
12

CONTENTS
 Chapter 1 Introduction to Computers,

 Programs, and Python 19
 1.1 Introduction 20
 1.2 What Is a Computer? 20
 1.3 Programming Languages 25
 1.4 Operating Systems 27
 1.5 The History of Python 28
 1.6 Getting Started with Python 29
 1.7 Programming Style and Documentation 32
 1.8 Programming Errors 33
 1.9 Getting Started with Graphics Programming 34

 Chapter 2 Elementary Programming 45
 2.1 Introduction 46
 2.2 Writing a Simple Program 46
 2.3 Reading Input from the Console 47
 2.4 Identifiers 49
 2.5 Variables, Assignment Statements, and Expressions 50
 2.6 Simultaneous Assignments 51
 2.7 Named Constants 52
 2.8 Numeric Data Types and Operators 52
 2.9 Case Study: Minimum Number of Changes 55
 2.10 Evaluating Expressions and Operator Precedence 57
 2.11 Augmented Assignment Operators 58
 2.12 Type Conversions and Rounding 58
 2.13 Case Study: Displaying the Current Time 59
 2.14 Software Development Process 61
 2.15 Case Study: Computing Distances 64

 Chapter 3 Selections 75
 3.1 Introduction 76
 3.2 Boolean Types, Values, and Expressions 76
 3.3 Generating Random Numbers 77
 3.4 if Statements 78
 3.5 Two-Way if-else Statements 80
 3.6 Nested if and Multi-Way if-elif-else Statements 82
 3.7 Common Errors in Selection Statements 84
 3.8 Case Study: Computing Body Mass Index 85
 3.9 Case Study: Computing Taxes 86
 3.10 Logical Operators 88
 3.11 Case Study: Determining Leap Years 90
 3.12 Case Study: Lottery 91
 3.13 Conditional Expressions 92
 3.14 Python 3.10 match-case Statements 93
 3.15 Operator Precedence and Associativity 94
 3.16 Detecting the Location of an Object 95

A01_LIANG4125_03_GE_FM.indd 12A01_LIANG4125_03_GE_FM.indd 12 23/11/22 8:01 PM23/11/22 8:01 PM

Contents 13

 Chapter 4 Mathematical Functions,
Strings, and Objects 109

 4.1 Introduction 110
 4.2 Common Python Functions 110
 4.3 Strings and Characters 115
 4.4 Case Study: Revising the Lottery Program

Using Strings 123
 4.5 Introduction to Objects and Methods 124
 4.6 String Methods 125
 4.7 Case Studies 129
 4.8 Formatting Numbers and Strings 133
 4.9 Drawing Various Shapes 138
 4.10 Drawing with Colors and Fonts 140

 Chapter 5 Loops 153
 5.1 Introduction 154
 5.2 The while Loop 154
 5.3 Case Study: Guessing Numbers 157
 5.4 Loop Design Strategies 159
 5.5 Controlling a Loop with User Confirmation

and Sentinel Value 161
 5.6 The for Loop 162
 5.7 Nested Loops 164
 5.8 Minimizing Numerical Errors 165
 5.9 Case Studies 166
 5.10 Keywords break and continue 169
 5.11 Case Study: Checking Palindromes 171
 5.12 Case Study: Displaying Prime Numbers 172
 5.13 Case Study: Random Walk 174

 Chapter 6 Functions 191
 6.1 Introduction 192
 6.2 Defining a Function 192
 6.3 Calling a Function 193
 6.4 Functions with/without Return Values 196
 6.5 Positional and Keyword Arguments 198
 6.6 Passing Arguments by Reference Values 199
 6.7 Modularizing Code 200
 6.8 The Scope of Variables 202
 6.9 Default Arguments 204
 6.10 Returning Multiple Values 205
 6.11 Case Study: Generating Random

ASCII Characters 205
 6.12 Case Study: Converting Hexadecimals to Decimals 207
 6.13 Function Abstraction and Stepwise Refinement 209
 6.14 Case Study: Reusable Graphics Functions 216

 Chapter 7 Lists 235
 7.1 Introduction 236
 7.2 List Basics 236
 7.3 Case Study: Analyzing Numbers 244
 7.4 Case Study: Deck of Cards 245
 7.5 Copying Lists 247

A01_LIANG4125_03_GE_FM.indd 13A01_LIANG4125_03_GE_FM.indd 13 23/11/22 8:01 PM23/11/22 8:01 PM

14 Contents

 7.6 Passing Lists to Functions 248
 7.7 Returning a List from a Function 250
 7.8 Case Study: Counting the Occurrences

of Each Letter 251
 7.9 Searching Lists 253
 7.10 Sorting Lists 257

 Chapter 8 Multidimensional Lists 269
 8.1 Introduction 270
 8.2 Processing Two-Dimensional Lists 270
 8.3 Passing Two-Dimensional Lists to Functions 273
 8.4 Problem: Grading a Multiple-Choice Test 273
 8.5 Problem: Finding the Closest Pair 275
 8.6 Problem: Sudoku 277
 8.7 Multidimensional Lists 281

 Chapter 9 Objects and Classes 305
 9.1 Introduction 306
 9.2 Defining Classes for Objects 306
 9.3 UML Class Diagrams 312
 9.4 Using Classes from the Python Library:

the datetime Class 315
 9.5 Immutable Objects vs. Mutable Objects 316
 9.6 Hiding Data Fields 317
 9.7 Class Abstraction and Encapsulation 319
 9.8 Object-Oriented Thinking 322
 9.9 Operator Overloading and Special Methods 324
 9.10 Case Study: The Rational Class 326

 Chapter 10 Basic GUI Programming
Using Tkinter 341

 10.1 Introduction 342
 10.2 Getting Started with Tkinter 342
 10.3 Processing Events 343
 10.4 The Widget Classes 345
 10.5 Canvas 349
 10.6 The Geometry Managers 352
 10.7 Case Study: Loan Calculator 355
 10.8 Case Study: Sudoku GUI 357
 10.9 Displaying Images 359
 10.10 Case Study: Deck of Cards GUI 361

 Chapter 11 Advanced GUI Programming
Using Tkinter 371

 11.1 Introduction 372
 11.2 Combo Boxes 372
 11.3 Menus 373
 11.4 Pop-up Menus 376
 11.5 Mouse, Key Events, and Bindings 377
 11.6 Case Study: Finding the Closest Pair 381
 11.7 Animations 382
 11.8 Case Study: Bouncing Balls 385
 11.9 Scrollbars 388
 11.10 Standard Dialog Boxes 389

A01_LIANG4125_03_GE_FM.indd 14A01_LIANG4125_03_GE_FM.indd 14 23/11/22 8:01 PM23/11/22 8:01 PM

Contents 15

 Chapter 12 Inheritance and Polymorphism 399
 12.1 Introduction 400
 12.2 Superclasses and Subclasses 400
 12.3 Overriding Methods 405
 12.4 The object Class 406
 12.5 Polymorphism and Dynamic Binding 407
 12.6 The isinstance Function 408
 12.7 Case Study: A Reusable Clock 410
 12.8 Class Relationships 414
 12.9 Case Study: Designing the Course Class 417
 12.10 Case Study: Designing a Class for Stacks 418
 12.11 Case Study: The FigureCanvas Class 420

 Chapter 13 Files and Exception Handling 437
 13.1 Introduction 438
 13.2 Text Input and Output 438
 13.3 File Dialogs 445
 13.4 Case Study: Counting Each Letter in a File 448
 13.5 Retrieving Data from the Web 449
 13.6 Exception Handling 451
 13.7 Raising Exceptions 454
 13.8 Processing Exceptions Using Exception Objects 456
 13.9 Defining Custom Exception Classes 457
 13.10 Case Study: Web Crawler 459
 13.11 Binary IO Using Pickling 462
 13.12 Case Study: Address Book 464

 Chapter 14 Tuples, Sets, and Dictionaries 473
 14.1 Introduction 474
 14.2 Tuples 474
 14.3 Sets 476
 14.4 Comparing the Performance of Sets and Lists 481
 14.5 Case Study: Counting Keywords 483
 14.6 Dictionaries 483
 14.7 Case Study: Occurrences of Words 487

 Chapter 15 Recursion 495
 15.1 Introduction 496
 15.2 Case Study: Computing Factorials 496
 15.3 Case Study: Computing Fibonacci Numbers 498
 15.4 Problem Solving Using Recursion 500
 15.5 Recursive Helper Functions 502
 15.6 Case Study: Finding the Directory Size 504
 15.7 Case Study: Tower of Hanoi 506
 15.8 Case Study: Fractals 508
 15.9 Case Study: Eight Queens 511
 15.10 Recursion vs. Iteration 514
 15.11 Tail Recursion 514

 Chapter 16 Developing Efficient Algorithms 525
 16.1 Introduction 526
 16.2 Measuring Algorithm Efficiency Using Big O Notation 526
 16.3 Examples: Determining Big O 528
 16.4 Analyzing Algorithm Time Complexity 530

A01_LIANG4125_03_GE_FM.indd 15A01_LIANG4125_03_GE_FM.indd 15 23/11/22 8:01 PM23/11/22 8:01 PM

16 Contents

 16.5 Finding Fibonacci Numbers Using Dynamic Programming 533
 16.6 Finding Greatest Common Divisors Using

Euclid’s Algorithm 535
 16.7 Efficient Algorithms for Finding Prime Numbers 538
 16.8 Finding Closest Pair of Points Using Divide-and-Conquer 544
 16.9 Solving the Eight Queen Problem Using Backtracking 547
 16.10 Computational Geometry: Finding a Convex Hull 549
 16.11 String Matching 552

 Chapter 17 Sorting 565
 17.1 Introduction 566
 17.2 Insertion Sort 566
 17.3 Bubble Sort 568
 17.4 Merge Sort 570
 17.5 Quick Sort 573
 17.6 Heap Sort 576
 17.7 Bucket Sort and Radix Sort 582

 Chapter 18 Linked Lists, Stacks,
Queues, and Priority Queues 589

 18.1 Introduction 590
 18.2 Linked Lists 590
 18.3 The LinkedList Class 592
 18.4 Implementing LinkedList 594
 18.5 List vs. Linked List 604
 18.6 Variations of Linked Lists 605
 18.7 Iterators 606
 18.8 Generators 608
 18.9 Stacks 609
 18.10 Queues 611
 18.11 Priority Queues 613
 18.12 Case Study: Evaluating Expressions 614

 Chapter 19 Binary Search Trees 623
 19.1 Introduction 624
 19.2 Binary Search Trees Basics 624
 19.3 Representing Binary Search Trees 625
 19.4 Searching for an Element in BST 625
 19.5 Inserting an Element into a BST 626
 19.6 Tree Traversal 627
 19.7 The BST Class 628
 19.8 Deleting Elements in a BST 634
 19.9 Tree Visualization 639
 19.10 Case Study: Data Compression 642

 Chapter 20 AVL Trees 651
 20.1 Introduction 652
 20.2 Rebalancing Trees 652
 20.3 Designing Classes for AVL Trees 654
 20.4 Overriding the insert Method 655
 20.5 Implementing Rotations 656
 20.6 Implementing the delete Method 656
 20.7 The AVLTree Class 657
 20.8 Testing the AVLTree Class 661
 20.9 Maximum Height of an AVL Tree 664

A01_LIANG4125_03_GE_FM.indd 16A01_LIANG4125_03_GE_FM.indd 16 23/11/22 8:01 PM23/11/22 8:01 PM

Contents 17

 Chapter 21 Hashing 669
 21.1 Introduction 670
 21.2 What Is Hashing? 670
 21.3 Hash Functions and Hash Codes 671
 21.4 Handling Collisions Using Open Addressing 672
 21.5 Handling Collisions Using Separate Chaining 674
 21.6 Load Factor and Rehashing 675
 21.7 Implementing a Map Using Hashing 675
 21.8 Implementing a Set Using Hashing 681

 Chapter 22 Graphs and Applications 689
 22.1 Introduction 690
 22.2 Basic Graph Terminologies 691
 22.3 Representing Graphs 692
 22.4 Modeling Graphs 697
 22.5 Graph Visualization 703
 22.6 Graph Traversals 706
 22.7 Depth-First Search (DFS) 707
 22.8 Case Study: The Connected Circles Problem 710
 22.9 Breadth-First Search (BFS) 712
 22.10 Case Study: The Nine Tail Problem 715

 Chapter 23 Weighted Graphs and
Applications 727

 23.1 Introduction 728
 23.2 Representing Weighted Graphs 728
 23.3 The WeightedGraph Class 730
 23.4 Minimum Spanning 735
 23.5 Finding Shortest Paths 741
 23.6 Case Study: The Weighted Nine Tail Problem 747

Appendixes 757

 Appendix A Python Keywords 759

 Appendix B The ASCII Character Set 760

 Appendix C Number Systems 762

 Appendix D Command Line Arguments 766

 Appendix E Regular Expressions 769

 Appendix F Bitwise Operations 775

 Appendix G The Big-O, Big-Omega, and Big-Theta Notations 776

 Appendix H Operator Precedence Chart 778

Symbol Index 779

Glossary 781

Index 788

A01_LIANG4125_03_GE_FM.indd 17A01_LIANG4125_03_GE_FM.indd 17 23/11/22 8:01 PM23/11/22 8:01 PM

3

Note to Students
This book assumes that you are a new programmer with no prior knowledge of programming.
So, what is programming? Programming solves problems by creating solutions—writing
programs—in a programming language. The fundamentals of problem-solving and program-
ming are the same regardless of which programming language you use. You can learn to
program using any high-level programming language such as Python, Java, C++, or C#. Once
you know how to program in one language, it is easy to pick up other languages, because the
basic techniques for writing programs are the same.

