
The
C++

Programming
Language

Fourth Edition

Bjarne Stroustrup

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico CitySam
ple

 pa
ge

s

Contents

Contents iii

Preface v

Preface to the Fourth Edition .. v
Preface to the Third Edition .. ix
Preface to the Second Edition ... xi
Preface to the First Edition ... xii

Part I: Introductory Material 1

1. Notes to the Reader ... 3
2. A Tour of C++: The Basics ... 37
3. A Tour of C++: Abstraction Mechanisms 59
4. A Tour of C++: Containers and Algorithms 87
5. A Tour of C++: Concurrency and Utilities 111

Part II: Basic Facilities 133

6. Types and Declarations ... 135
7. Pointers, Arrays, and References .. 171
8. Structures, Unions, and Enumerations .. 201
9. Statements ... 225

10. Expressions ... 241

Sam
ple

 pa
ge

s

iv Contents

11. Select Operations .. 273
12. Functions ... 305
13. Exception Handling .. 343
14. Namespaces ... 389
15. Source Files and Programs .. 419

Part III: Abstraction Mechanisms 447

16. Classes .. 449
17. Construction, Cleanup, Copy, and Move 481
18. Operator Overloading ... 527
19. Special Operators .. 549
20. Derived Classes ... 577
21. Class Hierarchies .. 613
22. Run-Time Type Information ... 641
23. Templates .. 665
24. Generic Programming ... 699
25. Specialization .. 721
26. Instantiation .. 741
27. Templates and Hierarchies .. 759
28. Metaprogramming ... 779
29. A Matrix Design ... 827

Part IV: The Standard Library 857

30. Standard Library Summary ... 859
31. STL Containers ... 885
32. STL Algorithms .. 927
33. STL Iterators ... 953
34. Memory and Resources ... 973
35. Utilities .. 1009
36. Strings ... 1033
37. Regular Expressions .. 1051
38. I/O Streams ... 1073
39. Locales .. 1109
40. Numerics ... 1159
41. Concurrency .. 1191
42. Threads and Tasks ... 1209
43. The C Standard Library .. 1253
44. Compatibility .. 1267

Index 1281

Sam
ple

 pa
ge

s

2
A Tour of C++: The Basics

The first thing we do, let’s
kill all the language lawyers.

– Henry VI, Part II

• Introduction
• The Basics

Hello, World!; Types, Variables, and Arithmetic; Constants; Tests and Loops; Pointers,
Arrays, and Loops

• User-Defined Types
Structures; Classes; Enumerations

• Modularity
Separate Compilation; Namespaces; Error Handling

• Postscript
• Advice

2.1 Introduction
The aim of this chapter and the next three is to give you an idea of what C++ is, without going into
a lot of details. This chapter informally presents the notation of C++, C++’s model of memory and
computation, and the basic mechanisms for organizing code into a program. These are the lan-
guage facilities supporting the styles most often seen in C and sometimes called procedural pro-
gramming. Chapter 3 follows up by presenting C++’s abstraction mechanisms. Chapter 4 and
Chapter 5 give examples of standard-library facilities.

The assumption is that you have programmed before. If not, please consider reading a text-
book, such as Programming: Principles and Practice Using C++ [Stroustrup,2009], before contin-
uing here. Even if you have programmed before, the language you used or the applications you
wrote may be very different from the style of C++ presented here. If you find this ‘‘lightning tour’’
confusing, skip to the more systematic presentation starting in Chapter 6.

Sam
ple

 pa
ge

s

38 A Tour of C++: The Basics Chapter 2

This tour of C++ saves us from a strictly bottom-up presentation of language and library facili-
ties by enabling the use of a rich set of facilities even in early chapters. For example, loops are not
discussed in detail until Chapter 10, but they will be used in obvious ways long before that. Simi-
larly, the detailed description of classes, templates, free-store use, and the standard library are
spread over many chapters, but standard-library types, such as vector, string, complex, map,
unique_ptr, and ostream, are used freely where needed to improve code examples.

