 1: Data Management 1: Sorting People and Things 2: Interpreting Graphs 3: Collecting \& Organizing Data 4: Drawing Graphs 5: Identifying the Mode and the Mean 6: Consolidation (Data Management) Data Management and Probability Unit 2: Probability and Chance 7: Making Predictions 8. Describing the Likelihood of Outcomes 9: Who's Likely to Win? 10: Consolidation (Probability and Chance)
Reflection: What comes first? What comes next?		

Ontario Ministry Long Range Plan	Pearson Mathology	
When is addition \& subtraction useful?	- Quantities and numbers can be much. - Patterns and relations can be re - Many things in our world (e.g., obj measured and compared. - Assigning a unit to a continuous	Big Ideas added and subtracted to determine how many or how presented with symbols, equations, and expressions. bjects, spaces, events) have attributes that can be attribute allows us to measure and make comparisons.
Time: December		
Questions and Expectations	What to Look For	Little Books/Activity
		Math Makes Me Laugh - add/subtract to 1000 - estimate, compare, and order numbers to 1000
		The Bunny Challenge - estimate, measure, and compare area - estimate, measure, and compare perimeter
Change, combine, \& compare situations, Make change, Mental math \& algorithms Number: B1.1; B1.5; B2.1; B2.3; B2.4; B2.5 Financial Literacy: F1.1 They come to see that addition and subtraction are useful when needing to join and separate amounts, combine amounts, or compare amounts. These include situations where they must make change. They represent these problem types with part-whole models and number sentences. They use mental math strategies and basic facts to solve for unknown quantities. They also learn to use standard addition and subtraction algorithms when quantities are too large to manipulate mentally.	- How are students adding/subtracting? - Are students able to use the information in the problem to write a number sentence? - Are students able to round the prices to help them estimate? - How are students finding the total cost? - How do students find the amount left over?	Number Unit 5: Addition and Subtraction 19: Modelling Addition and Subtraction 23: Creating and Solving Problems 24: Creating and Solving Problems with Larger Numbers 25: Consolidation (Addition and Subtraction) Number Unit 7: Financial Literacy 35: Estimating and Counting Money 36: Adding and Subtracting Money Amounts 37: Purchasing and Making Change 38: Consolidation (Financial Literacy)

Questions and Expectations	What to Look For	Little Books/Activity
Measure perimeter, Compare measurements Spatial Sense: E2.1; E2.3; E2.4; E2.8; E2.9 They use addition and subtraction to solve perimeter problems and see them as the joining or separating of lengths. They add and subtract to compare measurements involving length, mass, and capacity.	- Are students making reasonable estimates? Are they using personal referents? - Do students recognize equal sides on a shape, or do they measure all sides? - Are students able to make different shapes with the same perimeter?	Measurement Unit 1: Length, Perimeter, and Time 3: Measuring Length 4: Introducing Perimeter 5: Measuring Perimeter 6: How Many Can You Make? 8: Consolidation (Length, Perimeter, and Time)

Ontario Ministry Long Range Plan	Pearson Mathology	
How can we describe 3-D objects and space?	Big Ideas - 2-D shapes and 3-D solids can be analyzed and classified in different ways by their attributes. - Assigning a unit to a continuous attribute allows us to measure and make comparisons.	
Time: January		
Questions and Expectations	What to Look For	Little Books/Activity
		Goat Island - measure time, temperature, and length - explore units of measure and their relationships
		Measurements About YOU! - estimate, measure, and compare attributes - identify and relate measures
		WONDERful Buildings - identify, describe, and compare 2-D shapes and 3-D solids - compose and decompose 2-D shapes and 3-D solids

Questions and Expectations	What to Look For	Little Books/Activity
Measure 3-D objects (lengths, mass, capacity), Venn, Carroll, \& tree diagrams, Compare, describe, \& identify 3-D objects Data: D1.1 Spatial Sense: E1.1; E1.2; E1.3; E2.1; E2.2; E2.3; E2.4; E2.5; E2.8; E2.9 They compare, describe, identify and measure 3-D objects and space. They use Venn, Carroll, and tree diagrams to show relationships among prisms, pyramids, cylinders, and cones and their attributes.	- Are students able to identify the attributes of the different shapes? Are they able to sort by different attributes? - Are students able to name the same shape in more than one way? - Are students able to describe the geometric attributes of their solid? Are they using mathematical language? - Are students able to recognize realworld examples of their solid? - Are students thinking about the numbers of edges and vertices when they pick the materials to make a skeleton? - What strategies are students using to identify the net of their solid? - How are students comparing angles (e.g., using the geometric attributes of shapes, directly testing each angle, visualizing a benchmark angle)? - Are students able to identify an angle as being a right angle, less than a right angle, or greater than a right angle?	Geometry Unit 1: 2-D Shapes 1: Sorting Polygons 2: Exploring Congruency 3: What's the Sorting Rule? 4: Composing Shapes 5: Consolidation (2-D Shapes) Geometry Unit 2: 3-D Solids 6: Exploring Geometric Attributes of Solids 7: Building Solids 8: Constructing Skeletons 9: Working with Nets 10: Consolidation (3-D Solids) Geometry Unit 4: Angles 18: Investigating Angles 19: Comparing Angles 20: Consolidation (Angles)