So what are the benefits of learning programming using Python? Python is easy to learn
and fun to program. Python code is simple, short, readable, intuitive, and powerful, and thus it
is effective for introducing computing and problem solving to beginners.

Beginners are motivated to learn to program so they can create graphics. A big reason for
learning programming using Python is that you can start programming using graphics on day
one. We use Python’s built-in Turtle graphics module in Chapters 1–6 because it is a good
pedagogical tool for introducing fundamental concepts and techniques of programming. We
introduce Python’s built-in Tkinter in Chapter 10 because it is a great tool for developing com-
prehensive graphical user interfaces and for learning object-oriented programming. Both Turtle
and Tkinter are remarkably simple and easy to use. More importantly, they are valuable peda-
gogical tools for teaching the fundamentals of programming and object-oriented programming.

To give flexibility to use this book, we cover Turtle at the end of Chapters 1–6 so they can
be skipped as optional material. You can also skip materials on Tkinter without affecting other
contents of the book.

The book teaches problem-solving in a way that focuses on problem-solving rather than
syntax. We garner students’ interest in programming by using interesting examples in a broad
context. While the central thread of the book is on problem-solving, appropriate Python syn-
tax and libraries are introduced to solve the problems. To support the teaching of programming
in a problem-driven way, the book provides a wide variety of problems at various levels of
difficulty to motivate students. To appeal to students in all majors, the problems cover many
application areas in math, science, business, financial management, gaming, animation, and
multimedia.

All data in Python are objects. We introduce and use objects from Chapter 4, but defin-
ing custom classes is covered in the middle of the book starting from Chapter 9. The book
focuses on fundamentals first: it introduces basic programming concepts and techniques on
selections, loops, and functions before writing custom classes.

The best way to teach programming is by example, and the only way to learn to program
is by doing. Basic concepts are explained by examples and many exercises with various levels
of difficulty are provided for students to practice what they learn. Our goal is to produce a
text that teaches problem-solving and programming in a broad context using a wide variety of
interesting examples and exercises.

Pedagogical Features
The book uses the following elements to get the most from the material:

	■ Objectives list what students should learn in each chapter. This will help them determine
whether they have met the objectives after completing the chapter.

PREFACE

A01_LIANG4125_03_GE_FM.indd 3A01_LIANG4125_03_GE_FM.indd 3 23/11/22 8:01 PM23/11/22 8:01 PM

4 Preface

	■ The Introduction opens the discussion with representative problems to give the reader an
overview of what to expect from the chapter.

	■ Key Points highlight the important concepts covered in each section.

	■ Problems, carefully chosen and presented in an easy-to-follow style, teach problem
solving and programming concepts. The book uses many small, simple, and stimulating
examples to demonstrate important ideas.

	■ Key Terms are listed with a page number to give students a quick reference to the
important terms introduced in the chapter.

	■ The Chapter Summary reviews the important subjects that students should understand
and remember. It helps them reinforce the key concepts they have learned in the chapter.

	■ Programming Exercises are grouped by sections to provide students with opportunities to
apply on their own the new skills they have learned. The level of difficulty is rated as easy (no
asterisk), moderate (*), hard (**), or challenging (***). The trick of learning programming
is practice, practice, and practice. To that end, the book provides a great many exercises.

	■ Notes, Tips, and Cautions are inserted throughout the text to offer valuable advice and
insight on important aspects of program development. Note provides additional informa-
tion on the subject and reinforces important concepts. Tip teaches good programming style
and practice. Caution helps students steer away from the pitfalls of programming errors.

	■ Animations simulate the execution of a program by stepping through the code. They help
students comprehend the code. More importantly, the visual illustration in Animations
help students understand programming concepts.

	■ VideoNotes simulate the “office hours experience” through narrated video tutorials that
show how to solve problems completely, from design through coding.

New Features
This new edition is completely revised in every detail to enhance clarity, presentation, content,
examples, and exercises. The major improvements are as follows:

	■ Section 1.2 is updated to include cloud storage and touchscreens.

	■ Section 3.14 introduces the new Python 3.10 match-case statements to simplify coding for
multiple cases.

	■ F-strings are covered in Chapter 4 to provide a concise syntax to format strings for
output.

	■ The statistics functions are covered in Chapter 7, to enable students to write simple code
for common statistics tasks.

	■ Sections 14.4, 14.6, 18.4 are split into multiple subsections to improve the presentation of
the contents.

	■ More contents are added and improvements are made in the Data Structures part of the
book. We first introduce using data structures and then implementing data structures. The
book covers all topics in a typical data structures course. Additionally, we cover string
matching in Chapter 16, graph algorithms in Chapter 22 and Chapter 23 as optional
materials for a data structures course.

	■ Appendix G is brand new. It gives a precise mathematical definition for the Big-O notation
as well as the Big-Omega and Big-Theta notations.

A01_LIANG4125_03_GE_FM.indd 4A01_LIANG4125_03_GE_FM.indd 4 23/11/22 8:01 PM23/11/22 8:01 PM

Preface 5

	■ Appendix H is brand new. It lists Python operators and their precedence order.

	■ This edition provides many new examples and exercises to motivate and stimulate stu-
dent interest in programming.

	■ Provided additional exercises not printed in the book. These exercises are available for
instructors only.

Flexible Chapter Ordering
The book uses Turtle graphics in Chapters 1–9 and Tkinter in the rest of the book. Graphics
is a valuable pedagogical tool for learning programming. However, the book is designed to
give instructors the flexibility to skip or cover graphics later. The following diagram shows
chapter dependencies.

Part I: Fundamentals
of Programming

Chapter 1: Introduction to
Computers,

Programs, and Python

Chapter 2: Elementary
Programming

Chapter 3: Selections

Chapter 4: Mathematical Functions,
Strings, and Objects

Chapter 5: Loops

Chapter 6: Functions

Chapter 9: Objects and Classes

Chapter 10: Basic GUI
Programming Using Tkinter

Chapter 11: Advanced GUI
Programming Using Tkinter

Chapter 12: Inheritance and
Polymorphism

Chapter 13: Files and Exception
Handling

Chapter 14: Tuples, Sets, and
Dictionaries

Chapter 7: Lists

Chapter 8: Multidimensional Lists

Chapter 15: Recursion

Chapter 16: Developing
Efficient Algorithms

Chapter 17: Sorting

Chapter 18: Linked Lists, Stacks,
Queues, and Priority Queues

Chapter 19: Binary Search Trees

Chapter 20: AVL Trees

Chapter 21: Hashing

Chapter 22: Graphs and
Applications

Chapter 23: Weighted Graphs
and Applications

Part II: Object-Oriented
Programming

Part III: Data
Structures

A01_LIANG4125_03_GE_FM.indd 5A01_LIANG4125_03_GE_FM.indd 5 23/11/22 8:01 PM23/11/22 8:01 PM

6 Preface

Objects and classes can be covered right after Chapter 6, Functions. Tuples, Sets, and
Dictionaries in Chapter 14 can be covered after Chapter 7, Lists.

Organization of the Book
The chapters can be grouped into three parts that, taken together, form a comprehensive
introduction to Python programming. Because knowledge is cumulative, the early chapters
provide the conceptual basis for understanding programming and guide students through
simple examples and exercises; subsequent chapters progressively present Python program-
ming in detail, culminating with the development of comprehensive applications.

Part I: Fundamentals of Programming (Chapters 1–6)

The first part of the book is a stepping stone, preparing you to embark on the journey of
 learning programming. You will begin to know Python (Chapter 1) and will learn fundamental
 programming techniques with data types, variables, constants, assignments, expressions,
operators, objects, and simple functions and string operations (Chapters 2 and 4), selection
statements (Chapter 3), loops (Chapter 5), and functions (Chapter 6).

Part II: Object-Oriented Programming (Chapters 7–13)

This part introduces object-oriented programming. Python is an object-oriented
 programming language that uses abstraction, encapsulation, inheritance, and polymorphism
to provide great flexibility, modularity, and reusability in developing software. You will
learn lists (Chapter 7), multidimensional lists (Chapter 8), object-oriented programming
(Chapter 9), GUI programming using Tkinter (Chapters 10–11), inheritance, polymor-
phism, and class design (Chapter 12), and files and exception handling (Chapter 13).

Part III: Data Structures and Algorithms (Chapters 14–15 and Bonus Chapters
16–23)

This part introduces the main subjects in a typical data structures course.
Chapter 14 introduces Python built-in data structures: tuples, sets, and dic-
tionaries. Chapter 15 introduces recursion to write functions for solving inher-
ently recursive problems. Chapter 16 introduces measurement of algorithm
efficiency and common techniques for developing efficient algorithms. Chapter 17
discusses classic sorting algorithms. You will learn how to implement linked lists, queues,
and priority queues in Chapter 18. Chapter 19 presents binary search trees, and you will
learn about AVL trees in Chapter 20. Chapter 21 introduces hashing, and Chapters 22 and
23 cover graph algorithms and applications.

Student Resource Website
The Student Resource Website (www.pearsonglobaleditions.com) contains the following
resources:

	■ Solutions to majority of even-numbered programming exercises

	■ Source code for the examples in the book

	■ Interactive quiz (organized by sections for each chapter)

	■ Supplements

	■ Debugging tips

	■ Video notes

	■ Algorithm animations

A01_LIANG4125_03_GE_FM.indd 6A01_LIANG4125_03_GE_FM.indd 6 23/11/22 8:01 PM23/11/22 8:01 PM

Preface 7

Supplements
The text covers the essential subjects. The supplements extend the text to introduce additional
topics that might be of interest to readers. The supplements are available from the Companion
Website.

Instructor Resource Website
The Instructor Resource Website, accessible from www.pearsonglobaleditions.com, contains the
following resources:

	■ Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted
source code and to run programs without leaving the slides.

	■ Solutions to majority of odd-numbered programming exercises.

	■ More than 200 additional programming exercises and 300 quizzes organized by chapters.
These exercises and quizzes are available only to the instructors. Solutions to these
 exercises and quizzes are provided.

	■ Web-based quiz generator. (Instructors can choose chapters to generate quizzes from a
large database of more than two thousand questions.)

	■ Sample exams. Most exams have four parts:

	■ Multiple-choice questions or short-answer questions

	■ Correct programming errors

	■ Trace programs

	■ Write programs

	■ Sample exams with ABET course assessment.

	■ Projects. In general, each project gives a description and asks students to analyze, design,
and implement the project.

Some readers have requested the materials from the Instructor Resource Website. Please
note that these are for adopting instructors only. Such requests will not be answered.

Video Notes
We are excited about the new Video Notes feature that is found in this new edition. These
videos provide additional help by presenting examples of key topics and showing how to
solve problems completely from design through coding. Video Notes are available from the
Companion Website.

Acknowledgments
I would like to thank Georgia Southern University for enabling me to teach what I write and
for supporting me in writing what I teach. Teaching is the source of inspiration for continuing
to improve the book. I am grateful to the instructors and students who have offered comments,
suggestions, corrections, and praise. My special thanks go to Stefan Andrei of Lamar Univer-
sity and William Bahn of University of Colorado Colorado Springs for their help to improve
the data structures part of this book.