As an analogy, think of a short sightseeing tour of a city, such as Copenhagen or New York. In
just a few hours, you are given a quick peek at the major attractions, told a few background stories,
and usually given some suggestions about what to see next. You do not know the city after such a
tour. You do not understand all you have seen and heard. To really know a city, you have to liv e in
it, often for years. However, with a bit of luck, you will have gained a bit of an overview, a notion
of what is special about the city, and ideas of what might be of interest to you. After the tour, the
real exploration can begin.

This tour presents C++ as an integrated whole, rather than as a layer cake. Consequently, it
does not identify language features as present in C, part of C++98, or new in C++11. Such histori-
cal information can be found in §1.4 and Chapter 44.

2.2 The Basics
C++ is a compiled language. For a program to run, its source text has to be processed by a com-
piler, producing object files, which are combined by a linker yielding an executable program. A
C++ program typically consists of many source code files (usually simply called source files).

source file 1

source file 2

compile

compile

object file 1

object file 2
link executable file

An executable program is created for a specific hardware/system combination; it is not portable,
say, from a Mac to a Windows PC. When we talk about portability of C++ programs, we usually
mean portability of source code; that is, the source code can be successfully compiled and run on a
variety of systems.

The ISO C++ standard defines two kinds of entities:
• Core language features, such as built-in types (e.g., char and int) and loops (e.g., for-state-

ments and while-statements)
• Standard-library components, such as containers (e.g., vector and map) and I/O operations

(e.g., << and getline())
The standard-library components are perfectly ordinary C++ code provided by every C++ imple-
mentation. That is, the C++ standard library can be implemented in C++ itself (and is with very
minor uses of machine code for things such as thread context switching). This implies that C++ is
sufficiently expressive and efficient for the most demanding systems programming tasks.

C++ is a statically typed language. That is, the type of every entity (e.g., object, value, name,
and expression) must be known to the compiler at its point of use. The type of an object determines
the set of operations applicable to it.

Sam
ple

 pa
ge

s

Section 2.2.1 Hello, World! 39

2.2.1 Hello, World!

The minimal C++ program is

int main() { } // the minimal C++ program

This defines a function called main, which takes no arguments and does nothing (§15.4).
Curly braces, { }, express grouping in C++. Here, they indicate the start and end of the function

body. The double slash, //, begins a comment that extends to the end of the line. A comment is for
the human reader; the compiler ignores comments.

Every C++ program must have exactly one global function named main(). The program starts
by executing that function. The int value returned by main(), if any, is the program’s return value to
‘‘the system.’’ If no value is returned, the system will receive a value indicating successful comple-
tion. A nonzero value from main() indicates failure. Not ev ery operating system and execution
environment make use of that return value: Linux/Unix-based environments often do, but Win-
dows-based environments rarely do.

Typically, a program produces some output. Here is a program that writes Hello, World!:

#include <iostream>

int main()
{

std::cout << "Hello, World!\n";
}

The line #include <iostream> instructs the compiler to include the declarations of the standard
stream I/O facilities as found in iostream. Without these declarations, the expression

std::cout << "Hello, World!\n"

would make no sense. The operator << (‘‘put to’’) writes its second argument onto its first. In this
case, the string literal "Hello, World!\n" is written onto the standard output stream std::cout. A string
literal is a sequence of characters surrounded by double quotes. In a string literal, the backslash
character \ followed by another character denotes a single ‘‘special character.’’ In this case, \n is the
newline character, so that the characters written are Hello, World! followed by a newline.

The std:: specifies that the name cout is to be found in the standard-library namespace (§2.4.2,
Chapter 14). I usually leave out the std:: when discussing standard features; §2.4.2 shows how to
make names from a namespace visible without explicit qualification.

Essentially all executable code is placed in functions and called directly or indirectly from
main(). For example:

#include <iostream>
using namespace std; // make names from std visible without std:: (§2.4.2)

double square(double x) // square a double precision floating-point number
{

return x∗x;
}

Sam
ple

 pa
ge

s

40 A Tour of C++: The Basics Chapter 2

void print_square(double x)
{

cout << "the square of " << x << " is " << square(x) << "\n";
}

int main()
{

print_square(1.234); // pr int: the square of 1.234 is 1.52276
}

A ‘‘return type’’ void indicates that a function does not return a value.