Questions and Expectations	What to Look For	Little Books/Activity
Measure areas, Compare $\mathbf{c m}^{2}$ \& $\mathbf{m}^{\mathbf{2}}$ Spatial Sense: E2.2; E2.3; E2.4; E2.5; E2.8; E2. 9 They measure the mass and capacity of 3-D objects as well as their different lengths. They measure the areas of different spaces and shapes, including those with curved sides. They use non-standard and standard units of area (cm^{2} and m^{2}) and decompose and recompose units to avoid gaps and overlaps. They compare the area of a square centimetre to a square metre and create different shapes with those same areas. They use these benchmark shapes to estimate the areas of shapes and spaces.	- Do students realize that the area measures for the rectangle are different because the squares on the grids are of different sizes? - Are students using the measuring tools correctly? - Do students know the relationships among the different standard units (e.g., g and kg, mL and L, two 250-g masses are the same as one $500-\mathrm{g}$ mass)?	Measurement Unit 3: Area, Mass, and Capacity 10: Measuring Area Using Standard Units 11: Measuring Mass Using Non-Standard Units 12: Measuring Capacity Using Non-Standard Units 13: Consolidation (Area, Mass, and Capacity)

Ontario Ministry Long Range Plan	Pearson Mathology Big Ideas - Quantities and numbers can be grouped by or partitioned into equal-sized units. - Patterns and relations can be represented with symbols, equations, and expressions. - Objects can be located in space and viewed from multiple perspectives. - Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness.	
Are they the same?		
Time: February		
Questions and Expectations	What to Look For	Little Books/Activity
		How Numbers Work - compose/decompose 3-digit numbers - find and use number patterns
Translate/represent patterns, Equivalent expressions, Composedecompose, Compare \& equalize situations, Skip counting, repeated addition, \& multiplication Number: B1.1; B1.4; B1.5; B1.6; B1.7; B2.2 Algebra: C1.1; C1.2; C1.3; C1.4 They determine if quantities, patterns, shapes, expressions, and movements are equal, and if not, how they might be equalized. They decide if repeating elements in patterns, translated into different forms, are equivalent. They compare different expressions, represented with different operations and amounts, and determine if they are equal. If they are not, they adjust the expressions to make them the same. They show how skip counting, repeated addition, and multiplication are the same, and do the same with division.	- Can students represent their thinking concretely, pictorially, and symbolically? - Are students able to use their numbers to make a real-life story problem?	Number Unit 1: Counting 3: Skip-Counting Forward and Backward Number Unit 2: Number Relationships 6: Composing and Decomposing Quantities

Questions and Expectations	What to Look For	Little Books/Activity
Equivalent fractions \& ratios, Coding events Number: B1.6; B1.7 Algebra: C3.1, C3.2 They compare two different equal share situations involving fractions and equalize them so that all people in both situations receive the same amount. From this, they identify equivalent fractions and ratios. They compare code and use repeating events to produce the same result. Congruent 3-D objects, Mean as equalizing amounts, Mean, mode \& likelihood Spatial Sense: E1.3 Data: D1.4, D2.2 They identify congruent elements in 3-D objects and determine if the objects themselves are congruent. They look at bar graphs, rearrange the bars to level and equalize them, and use this to explain the mean. They compare the mean and the mode and discuss how each might be used to describe likelihood.	- Are students able to use Pattern Blocks and rods to show different fractions of a whole? - Are students able to label the parts with fraction words or symbols? - How do students compare fractions of the same whole (e.g., by comparing the parts concretely, by comparing the numerators)? - Are students using loops to show moves that repeat? - Do students understand that a symbol can be used to represent a series of moves? - How are students identifying the mode and the mean? - Are students able to use mathematical language to describe the likelihood of winning the game? - Do students connect the fairness of a game to equally likely outcomes?	Number Unit 4: Fractions 15: Comparing Fractions 1 16: Comparing Fractions 2 Geometry Unit 4: Mapping and Coding 14: Coding on a Grid 15: Exploring Loops in Coding 16: Altering Code Data Management and Probability Unit 1: Data Management 1: Sorting People and Things 5: Identifying the Mode and the Mean 6: Consolidation (Data Management)
Reflection: Are they the same?		