VideoNote

A01_LIANG4125_03_GE_FM.indd 7A01_LIANG4125_03_GE_FM.indd 7 23/11/22 8:01 PM23/11/22 8:01 PM

8 Preface

This book has been greatly enhanced thanks to outstanding reviews for this and previous
editions. The reviewers are: Elizabeth Adams (James Madison University), Syed Ahmed (North
 Georgia College and State University), Omar Aldawud (Illinois Institute of Technology), Ste-
fan Andrei (Lamar University), Yang Ang (University of Wollongong, Australia), Kevin Bierre
(Rochester Institute of Technology), Aaron Braskin (Mira Costa High School), David Champion
(DeVry Institute), James Chegwidden (Tarrant County College), Anup Dargar (University of
North Dakota), Daryl Detrick (Warren Hills Regional High School), Charles Dierbach (Tow-
son University), Frank Ducrest (University of Louisiana at Lafayette), Erica Eddy (Univer-
sity of Wisconsin at Parkside), Summer Ehresman (Center Grove High School), Deena Engel
(New York University), Henry A. Etlinger (Rochester Institute of Technology), James Ten Eyck
(Marist College), Myers Foreman (Lamar University), Olac Fuentes (University of Texas at El
Paso), Edward F. Gehringer (North Carolina State University), Harold Grossman (Clemson
University), Barbara Guillot (Louisiana State University), Stuart Hansen (University of Wis-
consin, Parkside), Dan Harvey (Southern Oregon University), Ron Hofman (Red River College,
Canada), Stephen Hughes (Roanoke College), Vladan Jovanovic (Georgia Southern University),
Deborah Kabura Kariuki (Stony Point High School), Edwin Kay (Lehigh University),
Larry King (University of Texas at Dallas), Nana Kofi (Langara College, Canada), George
Koutsogiannakis (Illinois Institute of Technology), Roger Kraft (Purdue University at Calumet),
Norman Krumpe (Miami University), Hong Lin (DeVry Institute), Dan Lipsa (Armstrong State
University), James Madison (Rensselaer Polytechnic Institute), Frank Malinowski (Darton Col-
lege), Tim Margush (University of Akron), Debbie Masada (Sun Microsystems), Blayne May-
field (Oklahoma State University), John McGrath (J.P. McGrath Consulting), Hugh McGuire
(Grand Valley State), Shyamal Mitra (University of Texas at Austin), Michel Mitri (James Mad-
ison University), Kenrick Mock (University of Alaska Anchorage), Frank Murgolo (California
State University, Long Beach), Jun Ni (University of Iowa), Benjamin Nystuen (University of
Colorado at Colorado Springs), Maureen Opkins (CA State University, Long Beach), Gavin
Osborne (University of Saskatchewan), Kevin Parker (Idaho State University), Dale Parson
(Kutztown University), Mark Pendergast (Florida Gulf Coast University), Richard Povinelli
(Marquette University), Roger Priebe (University of Texas at Austin), Mary Ann Pumphrey (De
Anza Junior College), Pat Roth (Southern Polytechnic State University), Amr Sabry (Indiana
University), Ben Setzer (Kennesaw State University), Carolyn Schauble (Colorado State Univer-
sity), David Scuse (University of Manitoba), Ashraf Shirani (San Jose State University), Daniel
Spiegel (Kutztown University), Joslyn A. Smith (Florida Atlantic University), Lixin Tao (Pace
University), Ronald F. Taylor (Wright State University), Russ Tront (Simon Fraser University),
Deborah Trytten (University of Oklahoma), Michael Verdicchio (Citadel), Kent Vidrine (George
Washington University), and Bahram Zartoshty (California State University at Northridge).

It is a great pleasure, honor, and privilege to work with Pearson. I would like to thank
Tracy Johnson and her colleagues Marcia Horton, Demetrius Hall, Yvonne Vannatta, Kristy
Alaura, Carole Snyder, Scott Disanno, Bob Engelhardt, Shylaja Gattupalli, and their col-
leagues for organizing, producing, and promoting this project.

As always, I am indebted to my wife, Samantha, for her love, support, and encouragement.

A01_LIANG4125_03_GE_FM.indd 8A01_LIANG4125_03_GE_FM.indd 8 23/11/22 8:01 PM23/11/22 8:01 PM

Preface 9

Acknowledgements for the Global Edition
The publishers would like to thank the following for their contribution to the Global Edition:

Contributors
Asif Irshad Khan – King Abdulaziz University
Markus Wolf – University of Greenwich

Reviewers
Greg Baatard – Edith Cowan University
Dmitry Konovalov – James Cook University
Francesco Tusa – University of Westminster
Lindsay Ward – James Cook University

A01_LIANG4125_03_GE_FM.indd 9A01_LIANG4125_03_GE_FM.indd 9 23/11/22 8:01 PM23/11/22 8:01 PM

Objectives
	■ To write programs for executing statements repeatedly using a while

loop (§5.2).

	■ To write loops for the guessing number problem (§5.3).

	■ To develop loops following the loop design strategy (§5.4).

	■ To control a loop with the user confirmation and a sentinel value (§5.5).

	■ To use for loops to implement counter-controlled loops (§5.6).

	■ To write nested loops (§5.7).

	■ To learn the techniques for minimizing numerical errors (§5.8).

	■ To learn loops from a variety of examples (GCD, FutureTuition, and
Dec2Hex) (§5.9).

	■ To implement program control with break and continue (§5.10).

	■ To write a program that tests palindromes (§5.11).

	■ To write a program that displays prime numbers (§5.12).

	■ To use a loop to simulate a random walk (§5.13).

Loops

CHAPTER

5

M05_LIANG4125_03_GE_C05.indd 153M05_LIANG4125_03_GE_C05.indd 153 26/09/22 7:55 PM26/09/22 7:55 PM

154 Chapter 5 Loops

5.1 Introduction
A loop can be used to tell a program to execute statements repeatedly.

Suppose that you need to display a string (e.g., Programming is fun!) a hundred times. It
would be tedious to have to type the statement a hundred times:

Point
Key

print("Programming is fun");

print("Programming is fun");

100 times
...

print("Programming is fun");

So, how do you solve this problem?
Python provides a powerful construct called a loop, which controls how many times in

succession an operation (or a sequence of operations) is performed. Instead of coding the print
statement a hundred times, you simply direct the computer to display a string a hundred times
using a loop statement. The loop statement can be written as follows:

count = 0
while count < 100:
 print("Programming is fun!")
 count += 1

The variable count is initially 0. The loop checks whether count < 100 is true.
If so, it executes the loop body—the part of the loop that contains the statements to be
repeated—to display the message Programming is fun! and increments count by 1.
It repeatedly executes the loop body until count < 100 becomes false (i.e., when count
reaches 100). At this point, the loop terminates and the next statement after the loop
statement is executed.

A loop is a construct that controls the repeated execution of a block of statements. The con-
cept of looping is fundamental to programming. Python provides two types of loop statements:
while loops and for loops. The while loop is a condition-controlled loop; it is controlled by
a true/false condition. The for loop is a count-controlled loop that repeats a specified number
of times.

5.2 The while Loop
A while loop executes statements repeatedly as long as a condition remains true.

The syntax for the while loop is:

while loop-continuation-condition:
 # Loop body
 Statements

Figure 5.1a shows the while-loop flowchart. A single execution of a loop body is called
an iteration (or repetition) of the loop. Each loop contains a loop-continuation-condition, a
Boolean expression that controls the body’s execution. It is evaluated each time to determine
if the loop body is executed. If its evaluation is true, the loop body is executed; otherwise,
the entire loop terminates and the program control turns to the statement that follows the
while loop.

Point
Key

VideoNote

while loop

M05_LIANG4125_03_GE_C05.indd 154M05_LIANG4125_03_GE_C05.indd 154 26/09/22 7:55 PM26/09/22 7:55 PM

5.2 The while Loop 155

Here is another example illustrating how a loop works.

sum = 0
i = 1
while i < 10:
 sum = sum + i
 i = i + 1
print("sum is", sum) # sum is 45

If i < 10 is true, the program adds i to sum. The variable i is initially set to 1, then incre-
mented to 2, 3, and so on, up to 10. When i is 10, i < 10 is false, and the loop exits. So sum
is 1 + 2 + 3 + ... + 9 = 45.

The loop that displays Programming is fun! 100 times is an example of a while
loop. Its flowchart is shown in Figure 5.1b. The loop-continuation-condition is count
< 100 and the loop body contains two statements:

Figure 5.1 The while loop repeatedly executes the statements in the loop body as long
as the loop-continuation-condition evaluates to True.

loop-
continuation-
condition?

true

false

(a) A while loop flowchart. (b) A while loop flowchart animation.

Statements
(loop body)

while loop-continuation-condition:
 statement(s) in loop body

(count < 3)?

true

false

count = 0

count: 0

print("Welcome to Python")
count = count + 1

count = 0
while count < 3:

 print("Welcome to Python")
 count + = 1

(a) (b) (c)

M05_LIANG4125_03_GE_C05.indd 155M05_LIANG4125_03_GE_C05.indd 155 26/09/22 7:55 PM26/09/22 7:55 PM

156 Chapter 5 Loops

Suppose the loop is mistakenly written as follows:

sum = 0
i = 1
while i < 10:
 sum = sum + i
i = i + 1

Note that the entire loop body must be indented inside the loop. Here the statement i =
i + 1 is not in the loop body. This loop is infinite, because i is always 1 and i < 10 will
always be true.

Note
Make sure that the loop-continuation-condition eventually becomes false
so that the loop will terminate. A common programming error involves infinite loops
(i.e., the loop runs forever). If your program takes an unusually long time to run and
does not stop, it may have an infinite loop. If you run the program from the command
window, press CTRL+C to stop it.

Caution
Programmers often mistakenly execute a loop one time more or less than intended. This
kind of mistake is commonly known as the off-by-one error. For example, the following
loop displays Programming is fun 101 times rather than 100 times. The error
lies in the condition, which should be count < 100 rather than count <= 100.

count = 0
while count <= 100:
 print("Programming is fun!")
 count = count + 1

Recall that Listing 3.3, SubtractionQuiz.py, gives a program that prompts the user to enter
an answer for a question on subtraction. Using a loop, you can now rewrite the program to let
the user enter a new answer until it is correct, as shown in Listing 5.1.

Listing 5.1 RepeatSubtractionQuiz.py
 1 import random
 2
 3 # 1. Generate two random single-digit integers
 4 number1 = random.randint(0, 9)
 5 number2 = random.randint(0, 9)
 6
 7 # 2. If number1 < number2, swap number1 with number2
 8 if number1 < number2:
 9 number1, number2 = number2, number1
10
11 # 3. Prompt the student to answer What is number1 − number2?
12 answer = int(input("What is " + str(number1) + " − "
13 + str(number2) + "? "))
14
15 # 5. Repeatedly ask the user the question until it is correct
16 while number1 − number2 != answer:
17 answer = int(input("Wrong answer. Try again. What is "
18 + str(number1) + " − " + str(number2) + "? "))
19
20 print("You got it!")

What is 6 − 4? 0

Wrong answer. Try again. What is 6 − 4? 1

Wrong answer. Try again. What is 6 − 4? 2

You got it!

M05_LIANG4125_03_GE_C05.indd 156M05_LIANG4125_03_GE_C05.indd 156 26/09/22 7:55 PM26/09/22 7:55 PM

5.3 Case Study: Guessing Numbers 157

The loop in lines 16–18 repeatedly prompts the user to enter an answer when number1 −
number2 != answer is true. Once number1 − number2 != answer is false, the loop exits.

5.3 Case Study: Guessing Numbers
This case study generates a random number and lets the user repeatedly guess a
number until it is correct.

The problem is to guess what number a computer has in mind. You will write a program that
randomly generates an integer between 0 and 100, inclusive. The program prompts the user
to enter numbers continuously until it matches the randomly generated number. For each user
input, the program reports whether it is too low or too high, so the user can choose the next
input intelligently. Here is a sample run:

Point
Key

The magic number is between 0 and 100. To minimize the number of guesses, enter 50 first.
If your guess is too high, the magic number is between 0 and 49. If your guess is too low, the
magic number is between 51 and 100. So, after one guess, you can eliminate half the numbers
from further consideration.

How do you write this program? Do you immediately begin coding? No. It is important to
think before coding. Think about how you would solve the problem without writing a program.
You need to first generate a random number between 0 and 100, inclusive, then prompt the
user to enter a guess, and then compare the guess with the random number.

It is a good practice to code incrementally—that is, one step at a time. For programs involv-
ing loops, if you don’t know how to write a loop right away, you might first write the program
so it executes the code once, and then figure out how to execute it repeatedly in a loop. For this
program, you can create an initial draft, as shown in Listing 5.2.

Listing 5.2 GuessNumberOneTime.py
 1 import random
 2
 3 # Generate a random number to be guessed
 4 number = random.randint(0, 100)
 5
 6 print("Guess a magic number between 0 and 100")
 7
 8 # Prompt the user to guess the number
 9 guess = int(input("Enter your guess: "))
10
11 if guess == number:
12 print("Yes, the number is " + str(number))
13 elif guess > number:
14 print("Your guess is too high")
15 else:
16 print("Your guess is too low")

Guess a magic number between 0 and 100

Enter your guess: 50

Your guess is too high

Enter your guess: 25

Your guess is too low

Enter your guess: 38

Yes, the number is 38

M05_LIANG4125_03_GE_C05.indd 157M05_LIANG4125_03_GE_C05.indd 157 26/09/22 7:55 PM26/09/22 7:55 PM

158 Chapter 5 Loops

Guess a magic number between 0 and 100
Enter your guess: 50
Your guess is too high

When this program runs, it prompts the user to enter a guess only once. To let the user enter
a guess repeatedly, you can change the code in lines 11–16 to create a loop, as follows:

 1 while True:
 2 # Prompt the user to guess the number
 3 guess = int(input("Enter your guess: "))
 4
 5 if guess == number:
 6 print("Yes, the number is", number)
 7 elif guess > number:
 8 print("Your guess is too high")
 9 else:
10 print("Your guess is too low")

This loop repeatedly prompts the user to enter a guess. However, the loop still needs to
terminate; when guess matches number, the loop should end. So, revise the loop as follows:

 1 while guess != number:
 2 # Prompt the user to guess the number
 3 guess = int(input("Enter your guess: "))
 4
 5 if guess == number:
 6 print("Yes, the number is", number)
 7 elif guess > number:
 8 print("Your guess is too high")
 9 else:
10 print("Your guess is too low")

The complete code is given in Listing 5.3.