2.2.2 Types, Variables, and Arithmetic

Every name and every expression has a type that determines the operations that may be performed
on it. For example, the declaration

int inch;

specifies that inch is of type int; that is, inch is an integer variable.
A declaration is a statement that introduces a name into the program. It specifies a type for the

named entity:
• A type defines a set of possible values and a set of operations (for an object).
• An object is some memory that holds a value of some type.
• A value is a set of bits interpreted according to a type.
• A variable is a named object.
C++ offers a variety of fundamental types. For example:

bool // Boolean, possible values are true and false
char // character, for example, 'a', 'z', and '9'
int // integer, for example, -213, 42, and 1066
double // double-precision floating-point number, for example, 3.14 and 299793.0

Each fundamental type corresponds directly to hardware facilities and has a fixed size that deter-
mines the range of values that can be stored in it:

bool:

char:

int:

double:

A char variable is of the natural size to hold a character on a given machine (typically an 8-bit
byte), and the sizes of other types are quoted in multiples of the size of a char. The size of a type is
implementation-defined (i.e., it can vary among different machines) and can be obtained by the
siz eof operator; for example, siz eof(char) equals 1 and siz eof(int) is often 4.

The arithmetic operators can be used for appropriate combinations of these types:

Sam
ple

 pa
ge

s

Section 2.2.2 Types, Variables, and Arithmetic 41

x+y // plus
+x // unar y plus
x−y // minus
−x // unar y minus
x∗y // multiply
x/y // divide
x%y // remainder (modulus) for integers

So can the comparison operators:

x==y // equal
x!=y // not equal
x<y // less than
x>y // greater than
x<=y // less than or equal
x>=y // greater than or equal

In assignments and in arithmetic operations, C++ performs all meaningful conversions (§10.5.3)
between the basic types so that they can be mixed freely:

void some_function() // function that doesn’t return a value
{

double d = 2.2; // initialize floating-point number
int i = 7; // initialize integer
d = d+i; // assign sum to d
i = d∗i; // assign product to i (truncating the double d*i to an int)

}

Note that = is the assignment operator and == tests equality.
C++ offers a variety of notations for expressing initialization, such as the = used above, and a

universal form based on curly-brace-delimited initializer lists:

double d1 = 2.3; // initialize d1 with 2.3
double d2 {2.3}; // initialize d2 with 2.3

complex<double> z = 1; // a complex number with double-precision floating-point scalars
complex<double> z2 {d1,d2};
complex<double> z3 = {1,2}; // the = is optional with { ... }

vector<int> v {1,2,3,4,5,6}; // a vector of ints

The = form is traditional and dates back to C, but if in doubt, use the general {}-list form (§6.3.5.2).
If nothing else, it saves you from conversions that lose information (narrowing conversions; §10.5):

int i1 = 7.2; // i1 becomes 7 (surpr ise?)
int i2 {7.2}; // error : floating-point to integer conversion
int i3 = {7.2}; // error : floating-point to integer conversion (the = is redundant)

A constant (§2.2.3) cannot be left uninitialized and a variable should only be left uninitialized in
extremely rare circumstances. Don’t introduce a name until you have a suitable value for it. User-
defined types (such as string, vector, Matrix, Motor_controller, and Orc_warrior) can be defined to be
implicitly initialized (§3.2.1.1).

Sam
ple

 pa
ge

s

42 A Tour of C++: The Basics Chapter 2

When defining a variable, you don’t actually need to state its type explicitly when it can be
deduced from the initializer:

auto b = true; // a bool
auto ch = 'x'; // a char
auto i = 123; // an int
auto d = 1.2; // a double
auto z = sqrt(y); // z has the type of whatever sqr t(y) retur ns

With auto, we use the = syntax because there is no type conversion involved that might cause prob-
lems (§6.3.6.2).