Questions and Expectations	What to Look For	Little Books/Activity
Repeating elements \& operations, Code repeating events, Skip count, Multiplication \& division facts, Repeated unit fractions, Multiplication \& division; ratio, Equivalent expressions Number: B1.4; B2.1; B2.2; B2.6; B2.7; B2.8; B2.9 Algebra: C1.1; C1.2; C1.3; C2.1; C2.2; C2.3; C3.1; C3.2 Financial Literacy: F1.1 They describe and represent repeating elements, movements, and operations, including through the use of code. They connect skip counting and repeated addition to multiplication and division as they learn their 2,5 , and 10 multiplication and division facts. They also represent the multiplication and division of numbers up to 10×10. They see how the repeated addition of a unit fraction can be represented with a numerator. They extend the idea of repeated groups to visualize situations involving ratios where they must scale quantities up.	- Are students able to follow a code to perform a workout routine created by other students? - Are students able to alter the code and describe how the changes affect the outcomes? - Are students able to give/interpret instructions using positional and directional language to accurately describe/follow a route? - Are students considering perspective when giving directions, especially when they are sitting on opposite sides of the map? - Are students able to write a multiplication/division sentence for an array? - Do students recognize the relationship between multiplication and division? - Are students able to create a story problem to match a given multiplication/division sentence? - Are students able to choose the correct operation to solve a problem? - Can students recognize a ratio as a comparison of two numbers or quantities measured in the same unit?	Geometry Unit 3: Mapping and Coding 11: Describing Location 13: Describing Movement on a Map 14: Coding on a Grid 15: Exploring Loops in Coding 16: Altering Code 20: Consolidation (Mapping and Coding) Number Unit 6: Multiplication and Division 26: Exploring Multiplication 27: Exploring Division 28: Relating Multiplication and Division 29: Properties of Multiplication 30: Multiplying and Dividing Larger Numbers 31: Creating and Solving Problems 33: Investigating Ratios 34: Consolidation (Multiplication and Division) Patterning and Algebra Unit 2: Repeating Patterns 10. Sorting with Attributes 11: Identifying and Extending Patterns 12: Creating Patterns 13: Consolidation (Repeating Patterns)

Questions and Expectations	What to Look For	Little Books/Activity
Clocks, scales \& units Spatial Sense: E2.2 They use the idea of scale to understand and read the scales on an analogue clock to tell time, one hand at a time. They compare analogue clocks with digital clocks and practise telling time throughout the year.	- Do students understand the relationships between different units of time? - Are students able to read the time shown on the analogue clock?	Measurement Unit 1: Length, Perimeter, and Time 7: Telling Time 8: Consolidation (Length, Perimeter, and Time)
Reflection: How can we describe things that repeat?		

Ontario Ministry Long Range Plan		Pearson Mathology
What are different ways to get there?	Big Ideas - Quantities and numbers can be added and subtracted to determine how many or how much. - Patterns and relations can be represented with symbols, equations, and expressions. - Objects can be located in space and viewed from multiple perspectives.	
Time: April		
Questions and Expectations	What to Look For	Little Books/Activity
		The Street Party - add/subtract to 1000 - compare/order numbers to 1000 (further developed)
		A Week of Challenges - use properties of equality to solve problems - use the language of algebra

Questions and Expectations	What to Look For	Little Books/Activity
Mental math, Equivalent expressions, Coding events, Logic \& tree diagrams Number: B2.3; B2.4; B2.5 Algebra: C2.1; C2.2; C2.3; C3.1; C3.2 Data: D1.1 Spatial Sense: E1.4 Financial Literacy: F1.1 They use and describe different strategies be spatial or numerical. They describe different paths to move from one location to another, using distances and turns in their instructions. They create concurrent code, with repeating and non-repeating events, and determine the most efficient path (and code). They use logic diagrams and flowcharts to describe sequences and choices. They also compare different ways to get to a numerical calculation, or ways that an amount might be composed or decomposed. They model equivalent expressions using tools such as number lines. They compare mental math strategies and various standard algorithms as different approaches to the same end.	- What strategies are students using to add/subtract (e.g., making friendly numbers, using doubles, decomposing, counting on or back)? - Are students using estimation to help them decide if their answers are reasonable? - Do students visualize a pathway from Start to Finish before they start, or do they work step by step? Are students using transformational Ianguage (e.g., slide, flip, turn) and directional language (e.g., up, down, left, right) in their codes? - How do students decide how to decompose a number? Once students have decomposed a number, how do they find the sum (e.g., using a number line, using mental math, adding tens and then adding ones)?	Number Unit 5: Addition and Subtraction 20: Estimating Sums and Differences 22: Using Mental Math to Add and Subtract Geometry Unit 3: Mapping and Coding 14: Coding on a Grid 15: Exploring Loops in Coding Data Management and Probability Unit 1: Data Management 1: Sorting People and Things 3: Collecting \& Organizing Data 6: Consolidation (Data Management)

Reflection: What are different ways to get there?