Listing 5.3 GuessNumber.py
 1 import random
 2
 3 # Generate a random number to be guessed
 4 number = random.randint(0, 100)
 5
 6 print("Guess a magic number between 0 and 100")
 7
 8 guess = −1
 9 while guess != number:
10 # Prompt the user to guess the number
11 guess = int(input("Enter your guess: "))
12
13 if guess == number:
14 print("Yes, the number is", number)
15 elif guess > number:
16 print("Your guess is too high")
17 else:
18 print("Your guess is too low")

M05_LIANG4125_03_GE_C05.indd 158M05_LIANG4125_03_GE_C05.indd 158 26/09/22 7:55 PM26/09/22 7:55 PM

5.4 Loop Design Strategies 159

Guess a magic number between 0 and 100
Enter your guess: 50
Your guess is too high

Enter your guess: 25
Your guess is too low

Enter your guess: 38
Yes, the number is 38

The program generates the magic number in line 4 and prompts the user to enter a guess
continuously in a loop (lines 9–18). For each guess, the program determines whether the user’s
number is correct, too high, or too low (lines 13–18). When the guess is correct, the program
exits the loop (line 9). Note that guess is initialized to –1. This is to avoid initializing it to a
value between 0 and 100, because that could be the number to be guessed.

5.4 Loop Design Strategies
The key to designing a loop is to identify the code that needs to be repeated and write a
condition for terminating the loop.

Writing a loop that works correctly is not an easy task for novice programmers. Consider the
three steps involved when writing a loop:

Step 1: Identify the statements that need to be repeated.
Step 2: Wrap these statements in a loop like this:

while True:
 Statements

Step 3: Code the loop-continuation-condition and add appropriate statements for controlling
the loop.

while loop-continuation-condition:
 Statements
 Additional statements for controlling the loop

The subtraction quiz program in Listing 3.3, SubtractionQuiz.py, generates just one question
for each run. You can use a loop to generate questions repeatedly. How do you write the code to
generate five questions? Follow the loop design strategy. First, identify the statements that need to
be repeated. These are the statements for obtaining two random numbers, prompting the user with
a subtraction question, and grading the question. Second, wrap the statements in a loop. Third,
add a loop-control variable and the loop-continuation-condition to execute the loop five times.

Listing 5.4 is a program that generates five questions and, after a student answers all of
them, reports the number of correct answers. The program also displays the time spent on the
test, as shown in the sample run.

Listing 5.4 SubtractionQuizLoop.py
 1 import random
 2 import time
 3
 4 correctCount = 0 # Count the number of correct answers
 5 count = 0 # Count the number of questions

Point
Key

M05_LIANG4125_03_GE_C05.indd 159M05_LIANG4125_03_GE_C05.indd 159 26/09/22 7:55 PM26/09/22 7:55 PM

160 Chapter 5 Loops

 6 NUMBER_OF_QUESTIONS = 5 # Constant
 7
 8 startTime = time.time() # Get start time
 9
10 while count < NUMBER_OF_QUESTIONS:
11 # 1. Generate two random single-digit integers
12 number1 = random.randint(0, 9)
13 number2 = random.randint(0, 9)
14
15 # 2. If number1 < number2, swap number1 with number2
16 if number1 < number2:
17 number1, number2 = number2, number1
18
19 # 3. Prompt the student to answer "what is number1 − number2?"
20 answer = int(input("What is " + str(number1) + " − " +
21 str(number2) + "? "))
22
23 # 5. Grade the answer and display the result
24 if number1 − number2 == answer:
25 print("You are correct!")
26 correctCount += 1
27 else:
28 print("Your answer is wrong.\n", number1, "–",
29 number2, "should be", (number1 − number2))
30
31 # Increase the count
32 count += 1
33
34 endTime = time.time() # Get end time
35 testTime = int(endTime − startTime) # Get test time
36 print("Correct count is", correctCount, "out of",
37 NUMBER_OF_QUESTIONS, "\nTest time is", testTime, "seconds")

What is 9 − 6? 5
Your answer is wrong.
 9 − 6 should be 3
What is 8 − 3? 6
Your answer is wrong.
 8 − 3 should be 5
What is 7 − 5? 7
Your answer is wrong.
 7 − 5 should be 2
What is 9 − 7? 8
Your answer is wrong.
 9 − 7 should be 2
What is 7 − 0? 9
Your answer is wrong.
 7 − 0 should be 7
Correct count is 0 out of 5
Test time is 0 seconds

The program uses the control variable count to control the execution of the loop. count
is initially 0 (line 5) and is increased by 1 in each iteration (line 32). A subtraction question is
displayed and processed in each iteration. The program obtains the time before the test starts

M05_LIANG4125_03_GE_C05.indd 160M05_LIANG4125_03_GE_C05.indd 160 26/09/22 7:55 PM26/09/22 7:55 PM

5.5 Controlling a Loop with User Confirmation and Sentinel Value 161

in line 8 and the time after the test ends in line 34, and computes the test time in seconds in
line 35. The program displays the correct count and test time after all the quizzes have been
taken (lines 36–37).

5.5 Controlling a Loop with User Confirmation
and Sentinel Value
It is a common practice to use a sentinel value to terminate the input.

The preceding example executes the loop five times. If you want the user to decide whether
to take another question, you can offer a user confirmation. The template of the program can
be coded as follows:

continueLoop = 'Y'
while continueLoop == 'Y':
 # Execute the loop body once
 ...

 # Prompt the user for confirmation
 continueLoop = input("Enter Y to continue and N to quit: ")

You can rewrite Listing 5.4 with user confirmation to let the user decide whether to advance
to the next question.

Another common technique for controlling a loop is to designate a special input value,
known as a sentinel value, which signifies the end of the input. A loop that uses a sentinel value
in this way is called a sentinel-controlled loop.

The program in Listing 5.5 reads and calculates the sum of an unspecified number of inte-
gers. The input 0 signifies the end of the input. You don’t need to use a new variable for each
input value. Instead, use a variable named data (line 1) to store the input value and use a vari-
able named sum (line 5) to store the total. Whenever a value is read, assign it to data (line 9)
and add it to sum (line 7) if it is not zero.

Listing 5.5 SentinelValue.py
 1 data = int(input("Enter an integer (the input exits " +
 2 "if the input is 0): "))
 3
 4 # Keep reading data until the input is 0
 5 sum = 0
 6 while data != 0:
 7 sum += data
 8
 9 data = int(input("Enter an integer (the input exits " +
10 "if the input is 0): "))
11
12 print("The sum is", sum)

Point
Key

Enter an integer (the input exits if the input is 0): 2
Enter an integer (the input exits if the input is 0): 3
Enter an integer (the input exits if the input is 0): 4
Enter an integer (the input exits if the input is 0): 0
The sum is 9

If data is not 0, it is added to the sum (line 7) and the next item of input data is read (lines
9–10). If data is 0, the loop body is no longer executed and the while loop terminates.
The input value 0 is the sentinel value for this loop. Note that if the first input read is 0, the
loop body never executes, and the resulting sum is 0.

M05_LIANG4125_03_GE_C05.indd 161M05_LIANG4125_03_GE_C05.indd 161 26/09/22 7:55 PM26/09/22 7:55 PM

162 Chapter 5 Loops

Caution
Don’t use floating-point values for equality checking in a loop control. Since those val-
ues are approximated, they could lead to imprecise counter values. This example uses
int value for data. Consider the following code for computing 1 + 0.9 + 0.8
+ ... + 0.1:

item = 1
sum = 0
while item != 0: # No guarantee item will be 0
 sum += item
 item –= 0.1
print(sum)

The variable item starts with 1 and is reduced by 0.1 every time the loop body is
executed. The loop should terminate when item becomes 0. However, there is no
guarantee that item will be exactly 0, because the floating-point arithmetic is approxi-
mated. This loop seems okay on the surface, but it is actually an infinite loop.

In Listing 5.5, if you have a lot of data to enter, it would be cumbersome to type all the
entries from the keyboard. You can store the data in a text file (named input.txt, for example)
and run the program by using the following command:

python SentinelValue.py < input.txt

This command is called input redirection. Instead of having the user type the data from
the keyboard at runtime, the program takes the input from the file input.txt. Suppose the file
contains the following numbers, one number per line:

2
3
4
0

The program should get sum to be 9.
Similarly, output redirection can send the output to a file instead of displaying it on the

screen. The command for output redirection is:

python Script.py > output.txt

Input and output redirection can be used in the same command. For example, the following
command gets input from input.txt and sends output to output.txt:

python SentinelValue.py < input.txt > output.txt

Run the program and see what contents show up in output.txt.

5.6 The for Loop
A Python for loop iterates through each value in a sequence.

Often you know exactly how many times the loop body needs to be executed, so a control
variable can be used to count the executions. A loop of this type is called a counter-controlled
loop. In general, the loop can be written as follows:

i = initialValue # Initialize loop-control variable
while i < endValue:
 # Loop body
 ...
 i += 1 # Adjust loop-control variable

Point
Key

VideoNote

for loop

M05_LIANG4125_03_GE_C05.indd 162M05_LIANG4125_03_GE_C05.indd 162 26/09/22 7:55 PM26/09/22 7:55 PM

5.6 The for Loop 163

This loop is intuitive and easy for beginners to grasp. However, programmers often forget
to adjust the control variable, which leads to an infinite loop. A for loop can be used to avoid
this potential error and to simplify the preceding loop:

for i in range(initialValue, endValue):
 # Loop body

In general, the syntax of a for loop is:

for var in sequence:
 # Loop body

A sequence holds multiple items of data, stored one after the other. A string is a sequence
of characters. Later in the book, we will introduce lists and tuples. They are also sequence-type
objects in Python. The variable var takes on each successive value in the sequence, and the
statements in the body of the loop are executed once for each value.

The function range(a, b) returns a sequence of integers a, a + 1, .. , b − 2, and b − 1.
For example,

>>> for v in range(4, 8):
... print(v)
...
4
5
6
7
>>>

The range function has two more versions. You can also use range(a) or range(a, b,
k). range(a) is the same as range(0, a). k is used as step value in range(a, b, k). The
first number in the sequence is a. Each successive number in the sequence will increase by the
step value k. b is the limit. The last number in the sequence must be less than b. For example,

>>> for v in range(3, 9, 2):
... print(v)
...
3
5
7
>>>

The step value in range(3, 9, 2) is 2, and the limit is 9. So, the sequence is 3, 5, and 7.
The range(a, b, k) function can count backward if k is negative. In this case, the step

value is k. The sequence is a, a + k, a + 2k, and so on for a negative k. The last number in
the sequence must be greater than b. For example,

>>> for v in range(5, 1, –1):
... print(v)
...
5
4
3
2
>>>

Note
The numbers in the range function must be integers. For example, range(1.5, 8.5),
range(8.5), or range(1.5, 8.5, 1) would be wrong.

M05_LIANG4125_03_GE_C05.indd 163M05_LIANG4125_03_GE_C05.indd 163 26/09/22 7:55 PM26/09/22 7:55 PM

164 Chapter 5 Loops

Since a string is a sequence, you can use a for loop to iterate all characters in a string. For
example, the following code displays all the characters in the string s:

for ch in s:
 print(ch)

You can read the code as “for each character ch in s, print ch.”

5.7 Nested Loops
A loop can be nested inside another loop.

Nested loops consist of an outer loop and one or more inner loops. Each time the outer loop is
repeated, the inner loops are reentered and started anew.

Listing 5.6 presents a program that uses nested for loops to display a multiplication table.

Listing 5.6 MultiplicationTable.py
 1 print(" Multiplication Table")
 2 # Display the number title
 3 print(" ", end = '')
 4 for j in range(1, 10):
 5 print(" ", j, end = '')
 6 print() # Jump to the new line
 7 print("---")
 8
 9 # Display table body
10 for i in range(1, 10):
11 print(i, "|", end = '')
12 for j in range(1, 10):
13 # Display the product and align properly
14 print(f"{i * j:4d}"), end = '')
15 print()# Jump to the new line

Point
Key

 Multiplication Table
 1 2 3 4 5 6 7 8 9

1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
3 | 3 6 9 12 15 18 21 24 27
4 | 4 8 12 16 20 24 28 32 36
5 | 5 10 15 20 25 30 35 40 45
6 | 6 12 18 24 30 36 42 48 54
7 | 7 14 21 28 35 42 49 56 63
8 | 8 16 24 32 40 48 56 64 72
9 | 9 18 27 36 45 54 63 72 81

The program displays a title (line 1) on the first line in the output. The first for loop (lines
4–5) displays the numbers 1 through 9 on the second line. A line of dashes (−) is displayed on
the third line (line 7).