We use auto where we don’t hav e a specific reason to mention the type explicitly. ‘‘Specific
reasons’’ include:

• The definition is in a large scope where we want to make the type clearly visible to readers
of our code.

• We want to be explicit about a variable’s range or precision (e.g., double rather than float).
Using auto, we avoid redundancy and writing long type names. This is especially important in
generic programming where the exact type of an object can be hard for the programmer to know
and the type names can be quite long (§4.5.1).

In addition to the conventional arithmetic and logical operators (§10.3), C++ offers more spe-
cific operations for modifying a variable:

x+=y // x = x+y
++x // increment: x = x+1
x−=y // x = x-y
−−x // decrement: x = x-1
x∗=y // scaling: x = x*y
x/=y // scaling: x = x/y
x%=y // x = x%y

These operators are concise, convenient, and very frequently used.

2.2.3 Constants

C++ supports two notions of immutability (§7.5):
• const: meaning roughly ‘‘I promise not to change this value’’ (§7.5). This is used primarily

to specify interfaces, so that data can be passed to functions without fear of it being modi-
fied. The compiler enforces the promise made by const.

• constexpr: meaning roughly ‘‘to be evaluated at compile time’’ (§10.4). This is used primar-
ily to specify constants, to allow placement of data in read-only memory (where it is
unlikely to be corrupted), and for performance.

For example:

const int dmv = 17; // dmv is a named constant
int var = 17; // var is not a constant
constexpr double max1 = 1.4∗square(dmv); // OK if square(17) is a constant expression
constexpr double max2 = 1.4∗square(var); // error : var is not a constant expression
const double max3 = 1.4∗square(var); // OK, may be evaluated at run time

Sam
ple

 pa
ge

s

Section 2.2.3 Constants 43

double sum(const vector<double>&); // sum will not modify its argument (§2.2.5)
vector<double> v {1.2, 3.4, 4.5}; // v is not a constant
const double s1 = sum(v); // OK: evaluated at run time
constexpr double s2 = sum(v); // error : sum(v) not constant expression

For a function to be usable in a constant expression, that is, in an expression that will be evaluated
by the compiler, it must be defined constexpr. For example:

constexpr double square(double x) { return x∗x; }

To be constexpr, a function must be rather simple: just a return-statement computing a value. A
constexpr function can be used for non-constant arguments, but when that is done the result is not a
constant expression. We allow a constexpr function to be called with non-constant-expression argu-
ments in contexts that do not require constant expressions, so that we don’t hav e to define essen-
tially the same function twice: once for constant expressions and once for variables.

In a few places, constant expressions are required by language rules (e.g., array bounds (§2.2.5,
§7.3), case labels (§2.2.4, §9.4.2), some template arguments (§25.2), and constants declared using
constexpr). In other cases, compile-time evaluation is important for performance. Independently of
performance issues, the notion of immutability (of an object with an unchangeable state) is an
important design concern (§10.4).

2.2.4 Tests and Loops

C++ provides a conventional set of statements for expressing selection and looping. For example,
here is a simple function that prompts the user and returns a Boolean indicating the response:

bool accept()
{

cout << "Do you want to proceed (y or n)?\n"; // wr ite question

char answer = 0;
cin >> answer; // read answer

if (answer == 'y') return true;
return false;

}

To match the << output operator (‘‘put to’’), the >> operator (‘‘get from’’) is used for input; cin is
the standard input stream. The right-hand operand of >> is the target of the input operation and that
operand’s type determines what input the >> accepts. The \n character at the end of the output
string represents a newline (§2.2.1).

The example could be improved by taking an n (for ‘‘no’’) answer into account:

bool accept2()
{

cout << "Do you want to proceed (y or n)?\n"; // wr ite question

char answer = 0;
cin >> answer; // read answer

Sam
ple

 pa
ge

s

44 A Tour of C++: The Basics Chapter 2

switch (answer) {
case 'y':

return true;
case 'n':

return false;
default:

cout << "I'll take that for a no.\n";
return false;

}
}

A switch-statement tests a value against a set of constants. The case constants must be distinct, and
if the value tested does not match any of them, the default is chosen. If no default is provided, no
action is taken if the value doesn’t match any case constant.