Ontario Ministry Long Range Plan	Pearson Mathology Big Ideas - Quantities and numbers can be grouped by or partitioned into equal-sized units. - Quantities and numbers can be grouped by, and partitioned into, units to determine how many or how much. - Patterns and relations can be represented with symbols, equations, and expressions.	
How can we share things equally?		
Time: May		
Questions and Expectations	What to Look For	Little Books/Activity
		Hockey Homework - split wholes into equal parts (fractions) - compare fractions
		Sports Camp - model and solve equal grouping/sharing problems - relate adding to multiplying, subtracting to dividing

Questions and Expectations	What to Look For	Little Books/Activity
Fractions, Partitive division, Relationship between division \& multiplication, Equivalent expressions, Many-to-one scales Number: B1.6; B1.7; B2.1; B2.6; B2.7 Algebra: C2.2 Data: D1.3; D1.5 They connect equal sharing to fractions, (partitive) division, and multiplication. They solve equal share problems involving fractions and use this to identify equivalent fractions. They solve equal share problems involving whole numbers and represent situations with drawings, concrete materials, as well as with multiplication and division expressions. They see how the same situation can be described with multiplication and division. They use these types of situations to continue practicing 2, 5 , and 10 multiplication and division facts and to extend these to include multiplication facts to 10 and related division facts. They apply this understanding as they choose a scale to represent a set of data along an axis.	- Are students able to use different materials to model fractions? - Are students able to flexibly change the whole to show different fractions? - Do students understand that when working with a whole (area or length), the size of the parts must be equal, but when working with a set, the parts don't have to be equal sizes? - Are students able to partition a shape into halves, fourths, eighths, thirds, and sixths? - Do students realize that the number of equal parts names the unit (e.g., an item cut into 3 equal parts shows thirds)? - What strategies are students using to multiply/divide? - Are students using the relationship between multiplication and division?	Number Unit 4: Fractions 14: Exploring Equal Parts 15: Comparing Fractions 1 16: Comparing Fractions 2 17: Partitioning Sets 18: Consolidation (Fractions) Number Unit 6: Multiplication and Division 28: Relating Multiplication and Division 29: Properties of Multiplication 32: Building Fluency: The Games Room Patterning and Algebra Unit 1: Patterns and Expressions 8: Equivalent Expressions Data Management and Probability Unit 1: Data Management 4: Drawing Graphs
Reflection: How can we share things equally?		

Ontario Ministry Long Range Plan	Pearson Mathology	
How much is that?	Big Ideas - Quantities and numbers can be grouped by, and partitioned into, units to determine how many or how much. - Regularity and repetition form patterns that can be generalized and predicted mathematically.	
Time: June		
Questions and Expectations	What to Look For	Little Books/Activity
		Calla's Jingle Dress - multiply and divide to 50 - add and subtract to 100
Skip count, Multiplication, Quotative division, including with fractions, Relationship between multiplication \& division, Equivalent expressions, Repeating operations Number: B2.1; B2.2; B2.6; B2.7; B2.8 Algebra: C1.1; C2.2 They work with ratios and equal groups as they extend their understanding of multiplication and division. They solve problems with equal groups and make connections between multiplication and skip counting as they learn that multiplication determines the total product when the number of groups and size of the groups are known. They also solve problems, where a total must be split into equal groups, and learn that division can be used to solve both equal group and sharing situations. They describe the relationship between multiplication and division and work with quantities involving whole numbers, fractions, and fractions > 1 .	-Do students recognize the relationship between multiplication and division? -How do students deal with any leftovers? -Are students able to show patterns in different ways? -Are students able to use different strategies to solve for an unknown? -Can students extend a repeating pattern involving 2 attributes? -Are students able to translate the patterns?	Number Unit 4: Fractions 17: Partitioning Sets Number Unit 6: Multiplication and Division 26: Exploring Multiplication 27: Exploring Division 31: Creating and Solving Problems Patterning and Algebra Unit 1: Patterns and Expressions 1: Describing and Extending Patterns 5: Solving Problems 6: Exploring Multiplicative Patterns 9: Consolidation (Patterns and Expressions) Patterning and Algebra Unit 2: Repeating Patterns 10. Sorting with Attributes 11: Identifying and Extending Patterns 12: Creating Patterns 13: Consolidation (Repeating Patterns)
Reflection: How much is that?		