The next loop (lines 10–15) is a nested for loop with the control variable i in the outer
loop and j in the inner loop. For each i, the product i * j is displayed on a line in the inner
loop, with j being 1, 2, 3, ..., 9.

To align the numbers properly, the program formats i * j using format(i * j, "4d")
(line 14). Recall that "4d" specifies a decimal integer format with width 4.

Normally, the print function automatically jumps to the next line. Invoking print(item,
end = ' ') (lines 3, 5, 11, and 14) prints the item without advancing to the next line. Note
that the print function with the end argument was introduced in Section 4.3.4.

M05_LIANG4125_03_GE_C05.indd 164M05_LIANG4125_03_GE_C05.indd 164 26/09/22 7:55 PM26/09/22 7:55 PM

5.8 Minimizing Numerical Errors 165

Note
Be aware that a nested loop may take a long time to run. Consider the following loop
nested in three levels:

for i in range(1000):
 for j in range(1000):
 for k in range(1000):
 Perform an action

The action is performed 1,000,000,000 times. If it takes 1 millisecond to perform the
action, the total time to run the loop would be more than 277 hours.

5.8 Minimizing Numerical Errors
Using floating-point numbers in the loop-continuation-condition may cause numeric errors.

Numerical errors involving floating-point numbers are inevitable. This section provides an
example showing you how to minimize such errors.

The program in Listing 5.7 sums a series that starts with 0.01 and ends with 1.0. The
numbers in the series will increment by 0.01, as follows: 0.01 + 0.02 + 0.03 and so on.

Listing 5.7 TestSum.py
 1 # Initialize sum
 2 sum = 0
 3
 4 # Add 0.01, 0.02, ..., 0.99, 1 to sum
 5 i = 0.01
 6 while i <= 1.0:
 7 sum += i
 8 i = i + 0.01
 9
10 # Display result
11 print("The sum is", sum)

Point
Key

The sum is 49.50000000000003

The result displayed is 49.5, but the correct result should be 50.5. What went wrong?
For each iteration in the loop, i is incremented by 0.01. When the loop ends, the i value
is slightly larger than 1 (not exactly 1). This causes the last i value not to be added into
sum. The fundamental problem is that the f loating-point numbers are represented by
approximation.

To fix the problem, use an integer count to ensure that all the numbers are added to sum.
Here is the new loop:

Initialize sum
sum = 0
Add 0.01, 0.02, ..., 0.99, 1 to sum
count = 0
i = 0.01
while count < 100:
 sum += i
 i = i + 0.01
 count += 1 # Increase count
Display result
print("The sum is", sum)

M05_LIANG4125_03_GE_C05.indd 165M05_LIANG4125_03_GE_C05.indd 165 26/09/22 7:55 PM26/09/22 7:55 PM

166 Chapter 5 Loops

Or, use a for loop as follows:

Initialize sum
sum = 0
Add 0.01, 0.02, ..., 0.99, 1 to sum
i = 0.01
for count in range(100):
 sum += i
 i = i + 0.01
Display result
print("The sum is", sum)

After this loop, sum is 50.5.

5.9 Case Studies
Loops are fundamental in programming. The ability to write loops is essential in
learning programming.

If you can write programs using loops, you know how to program! For this reason, this section
presents three additional examples of solving problems using loops.

5.9.1 Problem: Finding the Greatest Common Divisor
The greatest common divisor (GCD) of the two integers 4 and 2 is 2. The greatest common
divisor of the two integers 16 and 24 is 8. How do you find the greatest common divisor? How
would you approach writing this program? Would you immediately begin to write the code?
No. It is important to think before you type. Thinking enables you to generate a logical solution
for the problem without wondering how to write the code.

Let the two input integers be n1 and n2. You know that number 1 is a common divisor, but
it may not be the greatest common divisor. So you can check whether k (for k = 2, 3, 4, and
so on) is a common divisor for n1 and n2, until k is greater than n1 or n2. Store the common
divisor in a variable named gcd. Initially, gcd is 1. Whenever a new common divisor is found,
it becomes the new gcd. When you have checked all the possible common divisors from 2 up
to n1 or n2, the value in the variable gcd is the greatest common divisor.

Once you have a logical solution, type the code to translate the solution into a program as
follows:

gcd = 1 # Initial gcd is 1
int k = 2 # Possible gcd
while k <= n1 and k <= n2:
 if n1 % k == 0 and n2 % k == 0:
 gcd = k
 k += 1 # Next possible gcd
After the loop, gcd is the greatest common divisor for n1 and n2

Listing 5.8 presents a program that prompts the user to enter two positive integers and finds
their greatest common divisor.

Listing 5.8 GreatestCommonDivisor.py
 1 #Prompt the user to enter two integers
 2 n1 = int(input("Enter first integer: "))
 3 n2 = int(input("Enter second integer: "))
 4
 5 gcd = 1
 6 k = 2
 7 while k <= n1 and k <= n2:
 8 if n1 % k == 0 and n2 % k == 0:
 9 gcd = k

Point
Key

M05_LIANG4125_03_GE_C05.indd 166M05_LIANG4125_03_GE_C05.indd 166 26/09/22 7:55 PM26/09/22 7:55 PM

5.9 Case Studies 167

Translating a logical solution to Python code is not unique. For example, you could use a
for loop to rewrite the code as follows:

import math
for k in range(2, min(n1, n2) + 1):
 if n1 % k == 0 and n2 % k == 0:
 gcd = k

A problem often has multiple solutions, and the GCD problem can be solved in many ways.
Programming Exercise 5.16 suggests another solution. A more efficient solution is to use the
classic Euclidean algorithm (see Section 16.6, “Finding Greatest Common Divisors Using
Euclid’s Algorithm”).

You might think that a divisor for a number n1 cannot be greater than n1 / 2 and would
attempt to improve the program using the following loop:

import math
for k in range(2, min(n1 // 2, n2 // 2) + 1):
 if n1 % k == 0 and n2 % k == 0:
 gcd = k

This revision is wrong. Can you find the reason? See Checkpoint Question 5.9.1 for the
answer.

5.9.2 Problem: Predicting the Future Tuition
Suppose that the tuition for a university is $10,000 this year and increases 7% every year. In
how many years will the tuition have doubled?

Before you attempt to write a program, first consider how to solve this problem by hand. The
tuition for the second year is the tuition for the first year * 1.07. The tuition for a future year is
the tuition of its preceding year * 1.07. So, the tuition for each year can be computed as follows:

year = 0 # Year 0
tuition = 10000
year += 1 # Year 1
tuition = tuition * 1.07
year += 1 # Year 2
tuition = tuition * 1.07
year += 1 # Year 3
tuition = tuition * 1.07
...

Keep computing tuition for a new year until it is at least 20000. By then you will know
how many years it will take for the tuition to be doubled. You can now translate the logic into
the following loop:

year = 0 # Year 0
tuition = 10000
while tuition < 20000:
 year += 1
 tuition = tuition * 1.07

10 k += 1
11
12 print("The greatest common divisor for",
13 n1, "and", n2, "is", gcd)

Enter first integer: 15
Enter second integer: 25
The greatest common divisor for 15 and 25 is 5

M05_LIANG4125_03_GE_C05.indd 167M05_LIANG4125_03_GE_C05.indd 167 26/09/22 7:55 PM26/09/22 7:55 PM

168 Chapter 5 Loops

The complete program is shown in Listing 5.9.

Listing 5.9 FutureTuition.py
1 tuition = 10000
2 year = 0 # Year 0
3
4 while tuition < 20000:
5 tuition = tuition * 1.07
6 year += 1
7
8 print("Tuition will be doubled in", year, "years")
9 print(f"Tuition will be ${tuition:.2f} in {year} years")

Tuition will be doubled in 11 years
Tuition will be $21048.52 in 11 years

The while loop (lines 4–6) is used to repeatedly compute the tuition for a new year. The
loop terminates when tuition is greater than or equal to 20000.

5.9.3 Problem: Converting Decimals to Hexadecimals
Hexadecimals are often used in computer systems programming (see Appendix C, “Number
 Systems,” for an introduction to number systems). How do you convert a decimal number to
a hexadecimal number? To convert a decimal number d to a hexadecimal number is to find
the hexadecimal digits hn, hn–1, hn–2,, h2, h1, and h0 such that

d h h h

h h h
n

n
n

n
n

n16 16 16

2 16 16 + 16
1

1
2

2

2
1

1
0

0

= × + × + × +

+ × + × ×
−

−
−

− …

These hexadecimal digits can be found by successively dividing d by 16 until the
quotient is 0. The remainders are h0, h1, h2,, hn–2, hn–1, and hn. The hexadecimal digits
include the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, plus A, which is the decimal value
10; B, which is the decimal value 11; C, which is 12; D, which is 13; E, which is 14; and
F, which is 15.

For example, the decimal number 123 is 7B in hexadecimal. The conversion is done as
follows. Divide 123 by 16. The remainder is 11 (B in hexadecimal) and the quotient is 7.
Continue and divide 7 by 16. The remainder is 7 and the quotient is 0. Therefore 7B is the
hexadecimal number for 123.

Remainder

h0

Quotient

16 123

112

11

7

h1

16 7

0

7

0

Listing 5.10 gives a program that prompts the user to enter a decimal integer and converts
it into a hex number as a string.

M05_LIANG4125_03_GE_C05.indd 168M05_LIANG4125_03_GE_C05.indd 168 26/09/22 7:55 PM26/09/22 7:55 PM

5.10 Keywords break and continue 169

Listing 5.10 Dec2Hex.py
 1 # Prompt the user to enter a decimal integer
 2 decimal = int(input("Enter a decimal integer: "))
 3
 4 # Convert decimal to hex
 5 hex = ""
 6 while decimal != 0:
 7 hexValue = decimal % 16
 8
 9 # Convert a decimal value to a hex digit
10 if 0 <= hexValue <= 9:
11 hexChar = chr(hexValue + ord('0'))
12 else:
13 hexChar = chr(hexValue − 10 + ord('A'))
14
15 hex = hexChar + hex
16 decimal = decimal // 16
17
18 print("The hex number is", hex)

Enter a decimal integer: 1234
The hex number is 4D2

The program prompts the user to enter a decimal integer (line 2), converts it to a hex number
as a string (lines 5–16), and displays the result (line 18). To convert a decimal to a hex number,
the program uses a loop to successively divide the decimal number by 16 and obtain its remain-
der (line 7). The remainder is converted into a hex character (lines 10–13). The character is
then appended to the hex string (line 15). The hex string is initially empty (line 5). Divide the
decimal number by 16 to remove a hex digit from the number (line 16). The loop ends when
the remaining decimal number becomes 0.

The program converts a hexValue between 0 and 15 into a hex character. If hexValue is
between 0 and 9, it is converted to chr(hexValue + ord('0')) (line 11). For example, if
hexValue is 5, chr(hexValue + ord('0')) returns 5 (line 11). Similarly, if hexValue
is between 10 and 15, it is converted to chr(hexValue − 10 + ord('A')) (line 13). For
instance, if hexValue is 11, chr(hexValue − 10 + ord('A')) returns B.

5.10 Keywords break and continue
The break and continue keywords provide additional controls to a loop.

Pedagogical Note
Two keywords, break and continue, can be used in loop statements to provide
additional controls. Using break and continue can simplify programming in some
cases. Overusing or improperly using them, however, can make programs difficult to
read and debug. (Note to readers: You may skip this section without affecting your
understanding of the rest of the book.)

You can use the keyword break in a loop to immediately terminate a loop. Listing 5.11
presents a program to demonstrate the effect of using break in a loop.

Listing 5.11 TestBreak.py
 1 sum = 0
 2 number = 0
 3
 4 while number < 20:
 5 number += 1

Point
Key

M05_LIANG4125_03_GE_C05.indd 169M05_LIANG4125_03_GE_C05.indd 169 26/09/22 7:55 PM26/09/22 7:55 PM

170 Chapter 5 Loops

 6 sum += number
 7 if sum >= 100:
 8 break
 9
10 print("The number is", number)
11 print("The sum is", sum)

The number is 14
The sum is 105

The program adds integers from 1 to 20 in this order to sum until sum is greater than or
equal to 100. Without lines 7–8, this program would calculate the sum of the numbers from
1 to 20. But with lines 7–8, the loop terminates when sum becomes greater than or equal to
100. Without lines 7–8, the output would be:

The number is 20
The sum is 210

You can also use the continue keyword in a loop. When it is encountered, it ends the current
iteration and program control goes to the end of the loop body. In other words, continue
breaks out of an iteration, while the break keyword breaks out of a loop. The program in
Listing 5.12 shows the effect of using continue in a loop.

