Australian

Introduction

Using the Mentals Books

Each unit of the Mentals Book is programmed to review Student Book content for the previous two weeks (based on the Suggested Program in the Teacher's Book). For example, Unit 15 of the Mentals Book can be set as homework to review weeks 13 and 14 of the Student Book while week 15 is being taught.

Presentation

- The content of the strands Number and Algebra, Measurement and Geometry, and Statistics and Probability is covered thoroughly.
- Essential skills are explained.
- Language, problem solving, graphs and tables are given a high profile.
- Mathematics is applied to real-life situations wherever possible.
- The Arithmetic Card (page 5) is an exciting teaching tool for practising basic number skills.
- ID Cards (pages 6 to 9) review the terms essential to success in the course.
- Measurement examples and tables (page 84 and inside back cover) are provided so that students can estimate effectively.

Extra Activities

- Problem solving strategies are introduced in a carefully planned sequence throughout the series.
, Important concepts from Number and Algebra and Measurement and Geometry are explored.

Mixed-topic Questions

The units present questions in a mixed-topic format.

- This is essential for thorough understanding and continuous review.
- In real life, similar questions don't often occur together.
- It allows the teacher to discover weaknesses that could otherwise pass unnoticed.
- It provides a real test of understanding.

Graded Questions

- Column 1: easier
- Columns 2 and 3: harder
- Column 4: Extensiontand Challenge

Motivation

- Cartoons make mathematics more appealing.
- There are two lizards hidden on each page for students to find.