Few programs are written without loops. For example, we might like to giv e the user a few tries
to produce acceptable input:

bool accept3()
{

int tries = 1;
while (tries<4) {

cout << "Do you want to proceed (y or n)?\n"; // wr ite question
char answer = 0;
cin >> answer; // read answer

switch (answer) {
case 'y':

return true;
case 'n':

return false;
default:

cout << "Sorry, I don't understand that.\n";
++tries; // increment

}
}
cout << "I'll take that for a no.\n";
return false;

}

The while-statement executes until its condition becomes false.

2.2.5 Pointers, Arrays, and Loops

An array of elements of type char can be declared like this:

char v[6]; // array of 6 characters

Similarly, a pointer can be declared like this:

char∗ p; // pointer to character

In declarations, [] means ‘‘array of’’ and ∗ means ‘‘pointer to.’’ All arrays have 0 as their lower

Sam
ple

 pa
ge

s

Section 2.2.5 Pointers, Arrays, and Loops 45

bound, so v has six elements, v[0] to v[5]. The size of an array must be a constant expression
(§2.2.3). A pointer variable can hold the address of an object of the appropriate type:

char∗ p = &v[3]; // p points to v’s four th element
char x = ∗p; // *p is the object that p points to

In an expression, prefix unary ∗ means ‘‘contents of’’ and prefix unary & means ‘‘address of.’’ We
can represent the result of that initialized definition graphically:

p:

v:
0: 1: 2: 3: 4: 5:

Consider copying ten elements from one array to another:

void copy_fct()
{

int v1[10] = {0,1,2,3,4,5,6,7,8,9};
int v2[10]; // to become a copy of v1

for (auto i=0; i!=10; ++i) // copy elements
v2[i]=v1[i];

// ...
}

This for-statement can be read as ‘‘set i to zero; while i is not 10, copy the ith element and increment
i.’’ When applied to an integer variable, the increment operator, ++, simply adds 1. C++ also offers
a simpler for-statement, called a range-for-statement, for loops that traverse a sequence in the sim-
plest way:

void print()
{

int v[] = {0,1,2,3,4,5,6,7,8,9};

for (auto x : v) // for each x in v
cout << x << '\n';

for (auto x : {10,21,32,43,54,65})
cout << x << '\n';

// ...
}

The first range-for-statement can be read as ‘‘for every element of v, from the first to the last, place
a copy in x and print it.’’ Note that we don’t hav e to specify an array bound when we initialize it
with a list. The range-for-statement can be used for any sequence of elements (§3.4.1).

If we didn’t want to copy the values from v into the variable x, but rather just have x refer to an
element, we could write:

Sam
ple

 pa
ge

s

46 A Tour of C++: The Basics Chapter 2

void increment()
{

int v[] = {0,1,2,3,4,5,6,7,8,9};

for (auto& x : v)
++x;

// ...
}

In a declaration, the unary suffix & means ‘‘reference to.’’ A reference is similar to a pointer,
except that you don’t need to use a prefix ∗ to access the value referred to by the reference. Also, a
reference cannot be made to refer to a different object after its initialization. When used in declara-
tions, operators (such as &, ∗, and []) are called declarator operators:

T a[n]; // T[n]: array of n Ts (§7.3)
T∗ p; // T*: pointer to T (§7.2)
T& r; // T&: reference to T (§7.7)
T f(A); // T(A): function taking an argument of type A returning a result of type T (§2.2.1)

We try to ensure that a pointer always points to an object, so that dereferencing it is valid. When
we don’t hav e an object to point to or if we need to represent the notion of ‘‘no object available’’
(e.g., for an end of a list), we give the pointer the value nullptr (‘‘the null pointer’’). There is only
one nullptr shared by all pointer types:

double∗ pd = nullptr;
Link<Record>∗ lst = nullptr; // pointer to a Link to a Record
int x = nullptr; // error : nullptr is a pointer not an integer

It is often wise to check that a pointer argument that is supposed to point to something, actually
points to something:

int count_x(char∗ p, char x)
// count the number of occurrences of x in p[]
// p is assumed to point to a zero-ter minated array of char (or to nothing)

{
if (p==nullptr) return 0;
int count = 0;
for (; ∗p!=0; ++p)

if (∗p==x)
++count;

return count;
}

Note how we can move a pointer to point to the next element of an array using ++ and that we can
leave out the initializer in a for-statement if we don’t need it.