Listing 5.12 TestContinue.py
 1 sum = 0
 2 number = 0
 3
 4 while number < 20:
 5 number += 1
 6 if number == 10 or number == 11:
 7 continue
 8 sum += number
 9
10 print("The sum is", sum)

The sum is 189

The program adds all the integers from 1 to 20 except 10 and 11 to sum. The continue
statement is executed when number becomes 10 or 11. The continue statement ends the
current iteration so that the rest of the statement in the loop body is not executed; therefore,
number is not added to sum when it is 10 or 11.

Without lines 6 and 7, the output would be as follows:

The sum is 210

In this case, all the numbers are added to sum, even when number is 10 or 11. Therefore,
the result is 210.

Note
Some programming languages have a goto statement. The goto statement indiscrim-
inately transfers control to any statement in the program and executes it. This makes
your program vulnerable to errors. The break and continue statements in Python
are different from goto statements. They operate only in a loop statement. The break
statement breaks out of the loop, and the continue statement breaks out of the cur-
rent iteration in the loop.

You can always write a program without using break or continue in a loop (see Check-
point Question 5.10.3). In general, it is appropriate to use break and continue if their use
simplifies coding and makes programs easy to read.

M05_LIANG4125_03_GE_C05.indd 170M05_LIANG4125_03_GE_C05.indd 170 26/09/22 7:55 PM26/09/22 7:55 PM

5.11 Case Study: Checking Palindromes 171

Suppose you need to write a program to find the smallest factor other than 1 for an integer
n (assume n >= 2). You can write a simple and intuitive code using the break statement as
follows:

n = int(input("Enter an integer >= 2: "))
factor = 2
while factor <= n:
 if n % factor == 0:
 break
 factor += 1
print("The smallest factor other than 1 for", n, "is", factor)

You may rewrite the code without using break as follows:

n = int(input("Enter an integer >= 2: "))
found = False
factor = 2
while factor <= n and not found:
 if n % factor == 0:
 found = True
 else:
 factor += 1
print("The smallest factor other than 1 for", n, "is", factor)

Obviously, the break statement makes the program simpler and easier to read in this example.
However, you should use break and continue with caution. Too many break and continue
statements will produce a loop with many exit points and make the program difficult to read.

Note
Programming is a creative endeavor. There are many different ways to write code. In
fact, you can find a smallest factor using a rather simple code as follows:

factor = 2
while factor <= n and n % factor != 0:
 factor += 1

5.11 Case Study: Checking Palindromes
This section presents a program that tests whether a string is a palindrome.

A string is a palindrome if it reads the same forward and backward. The words “mom”, “dad”,
and “noon”, for example, are all palindromes.

How do you write a program to check whether a string is a palindrome? One solution is
to check whether the first character in the string is the same as the last character. If so, check
whether the second character is the same as the second-last character. This process continues
until a mismatch is found or all the characters in the string are checked, except for the middle
character if the string has an odd number of characters.

To implement this idea, use two variables, say low and high, to denote the position of two
characters at the beginning and the end in a string s, as shown in Listing 5.13 (lines 5 and 8).
Initially, low is 0 and high is len(s) − 1. If the two characters at these positions match,
increment low by 1 and decrement high by 1 (lines 16–17). This process continues until (low
>= high) or a mismatch is found.

Listing 5.13 TestPalindrome.py
 1 # Prompt the user to enter a string
 2 s = input("Enter a string: ")
 3
 4 # The index of the first character in the string
 5 low = 0
 6

Point
Key

M05_LIANG4125_03_GE_C05.indd 171M05_LIANG4125_03_GE_C05.indd 171 26/09/22 7:55 PM26/09/22 7:55 PM

172 Chapter 5 Loops

 7 # The index of the last character in the string
 8 high = len(s) − 1
 9
10 isPalindrome = True
11 while low < high:
12 if s[low] != s[high]:
13 isPalindrome = False # Not a palindrome
14 break
15
16 low += 1
17 high −= 1
18
19 if isPalindrome:
20 print(s, "is a palindrome")
21 else:
22 print(s, "is not a palindrome")

Enter a string: mom
mom is a palindrome

The program reads a string from the console (line 2), and checks whether the string is a
palindrome (lines 11–17). The program uses two variables, low and high, to denote the posi-
tions of the two characters at the beginning and the end in a string s (lines 5 and 8) as shown
in the following figure.

String s

low

a b c d e f e d c b a

high

Initially, low is 0 and high is len(s) − 1. If the two characters at these positions match,
increment low by 1 and decrement high by 1 (lines 16–17). This process continues until (low
>= high) or a mismatch is found (line 12).

The Boolean variable isPalindrome is initially set to True (line 10). When comparing
two corresponding characters from both ends of the string, isPalindrome is set to False if
the two characters differ (line 12). In this case, the break statement is used to exit the while
loop (line 14).

If the loop terminates when low >= high, isPalindrome is true, which indicates that
the string is a palindrome.

5.12 Case Study: Displaying Prime Numbers
This section presents a program that displays the first fifty prime numbers in five lines,
each containing ten numbers.

An integer greater than 1 is prime if its only positive divisor is 1 or itself. For example, 2, 3,
5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.

The problem can be broken into the following tasks:

	■ Determine whether a given number is prime.

	■ For number = 2, 3, 4, 5, 6, …, test whether the number is prime.

	■ Count the prime numbers.

	■ Display each prime number, and display ten numbers per line.

Point
Key

M05_LIANG4125_03_GE_C05.indd 172M05_LIANG4125_03_GE_C05.indd 172 26/09/22 7:55 PM26/09/22 7:55 PM

5.12 Case Study: Displaying Prime Numbers 173

Obviously, you need to write a loop and repeatedly test whether a new number is prime. If
the number is prime, increase the count by 1. The count is 0 initially. When it reaches 50, the
loop terminates.

Here is the algorithm for the problem:

Set the number of prime numbers to be displayed as
 a constant NUMBER_OF_PRIMES
Use count to track the number of prime numbers and
 set an initial count to 0
Set an initial number to 2
while count < NUMBER_OF_PRIMES:
 Test if number is prime
 if number is prime:
 Display the prime number and increase count
 Increment number by 1

To test whether a number is prime, check whether it is divisible by 2, 3, 4, …, up to
 number/2. If a divisor is found, the number is not a prime. The algorithm can be described
as follows:

Use a Boolean variable isPrime to denote whether
 the number is prime; Set isPrime to True initially;
for divisor in range(2, number / 2 + 1):
 if number % divisor == 0:
 Set isPrime to False
 Exit the loop

The complete program is given in Listing 5.14.

Listing 5.14 PrimeNumber.py
 1 NUMBER_OF_PRIMES = 50 # Number of primes to display
 2 NUMBER_OF_PRIMES_PER_LINE = 10 # Display 10 per line
 3 count = 0 # Count the number of prime numbers
 4 number = 2 # A number to be tested for primeness
 5
 6 print("The first 50 prime numbers are")
 7
 8 # Repeatedly find prime numbers
 9 while count < NUMBER_OF_PRIMES:
10 # Assume the number is prime
11 isPrime = True # Is the current number prime?
12
13 # Test if number is prime
14 divisor = 2
15 while divisor <= number / 2:
16 if number % divisor == 0:
17 # If true, the number is not prime
18 isPrime = False # Set isPrime to false
19 break # Exit the for loop
20 divisor += 1
21
22 # Display the prime number and increase the count
23 if isPrime:
24 count += 1 # Increase the count
25
26 print(f"{number:5d}", end = '')
27 if count % NUMBER_OF_PRIMES_PER_LINE == 0:
28 # Display the number and advance to the new line
29 print() # Jump to the new line
30

M05_LIANG4125_03_GE_C05.indd 173M05_LIANG4125_03_GE_C05.indd 173 26/09/22 7:55 PM26/09/22 7:55 PM

174 Chapter 5 Loops

31 # Check if the next number is prime
32 number += 1

The first 50 prime numbers are
 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
 73 79 83 89 97 101 103 107 109 113
 127 131 137 139 149 151 157 163 167 173
 179 181 191 193 197 199 211 223 227 229

This is a complex example for novice programmers. The key to developing a programmatic
solution to this problem—and to many other problems—is to break it into subproblems and
develop solutions for each of them in turn. Do not attempt to develop a complete solution in
the first trial. Instead, begin by writing the code to determine whether a given number is prime,
and then expand the program to test whether other numbers are prime in a loop.

To determine whether a number is prime, check whether it is divisible by a number between
2 and number/2 inclusive. If so, it is not a prime number; otherwise, it is a prime number. For
a prime number, display it. If the count is divisible by 10, advance to a new line. The program
ends when the count reaches 50.

The program uses the break statement in line 19 to exit the for loop as soon as the number
is found to be a nonprime. You can rewrite the loop (lines 15–20) without using the break
statement as follows:

while divisor <= number / 2 and isPrime:
 if number % divisor == 0:
 # If True, the number is not prime
 isPrime = False # Set isPrime to False
 divisor += 1

However, using the break statement makes the program simpler and easier to read in this case.

5.13 Case Study: Random Walk
You can use Turtle graphics to simulate a random walk.

In this section, we will write a Turtle program that simulates a random walk in a lattice (e.g.,
like walking around a garden and turning to look at certain flowers) that starts from the center
and ends at a point on the boundary, as shown in Figure 5.2. Listing 5.15 gives the program.

Point
Key

(a) (b)

Figure 5.2 The program simulates random walks in a lattice. (Screenshots courtesy of Apple.)

M05_LIANG4125_03_GE_C05.indd 174M05_LIANG4125_03_GE_C05.indd 174 26/09/22 7:55 PM26/09/22 7:55 PM

5.13 Case Study: Random Walk 175

Listing 5.15 RandomWalk.py
 1 import turtle
 2 from random import randint
 3
 4 turtle.speed(5) # Set turtle speed to medium
 5
 6 # Draw 16 by 16 lattices
 7 turtle.color("gray") # Color for lattice
 8 x = −80
 9 for y in range(−80, 80 + 1, 10):
10 turtle.penup()
11 turtle.goto(x, y) # Draw a horizontal line
12 turtle.pendown()
13 turtle.forward(160)
14
15 y = 80
16 turtle.right(90)
17 for x in range(−80, 80 + 1, 10):
18 turtle.penup()
19 turtle.goto(x, y) # Draw a vertical line
20 turtle.pendown()
21 turtle.forward(160)
22
23 turtle.pensize(3)
24 turtle.color("red")
25
26 turtle.penup()
27 turtle.goto(0, 0) # Go to the center
28 turtle.pendown()
29
30 x = y = 0 # Current pen location at the center of lattice
31 while abs(x) < 80 and abs(y) < 80:
32 r = randint(0, 3)
33 if r == 0:
34 x += 10 # Walk east
35 turtle.setheading(0)
36 turtle.forward(10)
37 elif r == 1:
38 y −= 10 # Walk south
39 turtle.setheading(270)
40 turtle.forward(10)
41 elif r == 2:
42 x −= 10 # Walk west
43 turtle.setheading(180)
44 turtle.forward(10)
45 elif r == 3:
46 y += 10 # Walk north
47 turtle.setheading(90)
48 turtle.forward(10)
49
50 turtle.done()

M05_LIANG4125_03_GE_C05.indd 175M05_LIANG4125_03_GE_C05.indd 175 26/09/22 7:55 PM26/09/22 7:55 PM

176 Chapter 5 Loops

Assume the size of the lattice is 16 by 16 and the distance between two lines in the lattice
is 10 pixels (lines 6–21). The program first draws the lattice in gray color. It sets the color to
gray (line 7), uses the for loop (lines 9–13) to draw the horizontal lines, and the for loop
(lines 17–21) to draw the vertical lines.

The program moves the pen to the center (line 27), and starts to simulate a random walk
in a while loop (lines 31–48). The variables x and y are used to track the current position in
the lattice. Initially, it is at (0, 0) (line 30). A random number from 0 to 3 is generated in line
32. These four numbers each correspond to a direction: east, south, west, and north. Consider
four cases:

	■ If a walk is to the east, x is increased by 10 (line 34) and the pen is moved to the
right (lines 35–36).

	■ If a walk is to the south, y is decreased by 10 (line 38) and the pen is moved down-
ward (lines 39–40).

	■ If a walk is to the west, x is decreased by 10 (line 42) and the pen is moved to the
left (lines 43–44).

	■ If a walk is to the north, y is increased by 10 (line 46) and the pen is moved upward
(lines 47–48).

The walk stops when abs(x) or abs(y) is 80 (i.e., the walk reaches the boundary of the
lattice).

A more interesting walk is called a self-avoiding walk. It is a random walk in a lattice
that does not visit the same point twice. You will learn how to write a program to simulate a
self-avoiding walk later in the book.

Key Terms

break statement

condition-controlled loop

continue statement

count-controlled loop

infinite loop

input redirection

iteration

loop

loop body

loop-continuation-condition

nested loops

off-by-one error

output redirection

sentinel value

step value

ChapTer summary

1. There are two types of repetition statements: the while loop and the for loop.

2. The part of the loop that contains the statements to be repeated is called the loop body.

3. A one-time execution of a loop body is referred to as an iteration of the loop.

4. An infinite loop is a loop statement that executes infinitely.

5. In designing loops, you need to consider both the loop-control structure and the loop body.

6. The while loop checks the loop-continuation-condition first. If the condition is
true, the loop body is executed; otherwise, the loop terminates.