5 Tables of Number and Measurement

 Inside Back Cover
Arithmetic Card

6-9
ID Cards
Units
10-83

Examples of Measurements

Unit Activities

Unit	Content	Extra Activity	Unit	Content	Extra Activity
$\begin{aligned} & 1: 1 / 2 \\ & 1: 3 / 4 \end{aligned}$	$\times 2, \times 4$ Personal measures	\times tables Measure	$\begin{aligned} & 20: 1 / 2 \\ & 20: 3 / 4 \end{aligned}$	$\div 3, \div 6$ Compass direction	\div tables Concept
$\begin{aligned} & 2: 1 / 2 \\ & 2: 3 / 4 \end{aligned}$	$\begin{aligned} & \times 10, \times 5 \\ & -3,-7 \end{aligned}$	\times tables - tables	$\begin{aligned} & 21: 1 / 2 \\ & 21: 3 / 4 \end{aligned}$	2D Space Problem Solving	Concept Strategy time
$\begin{aligned} & 3: 1 / 2 \\ & 3: 3 / 4 \end{aligned}$	$\times 3, \times 4$ Problem Solving	\times tables Strategy time	$\begin{aligned} & \text { 22:1/2 } \\ & \text { 22:3/4 } \end{aligned}$	Area and perimeter Language	Strategy time ID Card C
$\begin{aligned} & 4: 1 / 2 \\ & 4: 3 / 4 \end{aligned}$	$\times 3, \times 6$ Problem Solving	\times tables Strategy time	$\begin{aligned} & 23: 1 / 2 \\ & 23: 3 / 4 \end{aligned}$	$\div 7, \div 8$ Roman numerals	\div tables Concept
$\begin{aligned} & 5: 1 / 2 \\ & 5: 3 / 4 \end{aligned}$	$\begin{aligned} & \times 7 \\ & \times 7 \text { Division } \end{aligned}$	$\times \text { tables }$ $\div \text { tables }$	$\begin{aligned} & 24: 1 / 2 \\ & 24: 3 / 4 \end{aligned}$	$-3,-5,-9$ Division	- tables \div tables
$\begin{aligned} & 6: 1 / 2 \\ & 6: 3 / 4 \end{aligned}$	$\times 8$ Division	\times tables \div tables	$\begin{aligned} & 25: 1 / 2 \\ & 25: 3 / 4 \end{aligned}$	$\begin{aligned} & \times 3, \times 6 \\ & \text { Problem Solving } \end{aligned}$	\times tables Strategy time
$\begin{aligned} & 7: 1 / 2 \\ & 7: 3 / 4 \end{aligned}$	$\times 9$ Language	\times tables ID Card A	$\begin{aligned} & 26: 1 / 2 \\ & 26: 3 / 4 \end{aligned}$	$\times 9, \times 7$ Problem Solving	\times tables Strategy time
$\begin{aligned} & \text { 8:1/2 } \\ & 8: 3 / 4 \end{aligned}$	$-6,-8$ Problem Solving	- tables Strategy time	$\begin{aligned} & \text { 27:1/2 } \\ & 27: 3 / 4 \end{aligned}$	Perimeter Language	Measure ID Card A
$\begin{aligned} & \text { 9:1/2 } \\ & 9: 3 / 4 \end{aligned}$	Problem Solving Rounding off	Strategy time Concept	$\begin{aligned} & \hline 28: 1 / 2 \\ & 28: 3 / 4 \end{aligned}$	Perimeter Number patterns	Measure Concept
$\begin{aligned} & \text { 10:1/2 } \\ & \text { 10:3/4 } \end{aligned}$	$\begin{aligned} & \text { Factors } \\ & \times 2, \times 5, \times 4, \times 10, \times 0, \\ & \times 1 \end{aligned}$	Concept \times tables	$\begin{aligned} & \text { 29:1/2 } \\ & \text { 29:3/4 } \end{aligned}$	Perimeter $\times 6, \times 7, \times 8$	Measure \times tables
$\begin{aligned} & 11: 1 / 2 \\ & 11: 3 / 4 \end{aligned}$	Problem Solving $\times 10, \times 5$	Strategy time \times tables	$\begin{aligned} & 30: 1 / 2 \\ & 30: 3 / 4 \end{aligned}$	Is this game fair? Language	Chance ID Card D
$\begin{aligned} & 12: 1 / 2 \\ & 12: 3 / 4 \end{aligned}$	Dot plots Language	Data ID Card D	$\begin{aligned} & \hline 31: 1 / 2 \\ & 31: 3 / 4 \end{aligned}$	$\times 3, \times 5, \times 9$ Codes	\times tables Concept
$\begin{aligned} & 13: 1 / 2 \\ & 13: 3 / 4 \end{aligned}$	Dot plots Area	Data Measure	$\begin{aligned} & 32: 1 / 2 \\ & 32: 3 / 4 \end{aligned}$	$\div 2, \div 4$ Magic squares	\div tables Concept
$\begin{aligned} & 14: 1 / 2 \\ & 14: 3 / 4 \end{aligned}$	Division with remainders $\times 3, \times 6$	Concept \times tables	$\begin{aligned} & 33: 1 / 2 \\ & 33: 3 / 4 \end{aligned}$	Language Roman numerals	ID Card B Concept
$\begin{aligned} & 15: 1 / 2 \\ & 15: 3 / 4 \end{aligned}$	Division with remainders $-9,-5$	Concept - tables	$\begin{aligned} & 34: 1 / 2 \\ & 34: 3 / 4 \end{aligned}$	Comparing chance $\times 9, \div 9$	Chance $\times, \div \text { tables }$
$\begin{aligned} & 16: 1 / 2 \\ & 16: 3 / 4 \end{aligned}$	Chance as a fraction $15-16 \text { - }$	Chance - tables	$\begin{aligned} & 35: 1 / 2 \\ & 35: 3 / 4 \end{aligned}$	Rounding money Mass	Concept Strategy time
$\begin{aligned} & 17: 1 / 2 \\ & 17: 3 / 4 \end{aligned}$	Using a graph Language	Concept ID Card B	$\begin{aligned} & 36: 1 / 2 \\ & 36: 3 / 4 \end{aligned}$	$\times 4, \times 9$ Problem solving	\times tables Strategy time
$\begin{aligned} & \hline 18: 1 / 2 \\ & 18: 3 / 4 \end{aligned}$	The jump strategy $\times 7, \times 8$	Strategy time \times tables	$\begin{aligned} & 37: 1 / 2 \\ & 37: 3 / 4 \end{aligned}$	Language Personal measures	ID Card C Measure
$\begin{aligned} & \text { 19:1/2 } \\ & \text { 19:3/4 } \end{aligned}$	Compass points $\times 8, \times 6$	Concept \times tables	Answers	These can be found in the middle of this book on pages A1 to A12.	