The definition of count_x() assumes that the char∗ is a C-style string, that is, that the pointer
points to a zero-terminated array of char.

In older code, 0 or NULL is typically used instead of nullptr (§7.2.2). However, using nullptr

eliminates potential confusion between integers (such as 0 or NULL) and pointers (such as nullptr).

Sam
ple

 pa
ge

s

Section 2.3 User-Defined Types 47

2.3 User-Defined Types
We call the types that can be built from the fundamental types (§2.2.2), the const modifier (§2.2.3),
and the declarator operators (§2.2.5) built-in types. C++’s set of built-in types and operations is
rich, but deliberately low-level. They directly and efficiently reflect the capabilities of conventional
computer hardware. However, they don’t provide the programmer with high-level facilities to con-
veniently write advanced applications. Instead, C++ augments the built-in types and operations
with a sophisticated set of abstraction mechanisms out of which programmers can build such high-
level facilities. The C++ abstraction mechanisms are primarily designed to let programmers design
and implement their own types, with suitable representations and operations, and for programmers
to simply and elegantly use such types. Types built out of the built-in types using C++’s abstraction
mechanisms are called user-defined types. They are referred to as classes and enumerations. Most
of this book is devoted to the design, implementation, and use of user-defined types. The rest of
this chapter presents the simplest and most fundamental facilities for that. Chapter 3 is a more
complete description of the abstraction mechanisms and the programming styles they support.
Chapter 4 and Chapter 5 present an overview of the standard library, and since the standard library
mainly consists of user-defined types, they provide examples of what can be built using the lan-
guage facilities and programming techniques presented in Chapter 2 and Chapter 3.

2.3.1 Structures

The first step in building a new type is often to organize the elements it needs into a data structure,
a struct:

struct Vector {
int sz; // number of elements
double∗ elem; // pointer to elements

};

This first version of Vector consists of an int and a double∗.
A variable of type Vector can be defined like this:

Vector v;

However, by itself that is not of much use because v’s elem pointer doesn’t point to anything. To be
useful, we must give v some elements to point to. For example, we can construct a Vector like this:

void vector_init(Vector& v, int s)
{

v.elem = new double[s]; // allocate an array of s doubles
v.sz = s;

}

That is, v’s elem member gets a pointer produced by the new operator and v’s sz member gets the
number of elements. The & in Vector& indicates that we pass v by non-const reference (§2.2.5,
§7.7); that way, vector_init() can modify the vector passed to it.

The new operator allocates memory from an area called the free store (also known as dynamic
memory and heap; §11.2).

Sam
ple

 pa
ge

s

48 A Tour of C++: The Basics Chapter 2

A simple use of Vector looks like this:

double read_and_sum(int s)
// read s integers from cin and return their sum; s is assumed to be positive

{
Vector v;
vector_init(v,s); // allocate s elements for v
for (int i=0; i!=s; ++i)

cin>>v.elem[i]; // read into elements

double sum = 0;
for (int i=0; i!=s; ++i)

sum+=v.elem[i]; // take the sum of the elements
return sum;

}

There is a long way to go before our Vector is as elegant and flexible as the standard-library vector.
In particular, a user of Vector has to know every detail of Vector’s representation. The rest of this
chapter and the next gradually improve Vector as an example of language features and techniques.
Chapter 4 presents the standard-library vector, which contains many nice improvements, and Chap-
ter 31 presents the complete vector in the context of other standard-library facilities.

I use vector and other standard-library components as examples
• to illustrate language features and design techniques, and
• to help you learn and use the standard-library components.