M05_LIANG4125_03_GE_C05.indd 176M05_LIANG4125_03_GE_C05.indd 176 26/09/22 7:55 PM26/09/22 7:55 PM

Programming Exercises 177

7. A sentinel value is a special value that signifies the end of the input.

8. The for loop is a count-controlled loop and is used to execute a loop body a predictable
number of times.

9. Two keywords, break and continue, can be used in a loop.

10. The break keyword immediately ends the innermost loop, which contains the break.

11. The continue keyword ends only the current iteration.

programming exerCises

Pedagogical Note
For each problem, read it several times until you understand it. Think how to solve the
problem before coding. Translate your logic into a program.

A problem often can be solved in many different ways. You should explore various
solutions.

Sections 5.2–5.10
 *5.1 (Count even and odd numbers and compute the average of numbers) Write a pro-

gram that reads an unspecified number of integers, determines how many even
and odd values have been read, and computes the total and average of the input
values (not counting zeros). Your program ends with the input 0. Display the
average as a floating-point number.

Enter an integer, the input ends if it is 0: 8
Enter an integer, the input ends if it is 0: 3
Enter an integer, the input ends if it is 0: −4
Enter an integer, the input ends if it is 0: 9
Enter an integer, the input ends if it is 0: 7
Enter an integer, the input ends if it is 0: 5
Enter an integer, the input ends if it is 0: 0
The number of evens is 2
The number of odds is 4
The total is 28
The average is 4.666666666666667

 5.2 (Repeat additions) Listing 5.4, SubtractionQuizLoop.py, generates five random
subtraction questions. Revise the program to generate ten random addition ques-
tions for two integers between 1 and 15. Display the correct count and test time.

 5.3 (Conversion from gallons to liters) Write a program that displays the following
table (note that 1 gallon is 3.785 liters):

Gallons Liters
2 7.6
4 15.1
...
96 363.4
98 370.9

M05_LIANG4125_03_GE_C05.indd 177M05_LIANG4125_03_GE_C05.indd 177 26/09/22 7:55 PM26/09/22 7:55 PM

178 Chapter 5 Loops

 5.8 (Use the math.pow function) Write a program that prints the following table
using the pow function in the math module.

 5.4 (Conversion from inches to centimeters) Write a program that displays the fol-
lowing table (note that 1 inch is 2.54 centimeters):

Inches Centimeters
1 2.54
2 5.08
...
49 124.46
50 127.00

 *5.5 (Conversion from gallons to liters) Write a program that displays the following
two tables side by side (note that 1 gallon is 3.785 liters):

Gallons Liters | Liters Gallons
2 7.6 | 10 2.64
4 15.1 | 13 3.43
...
98 370.9 | 154 40.69
100 378.5 | 157 41.48

 *5.6 (Conversion from inches to centimeters and centimeters to inches) Write a pro-
gram that displays the following two tables side by side (note that 1 inch is 2.54
centimeters):

Inches Centimeters | Centimeters Inches
1 2.54 | 100 39.37
3 7.62 | 95 37.40
...
17 43.18 | 60 23.62
19 48.26 | 55 21.65

 5.7 (Use trigonometric functions) Print the following table to display the cos value
and tan value of degrees from 0 to 360 with increments of 20 degrees. Round
the value to keep four digits after the decimal point.

Degree Cos Tan
0 1.0000 0.0000
20 0.9397 0.3640
...
340 0.9397 −0.3640
360 1.0000 −0.0000

Real Number Cube Root
0 0.0000
4 1.5874
...
44 3.5303
48 3.6342

M05_LIANG4125_03_GE_C05.indd 178M05_LIANG4125_03_GE_C05.indd 178 26/09/22 7:55 PM26/09/22 7:55 PM

Programming Exercises 179

 **5.9 (Financial application: compute future tuition) Suppose that the tuition for a uni-
versity is $10,000 this year and increases 5% every year. In one year, the tuition
will be $10,500. Write a program that displays the tuition in 10 years and the
total cost of four years’ worth of tuition starting after the tenth year.

 5.10 (Find the cheapest airline ticket) Write a program that prompts the user to enter
the number of airlines and each airline's name and ticket price. Find the airline
with the cheapest ticket and display its name and price. Assume that the number
of airlines is at least 1.

Enter the number of airlines: 3
Enter an airline name: DAL
Enter ticket price: 322
Enter an airline name: AAL
Enter ticket price: 295
Enter an airline name: VXP
Enter ticket price: 379
Cheapest airline AAL’s ticket price is 295.0

 *5.11 (Find the two cheapest airline tickets) Write a program that prompts the user to
enter the number of airlines and each airline’s name and ticket price and displays
the name and ticket price of two airlines with the cheapest tickets. Assume that the
number of airlines is at least 2.

Enter the number of airlines: 4
Enter airline name: AAL
Enter ticket price: 145
Enter airline name: DAL
Enter ticket price: 163
Enter airline name: NKL
Enter ticket price: 99
Enter airline name: UAL
Enter ticket price: 159
Top two cheapest airlines:
NKL’s ticket price is 99.0
AAL’s ticket price is 145.0

 5.12 (Find numbers divisible by 11 and 17) Write a program that displays, five num-
bers per line, all the numbers from 1,000 to 5,000 that are divisible by 11 and 17.
The numbers are separated by exactly one tab.

 5.13 (Find numbers divisible by 11 or 17, but not both) Write a program that displays,
five numbers per line, all the numbers from 1,000 to 1,100 that are divisible by
11 or 17, but not both. The numbers are separated by exactly one tab.

 5.14 (Find the largest integer n such that n3−n2. 1,000<) Use a while loop to find
the first integer n such that n3−n2 does not exceed 1,000.

 5.15 (Find the largest n such that n3 12,000>) Use a while loop to find the largest
integer n such that n3 is less than 12,000.

 *5.16 (Compute the greatest common divisor) For Listing 5.8, another solution to find
the greatest common divisor of two integers n1 and n2 is as follows: First find d
to be the minimum of n1 and n2, and then check whether d, d–1, d–2, ..., 2, or 1
is a divisor for both n1 and n2 in this order. The first such common divisor is the
greatest common divisor for n1 and n2.

M05_LIANG4125_03_GE_C05.indd 179M05_LIANG4125_03_GE_C05.indd 179 26/09/22 7:55 PM26/09/22 7:55 PM

180 Chapter 5 Loops

Section 5.11
 *5.17 (Display the ASCII character table) Write a program that displays the characters

in the ASCII character table from ! to ~ . Display ten characters per line. The
characters are separated by exactly one space.

 **5.18 (Find the factors of an integer) Write a program that reads an integer and dis-
plays all its smallest factors, also known as prime factors. For example, if the
input integer is 120, the output should be as follows:

2 2 2 3 5

Enter a positive integer: 120
The prime factors for 120 are 2 2 2 3 5

 **5.19 (Display a pyramid) Write a program that prompts the user to enter an integer
from 1 to 15 and displays a pyramid, as shown in the following sample run:

Enter the number of lines: 7

 1
 2 1 2
 3 2 1 2 3
 4 3 2 1 2 3 4
 5 4 3 2 1 2 3 4 5
 6 5 4 3 2 1 2 3 4 5 6
7 6 5 4 3 2 1 2 3 4 5 6 7

 *5.20 (Display four patterns using loops) Use nested loops that display the following
patterns in four separate programs:

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6

1 2 3 4 5 6
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1

 1
 2 1
 3 2 1
 4 3 2 1
 5 4 3 2 1
6 5 4 3 2 1

1 2 3 4 5 6
 2 3 4 5 6
 3 4 5 6
 4 5 6
 5 6
 6

M05_LIANG4125_03_GE_C05.indd 180M05_LIANG4125_03_GE_C05.indd 180 26/09/22 7:55 PM26/09/22 7:55 PM

Programming Exercises 181

 **5.21 (Display numbers in a pyramid pattern) Write a nested for loop that displays the
following output:

 1
 1 2 1
 1 2 4 2 1
 1 2 4 8 4 2 1
 1 2 4 8 16 8 4 2 1
 1 2 4 8 16 32 16 8 4 2 1
 1 2 4 8 16 32 64 32 16 8 4 2 1
1 2 4 8 16 32 64 128 64 32 16 8 4 2 1

 *5.22 (Display prime numbers between 1,000 and 2,000) Display all the prime num-
bers between 1,000 and 2,000, inclusive and the total number of prime numbers.
Display 10 prime numbers per line.

Comprehensive
 **5.23 (Financial application: compare loans with various interest rates) Write a pro-

gram that lets the user enter the loan amount and loan period in number of years
and displays the monthly and total payments for each interest rate starting from
5% to 8%, with an increment of 1/8.

Enter loan amount, for example 120000.95: 10000.65
Enter number of years as an integer, for example 5: 5
Interest Rate Monthly Payment Total Payment
5.000% 188.72 11323.48
5.125% 189.30 11357.87
5.250% 189.87 11392.33
5.375% 190.45 11426.85
5.500% 191.02 11461.44
5.625% 191.60 11496.09
5.750% 192.18 11530.81
5.875% 192.76 11565.59
6.000% 193.34 11600.43
6.125% 193.92 11635.34
6.250% 194.51 11670.32
6.375% 195.09 11705.35
6.500% 195.67 11740.45
6.625% 196.26 11775.62
6.750% 196.85 11810.84
6.875% 197.44 11846.14
7.000% 198.02 11881.49
7.125% 198.62 11916.91
7.250% 199.21 11952.39
7.375% 199.80 11987.94
7.500% 200.39 12023.55
7.625% 200.99 12059.22
7.750% 201.58 12094.96
7.875% 202.18 12130.76
8.000% 202.78 12166.63

For the formula to compute monthly payment, see Listing 2.8, ComputeLoan.py.
 **5.24 (Financial application: loan amortization schedule) The monthly payment for a

given loan pays the principal and the interest. The monthly interest is computed
by multiplying the monthly interest rate and the balance (the remaining principal).

M05_LIANG4125_03_GE_C05.indd 181M05_LIANG4125_03_GE_C05.indd 181 26/09/22 7:55 PM26/09/22 7:55 PM

182 Chapter 5 Loops

The principal paid for the month is therefore the monthly payment minus the
monthly interest. Write a program that lets the user enter the loan amount, number
of years, and interest rate, and then displays the amortization schedule for the loan.

Enter loan amount, for example 120000.95: 10000.54
Enter number of years as an integer, for example 5: 1
Enter yearly interest rate, for example 8.25: 7.25
Monthly Payment: 866.46
Total Payment: 10397.6
Payment# Interest Principal Balance
1 60.41 806.05 9194.49
2 55.55 810.91 8383.58
3 50.65 815.81 7567.77
4 45.72 820.74 6747.03
5 40.76 825.70 5921.33
6 35.77 830.69 5090.63
7 30.75 835.71 4254.92
8 25.70 840.76 3414.16
9 20.62 845.84 2568.31
10 15.51 850.95 1717.36
11 10.37 856.09 861.26
12 5.20 861.26 0.00

Note
The balance after the last payment may not be zero. If so, the last payment should be
the normal monthly payment plus the final balance.

Hint: Write a loop to display the table. Since the monthly payment is the same for each
month, it should be computed before the loop. The balance is initially the loan amount.
For each iteration in the loop, compute the interest and principal and update the bal-
ance. The loop may look like this:

for i in range(1, numberOfYears * 12 + 1):
 interest = monthlyInterestRate * balance
 principal = monthlyPayment − interest
 balance = balance − principal
 print(i, "\t\t", interest, "\t\t", principal, "\t\t", balance)

 *5.25 (Demonstrate cancellation errors) A cancellation error occurs when you are
manipulating a very large number with a very small number. The large number
may cancel out the smaller number. For example, the result of 100000000.0
+ 0.000000001 is equal to 100000000.0. To avoid cancellation errors and
obtain more accurate results, carefully select the order of computation. For ex-
ample, in computing the following series, you will obtain more accurate results
by computing from right to left rather than from left to right:

1 1
2

1
3

1+ + +…
n

Write a program that compares the results of the summation of the preceding
series, computing both from left to right and from right to left with n = 50000.

 *5.26 (Sum a series) Write a program to sum the following series:

1
3

3
5

5
7

7
9

9
11

11
13

95
97

97
99

+ + + + + + …+ +

 **5.27 (Compute π) You can approximate π by using the following series:

i
4 1 1

3
1
5

1
7

1
9

1
11

(1)
2 1

i 1
π ()= − + − + − + …+ −

−

+

M05_LIANG4125_03_GE_C05.indd 182M05_LIANG4125_03_GE_C05.indd 182 26/09/22 7:55 PM26/09/22 7:55 PM

Programming Exercises 183

Write a program that displays the π value for i = 10000, 20000, …, and
100000.