5:1

\square out of 16
(1) 5×2
(6) 2×5
(7) 3×4
(8) Add 5 and 8 .
(9) Take 4 from 9 .
(6) 2×5
(7) 3×4
(8) Add 5 and 8 .
(9) Take 4 from 9 .
(10) 41
$\times 2$
(2) $11-6$
(3) 7×4
(4) $18 \div 9$
(5) 9
$+10$
\qquad -
(1) $7+9$
(2) $24 \div 6$
(3) $20-14$
(4) 4×8
(5) 43
$+15$
(6) 6×9
(7) $18+6$
(8) $49 \div 7$
(9) 8×5
(10) 96 -50
\square

- -

\qquad
(11) Write the numeral for:
a $50000+3000+200+5$
b $20000+300+80+1$
12 One hour later than 6:35 am.
(13) a Is 173 closer to 100 or 200?
b Is $\$ 1.49$ closer to $\$ 1$ or $\$ 2$?
(14) Metres in one kilometre.
(15) $400000+300+50+2$

16

a What is the difference between the number of fish caught by Kelly and the number caught by Caitlin?
b Who caught 9 fish?
(11) What is the value of the 9 in 197273?
(12) Write the numeral for
$300000+90000+5000+300+90+2$.
(13) Share 20 between 4 .

14 Kilometres in 7000 m .
(15) Write the numeral one million, nine bundred thousand two hundred and forty-seven.
(16) Circle the larger number:
2951623
2951633
(17) $4297 \mathrm{~m}=$ \qquad km \qquad m
(18) Is 3289 closer to 3200 or 3300 ?

19 a Hours from 2 pm to 6 pm . b Hours from 9 am to 3 pm.
$(20$ This is a:

5:3

\square out of 12

(3) 341
(1) 312
(2) 27

231	150
$+\quad 15$	+212

$\begin{array}{rr}231 & 150 \\ +\quad 15 & +212\end{array}$
$\begin{array}{rr}231 & 150 \\ +\quad 15 & +212\end{array}$ + 112
(4) Write in order from largest to smallest. 3359574, 3395637, 3392035

5 Share 28 books among 4 girls.

> One share =

6 Days in one leap year.
(7) a Round off 437, correct to the nearest hundred.
b If a number is rounded off to 500 , what could it have been?

8 Metres in one kilometre.
(9) What is the time 29 minutes after 4:12?

10 In which season is February?
(11) Round 2457372 to the nearest million.

12 On a square pyramid, how many: a faces?
b edges?

(1) Months in $7 \frac{1}{4}$ years?
(2) 'am' means:
(3) How many days in summer?
(4) a 3×28
b 4×28

(5) If this pattern continued, what would the 35th shape look like?
(6)

Every 4 minutes a dove flies away. How long would it take the doves to leave?

Challenge
Represent and label at least two mixed numbers.

6:1

\square out of 19
(1) $9+6$
(6) 12 minus 8 .
(2) 4×3
(7) Double 4 .
(3) $6+8$
(8) Half of 16 .
(4) $7-2$
(9) $8 \div 2$
(5) 51
$+8$
(10) 7 $+32$

11 Make the smallest number you can using all of the digits:
$\begin{array}{llll}5 & 2 & 8 & 7\end{array}$
(12) $10000+2000+50+9$

13 Days in 1 year.
(1) 11-3
(6) Half of 20 .
(2) 4×6
(7) $48+3$
(3) $2+13$
(8) $9+4+2$
(4) 2×3
(9) Add 7 and 6 .
(5) 4
(10) $\begin{array}{r}96 c \\ -13 c\end{array}$
(11) Write in order from largest to smallest. 8781344, 8768367, 8780033
\qquad
12 Share 15 books among 3 people. One share =