Don’t reinvent standard-library components, such as vector and string; use them.
We use . (dot) to access struct members through a name (and through a reference) and −> to

access struct members through a pointer. For example:

void f(Vector v, Vector& rv, Vector∗ pv)
{

int i1 = v.sz; // access through name
int i2 = rv.sz; // access through reference
int i4 = pv−>sz; // access through pointer

}

2.3.2 Classes

Having the data specified separately from the operations on it has advantages, such as the ability to
use the data in arbitrary ways. However, a tighter connection between the representation and the
operations is needed for a user-defined type to have all the properties expected of a ‘‘real type.’’ In
particular, we often want to keep the representation inaccessible to users, so as to ease use, guaran-
tee consistent use of the data, and allow us to later improve the representation. To do that we have
to distinguish between the interface to a type (to be used by all) and its implementation (which has
access to the otherwise inaccessible data). The language mechanism for that is called a class. A
class is defined to have a set of members, which can be data, function, or type members. The inter-
face is defined by the public members of a class, and private members are accessible only through
that interface. For example:

Sam
ple

 pa
ge

s

Section 2.3.2 Classes 49

class Vector {
public:

Vector(int s) :elem{new double[s]}, sz{s} { } // constr uct a Vector
double& operator[](int i) { return elem[i]; } // element access: subscripting
int size() const { return sz; } // a "const" suffix means "can be applied to const objects" (§3.2.1.1)

private:
double∗ elem; // pointer to the elements
int sz; // the number of elements

};

Given that, we can define a variable of our new type Vector:

Vector v(6); // a Vector with 6 elements

We can illustrate a Vector object graphically:

6

Vector:

elem:

sz:
0: 1: 2: 3: 4: 5:

Basically, the Vector object is a ‘‘handle’’ containing a pointer to the elements (elem) plus the num-
ber of elements (sz). The number of elements (6 in the example) can vary from Vector object to
Vector object, and a Vector object can have a different number of elements at different times
(§3.2.1.3). However, the Vector object itself is always the same size. This is the basic technique for
handling varying amounts of information in C++: a fixed-size handle referring to a variable amount
of data ‘‘elsewhere’’ (e.g., on the free store allocated by new; §11.2). How to design and use such
objects is the main topic of Chapter 3.

Here, the representation of a Vector (the members elem and sz) is accessible only through the
interface provided by the public members: Vector(), operator[](), and siz e(). The read_and_sum()

example from §2.3.1 simplifies to:

double read_and_sum(int s)
{

Vector v(s); // make a vector of s elements
for (int i=0; i!=v.siz e(); ++i)

cin>>v[i]; // read into elements

double sum = 0;
for (int i=0; i!=v.siz e(); ++i)

sum+=v[i]; // take the sum of the elements
return sum;

}

A ‘‘function’’ with the same name as its class is called a constructor, that is, a function used to con-
struct objects of a class. So, the constructor, Vector(), replaces vector_init() from §2.3.1. Unlike an
ordinary function, a constructor is guaranteed to be used to initialize objects of its class. Thus,
defining a constructor eliminates the problem of uninitialized variables for a class.

Sam
ple

 pa
ge

s

50 A Tour of C++: The Basics Chapter 2

Vector(int) defines how objects of type Vector are constructed. In particular, it states that it needs
an integer to do that. That integer is used as the number of elements. The constructor initializes
the Vector members using a member initializer list:

:elem{new double[s]}, sz{s}

That is, we first initialize elem with a pointer to s elements of type double obtained from the free
store. Then, we initialize sz to s.

Access to elements is provided by a subscript function, called operator[]. It returns a reference
to the appropriate element (a double&).

The siz e() function is supplied to give users the number of elements.
Obviously, error handling is completely missing, but we’ll return to that in §2.4.3. Similarly,

we did not provide a mechanism to ‘‘give back’’ the array of doubles acquired by new; §3.2.1.2
shows how to use a destructor to elegantly do that.