13 The winter months.
One share =
(15) Days in 1 fortnight.

16 Is the length of a cricket bat closer to $30 \mathrm{~cm}, 1 \mathrm{~m}$ or 1 km ?
(17) 4 bags of 20 balls.

14
Round off 888 to the nearest hundred.
(15) 500 metres is \qquad of a kilometre.

16

a For how long did Adrian work?
b How many hours were worked altogether?

a Greg had 7 sheets of stickers. 8 were on each sheet. How many stickers were there?
b Each of the 6 pictures on our ties come in 8 colours. How many different ties do we have?

6:3 \square out of 10
(2) HTU
(1) HTU

569
$+133$
(3) Share 21 toys among 3 children. One share =

(4) $9072 \mathrm{~m}=$ \qquad km \qquad m
(5) Write 2 km 87 m as metres.
(6) a 5 minutes before 1:05?
b 10 minutes before 1:05?
(7) $2 \mathrm{~m}, 10 \mathrm{~cm}, 20 \mathrm{~cm}, 45 \mathrm{~cm}$ Which of these would be about the width of your head?

8 Estimate your height.
(9) My trip took 34 minutes. When did I arrive if $/$ left home at 8:30 am?

(10) Round 5687940 to the nearest million.

6:4 \square
(1) bought 6 pens for $\$ 24$. How much would it cost for:
a one? \qquad b two?
(2) Mum swam 1 kilometre. Evan swam a quarter of this distance.
How far did Evan swim?

(3) $\square+32=81$
(4) Four lots of $1 \frac{1}{2}$.
$\square=$ \qquad
(5) a $265+145$
b $265-145$

6 In every space made by a row of 6 trees,
we planted 8 flowers. How many
flowers did we plant?
7 a Centuries in 2000 years.
b Decades in 700 years.
Challenge
Draw a 2D shape and describe it.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\square
(1) $13+5$ \square (6) 2×5
(2) 7×7
(7) 15-15
(3) $14-6$
(4) $18 \div 3$
(8) 6 plus 73 .
(9) 2 groups of 12 . \qquad
(5) 11
$\times 4$
10 $\begin{array}{r}38 \mathrm{~m} \\ -21 \mathrm{~m} \\ \hline\end{array}$

11 Show 8.07 on this abacus.
(12) Does 1 hectare $=10000 \mathrm{~m}^{2}$?
(13) Which ordinal number comes:
a before 73rd?
b two after 73rd?
(14) Find the number of pencils in one share if 3 people share 18 pencils.
(15) Which angle is:
a an acute angle?
b an obtuse angle?

\qquad

(11) Complete the following: $216.93=$ hundreds
 tens
units tenths hundredths
(12) Hectares in $20000 \mathrm{~m}^{2}$.

13 The total value of these notes.

(14) a Write the digital time shown.
b Write the analogue time shown.

\qquad to \qquad
15 How many 20 cent coins placed end to end, would reach 30 cm ?
(16) Square metres in 5 ha.
(1) $45+25$
(6) $90-82$
(2) 6×4
(3) $28-9$
(8) 2 times 8 .
(4) 4×3
(9) 74 plus 6 .
(5) 1270
(10) 1754
$\begin{array}{r}+689 \\ \hline\end{array}$
$\begin{array}{r} \\ +\quad 650 \\ \hline\end{array}$
(7) 80 take away 11 .
\qquad
\qquad

16 Is 30° acute, obtuse or reflex?
(17) Write the numeral:
a thirty-three point seven \qquad
b eighty point five two

Using a graph

 Crosses or dots can be used on a graph.Draw a graph of these colour choices made by students.
$B, R, R, G, P, B, O, R, B, R, G, P, O, R$
$G, B, P, O, Y, Y, R, B, O, G, G, B, B, P$
a Which is the favourite colour?
b How many students chose green?
c How many more chose red than pink?