2.3.3 Enumerations

In addition to classes, C++ supports a simple form of user-defined type for which we can enumer-
ate the values:

enum class Color { red, blue , green };
enum class Traffic_light { green, yellow, red };

Color col = Color::red;
Traffic_light light = Traffic_light::red;

Note that enumerators (e.g., red) are in the scope of their enum class, so that they can be used
repeatedly in different enum classes without confusion. For example, Color::red is Color’s red

which is different from Traffic_light::red.
Enumerations are used to represent small sets of integer values. They are used to make code

more readable and less error-prone than it would have been had the symbolic (and mnemonic) enu-
merator names not been used.

The class after the enum specifies that an enumeration is strongly typed and that its enumerators
are scoped. Being separate types, enum classes help prevent accidental misuses of constants. In
particular, we cannot mix Traffic_light and Color values:

Color x = red; // error : which red?
Color y = Traffic_light::red; // error : that red is not a Color
Color z = Color::red; // OK

Similarly, we cannot implicitly mix Color and integer values:

int i = Color::red; // error : Color ::red is not an int
Color c = 2; // error : 2 is not a Color

If you don’t want to explicitly qualify enumerator names and want enumerator values to be ints
(without the need for an explicit conversion), you can remove the class from enum class to get a
‘‘plain’’ enum (§8.4.2).

By default, an enum class has only assignment, initialization, and comparisons (e.g., == and <;
§2.2.2) defined. However, an enumeration is a user-defined type so we can define operators for it:

Sam
ple

 pa
ge

s

Section 2.3.3 Enumerations 51

Traffic_light& operator++(Traffic_light& t)
// prefix increment: ++

{
switch (t) {
case Traffic_light::green: return t=Traffic_light::yellow;
case Traffic_light::yellow: return t=Traffic_light::red;
case Traffic_light::red: return t=Traffic_light::green;
}

}

Traffic_light next = ++light; // next becomes Traffic_light::green

2.4 Modularity
A C++ program consists of many separately developed parts, such as functions (§2.2.1, Chapter
12), user-defined types (§2.3, §3.2, Chapter 16), class hierarchies (§3.2.4, Chapter 20), and tem-
plates (§3.4, Chapter 23). The key to managing this is to clearly define the interactions among
those parts. The first and most important step is to distinguish between the interface to a part and
its implementation. At the language level, C++ represents interfaces by declarations. A declara-
tion specifies all that’s needed to use a function or a type. For example:

double sqrt(double); // the square root function takes a double and returns a double

class Vector {
public:

Vector(int s);
double& operator[](int i);
int size() const; // a "const" suffix means "can be applied to const objects" (§3.2.1.1)

private:
double∗ elem; // elem points to an array of sz doubles
int sz;

};

The key point here is that the function bodies, the function definitions, are ‘‘elsewhere.’’ For this
example, we might like for the representation of Vector to be ‘‘elsewhere’’ also, but we will deal
with that later (abstract types; §3.2.2). The definition of sqr t() will look like this:

double sqrt(double d) // definition of sqrt()
{

// ... algorithm as found in math textbook ...
}

For Vector, we need to define all three member functions:

Vector::Vector(int s) // definition of the constructor
:elem{new double[s]}, sz{s} // initialize members

{
}

Sam
ple

 pa
ge

s

	0-0-Title
	0-1-Tbl
	0-2-4Pref
	0-3-3Pref
	0-4-2Pref
	0-5-1Pref
	0-99-Part1
	1-Notes
	2-Tour-Basics
	3-Tour-Abstr
	4-Tour-Algo
	5-Tour-Util
	6-0-Part2
	6-Dcl
	7-Ptr
	8-Struct
	9-Stmt
	10-Expr
	11-Select
	12-Fct
	13-Except
	14-Name
	15-File
	16-0-Part3
	16-Class
	17-Ctor
	18-Over
	19-Special
	20-Derived
	21-Hier
	22-RTTI
	23-Temp
	24-Generic
	25-Spec
	26-Inst
	27-TH
	28-Meta
	29-Matrix
	30-0-Part4
	30-Lib
	31-Cont
	32-Algo
	33-Iter
	34-Mem
	35-Util
	36-String
	37-Regex
	38-IO
	39-Loc
	40-Num
	41-Conc
	42-Thread
	43-Clib
	44-Compat
	55-Index