 **5.28 (Compute e) You can approximate e by using the following series:

e
i

…1 1
1!

1
2!

1
3!

1
4!

1
!

= + + + + + +

Write a program that displays the e value for i = 10000, 20000, …, and 100000.

(Hint: Since i i i! (1) 2 1= × − ×…× × , then
i
1
!
 is

i i
1

(1)!−
 Initialize e and

item to be 1 and keep adding a new item to e. The new item is the previous item
divided by i for i = 2., 3, 4,)

 5.29 (Display leap years) Write a program that displays, ten per line, all the leap years
from year 2001 to 2100. The years are separated by exactly one space. Also dis-
play the number of leap years in this period.

 **5.30 (Display the first days of each month) Write a program that prompts the user to
enter the year and first day of the year, and displays the first day of each month
in the year on the console. For example, in the following sample run, the user
entered year 2013, and 2 for Tuesday, January 1, 2013.

Enter a year: 2013
Enter the first day of the year: 2
January 1, 2013 is Tuesday
February 1, 2013 is Friday
March 1, 2013 is Friday
April 1, 2013 is Monday
May 1, 2013 is Wednesday
June 1, 2013 is Saturday
July 1, 2013 is Monday
August 1, 2013 is Thursday
September 1, 2013 is Sunday
October 1, 2013 is Tuesday
November 1, 2013 is Friday
December 1, 2013 is Sunday

 **5.31 (Display calendars) Write a program that prompts the user to enter the year and
first day of the year, and displays on the console the calendar table for the year.
For example, if the user entered year 2005, and 6 for Saturday, January 1, 2005,
your program should display the calendar for each month in the year, as follows:

 January 2005

Sun Mon Tue Wed Thu Fri Sat
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
 16 17 18 19 20 21 22
 23 24 25 26 27 28 29
 30 31

 . . .
 December 2005

Sun Mon Tue Wed Thu Fri Sat
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

M05_LIANG4125_03_GE_C05.indd 183M05_LIANG4125_03_GE_C05.indd 183 26/09/22 7:55 PM26/09/22 7:55 PM

184 Chapter 5 Loops

 *5.32 (Financial application: compound value) Suppose you save $100 each month
into a savings account with the annual interest rate 5%. So, the monthly inter-
est rate is 0.05/12 0.00417= . After the first month, the value in the account
becomes

100 * (1 + 0.00417) = 100.417

After the second month, the value in the account becomes

(100 + 100.417) * (1 + 0.00417) = 201.252

After the third month, the value in the account becomes

(100 + 201.252) * (1 + 0.00417) = 302.507

and so on.
Write a program that prompts the user to enter an amount (e.g., 100), the annual
interest rate (e.g., 5), and the number of months (e.g., 6), and displays the amount
in the savings account after the given month.

Enter the amount to be saved for each month: 100.00
Enter the annual interest rate: 5.00
Enter the number of months: 6
After the 6th month, the account value is 608.81

 *5.33 (Financial application: compute CD value) Suppose you put $10,000 into a CD
with an annual percentage yield of 5.75%. After one month, the CD is worth

10000 + 10000 * 5.75 / 1200 = 10047.92

After two months, the CD is worth

10047.91 + 10047.91 * 5.75 / 1200 = 10096.06

After three months, the CD is worth

10096.06 + 10096.06 * 5.75 / 1200 = 10144.44

and so on.
Write a program that prompts the user to enter an amount (e.g., 10,000), the
annual percentage yield (e.g., 5.75), and the number of months (e.g., 4), and
displays a table as shown in the sample run.

Enter the initial deposit amount: 10000.00
Enter annual percentage yield: 5.75
Enter maturity period (number of months): 4
Month CD Value
1 10047.92
2 10096.06
3 10144.44
4 10193.05

 *5.34 (Game: lottery) Revise Listing 3.9, Lottery.py, to generate a lottery of a two-digit
number. The two digits in the number are distinct. (Hint: Generate the first digit.
Use a loop to continuously generate the second digit until it is different from the
first digit.)

M05_LIANG4125_03_GE_C05.indd 184M05_LIANG4125_03_GE_C05.indd 184 26/09/22 7:55 PM26/09/22 7:55 PM

Programming Exercises 185

 **5.35 (Perfect number) A positive integer is called a perfect number if it is equal to the
sum of all of its positive divisors, excluding itself. For example, 6 is the first per-
fect number, because 6 3 2 1= + + The next is 28 14 7 4 2 1= + + + +
There are four perfect numbers less than 10,000. Write a program to find these
four numbers.

 ***5.36 (Game: scissor, rock, paper) Programming Exercise 3.17 gives a program that plays
the scissor, rock, paper game. Revise the program to let the user play continuously
until either the user or the computer wins more than two times than its opponent.

 *5.37 (Summation) Write a program that computes the following summation.

1
1 2

1
2 3

1
3 4

1
624 625+

+
+

+
+

+ …+
+

 *5.38 (Longest common prefix) Write a program that prompts the user to enter two
strings and displays the longest common prefix of the two strings. If the two
strings have no common prefix, display No common prefix.

Enter s1: Welcome to Python
Enter s2: Welcome to Java
The common prefix is Welcome to

 *5.39 (Financial application: find the sales amount) You have just started a sales job
in a department store. Your pay consists of a base salary plus a commission. The
base salary is $5,000. The following scheme shows how to determine the com-
mission rate:

Sales Amount Commission Rate
$0.01−$5,000 8 percent
$5,000.01−$10,000 10 percent
$10,000.01 and above 12 percent

Note that this is a graduated rate. The rate for the first $5,000 is at 8%, the next
$5,000 is at 10%, and the rest is at 12%. If the sales amount is 25,000, the com-
mission is 5,000 * 8% 5,000 * 10% 15,000 * 12% 2,700.+ + = Your goal
is to earn $30,000 a year. Write a program that finds the minimum sales you have
to generate in order to make $30,000.

 5.40 (Simulation: heads or tails) Write a program that simulates flipping a coin one
million times and displays the number of heads and tails.

 *5.41 (Occurrence of max numbers) Write a program that reads integers, finds the larg-
est of them, and counts its occurrences. Assume that the input ends with number
0. Suppose that you entered 3 5 2 5 5 5 0; the program finds that the largest
is 5 and the occurrence count for 5 is 4. (Hint: Maintain two variables, max and
count. The variable max stores the current max number, and count stores its
occurrences. Initially, assign the first number to max and 1 to count. Compare
each subsequent number with max. If the number is greater than max, assign it to
max and reset count to 1. If the number is equal to max, increment count by 1.)

Enter an integer (0: for end of input): 3
Enter an integer (0: for end of input): 5
Enter an integer (0: for end of input): 2
Enter an integer (0: for end of input): 5
Enter an integer (0: for end of input): 5
Enter an integer (0: for end of input): 5
Enter an integer (0: for end of input): 0
The largest number is 5
The occurrence count of the largest number is 4

M05_LIANG4125_03_GE_C05.indd 185M05_LIANG4125_03_GE_C05.indd 185 26/09/22 7:55 PM26/09/22 7:55 PM

186 Chapter 5 Loops

 **5.46 (Statistics: compute mean and standard deviation) In business applications, you
are often asked to compute the mean and standard deviation of data. The mean is
simply the average of the numbers. The standard deviation is a statistic that tells
you how tightly all the various data are clustered around the mean in a set of data.
For example, what is the average age of the students in a class? How close are
the ages? If all the students are the same age, the deviation is 0. Write a program
that prompts the user to enter ten numbers, and displays the mean and standard
deviations of these numbers using the following formula:

1

i
i

n

i
i

n i
i

n

1 1 2

2

1

1

2

∑ ∑
∑

= =
+ + +

=
−

−
= =

=

…
mean

x

n
x x x

n
deviation

x
x

n

n
n

 *5.42 (Process string) Write a program that prompts the user to enter a string and dis-
plays all the characters at positions 3, 6, 9 and so on.

Enter a string: 123456789abcdef
369cf

 *5.43 (Math: combinations) Write a program that displays all possible combinations
for picking two numbers from integers 1 to 7. Also display the total number of
combinations.

 **5.44 (Decimal to binary) Write a program that prompts the user to enter a decimal
integer and displays its corresponding binary value.

Enter a decimal integer: 343123298
343123298's binary representation is 101000111001110010101100010

 **5.45 (Decimal to octal) Write a program that prompts the user to enter a decimal inte-
ger and displays its corresponding octal value.

Enter an integer: 100
The octal representation is 144

Enter a number: 1
Enter a number: 2
Enter a number: 3
Enter a number: 4.5
Enter a number: 5.6
Enter a number: 6
Enter a number: 7
Enter a number: 8
Enter a number: 9
Enter a number: 10
The mean is 5.61
The standard deviation is 2.997943739743404

M05_LIANG4125_03_GE_C05.indd 186M05_LIANG4125_03_GE_C05.indd 186 26/09/22 7:55 PM26/09/22 7:55 PM

Programming Exercises 187

 **5.48 (Turtle: draw circles) Write a program that draws 10 circles centered at (0, 0), as
shown in Figure 5.3b.

 **5.49 (Turtle: display a multiplication table) Write a program that displays a multipli-
cation table, as shown in Figure 5.4a.

(a) (b) (c)

Figure 5.4 (a) The program displays a multiplication table. (b) The program displays
numbers in a triangular pattern. (c) The program displays an 18-by-18 lattice. (Screenshots

courtesy of Apple.)

 **5.47 (Turtle: draw random balls) Write a program that displays 10 random balls
in a rectangle with width 120 and height 100, centered at (0, 0), as shown in
Figure 5.3a.

(a) (b)

 Figure 5.3 The program draws 10 random balls in (a), and 10 circles in (b). (Screenshots

courtesy of Apple.)

 **5.50 (Turtle: display numbers in a triangular pattern) Write a program that displays
numbers in a triangular pattern, as shown in Figure 5.4b.

 **5.51 (Turtle: display a lattice) Write a program that displays an 18-by-18 lattice, as
shown in Figure 5.4c.

M05_LIANG4125_03_GE_C05.indd 187M05_LIANG4125_03_GE_C05.indd 187 26/09/22 7:55 PM26/09/22 7:55 PM

188 Chapter 5 Loops

Hint: The Unicode for π is \u03c0. To display 2π− use turtle.write("–2\
u03c0"). For a trigonometric function like sin(x), x is in radians. Use the following
loop to plot the sine function:

for x in range(–175, 176):
 turtle.goto(x, 50 * math.sin((x / 100) * 2 * math.pi))

2π− is displayed at − −(100, 15) the center of the axis is at (0, 0), and 2π is displayed
at −(100, 15)

 **5.53 (Turtle: plot the sine and cosine functions) Write a program that plots the sine
function in red and cosine in blue, as shown in Figure 5.5b.

 **5.54 (Turtle: plot the square function) Write a program that draws a diagram for the
function f x x() 2= (see Figure 5.6a).

 **5.52 (Turtle: plot the sine function) Write a program that plots the sine function, as
shown in Figure 5.5a.

(a) (b)

Figure 5.5 (a) The program plots a sine function. (b) The program plots sine function in
blue and cosine function in red. (Screenshots courtesy of Apple.)

(a) (b)

Figure 5.6 (a) The program plots a diagram for function f(x) = x2. (b) The program draws
a chessboard. (Screenshots courtesy of Apple.)

M05_LIANG4125_03_GE_C05.indd 188M05_LIANG4125_03_GE_C05.indd 188 26/09/22 7:55 PM26/09/22 7:55 PM

Programming Exercises 189

 **5.55 (Turtle: chessboard) Write a program to draw a chessboard, as shown in
Figure 5.6b.

 *5.56 (Count uppercase letters) Write a program that prompts the user to enter a string
and displays the number of the uppercase letters in the string.

Enter a string: Programming is fun
The number of uppercase letter in Programming is fun is 1

 *5.57 (Business: check ISBN-13) ISBN-13 is a new standard for identifying books. It
uses 13 digits: 1 2 3 4 5 6 7 8 9 10 11 12 13d d d d d d d d d d d d d The last digit d13 is a check-
sum, which is calculated from the other digits using the following formula:

10 (3 3 3 3 3 3)%101 2 3 4 5 6 7 8 9 10 11 12− + + + + + + + + + + +d d d d d d d d d d d d

If the checksum is 10, replace it with 0. Your program should read the input as
a string.

Enter the first 12-digit of an ISBN number as a string:
978013213080
The ISBN number is 9780132130806

 *5.58 (Reverse a string) Write a program that prompts the user to enter a string and
displays the string in reverse order.

Enter a string: Welcome
The reversed string is emocleW

 *5.59 (Count vowels and consonants) Assume letters A, E, I, O, and U as the vowels.
Write a program that prompts the user to enter a string and displays the number
of vowels and consonants in the string.

Enter a String: Programming is fun
The number of Vowels is 5
The number of consonants is 11

M05_LIANG4125_03_GE_C05.indd 189M05_LIANG4125_03_GE_C05.indd 189 26/09/22 7:55 PM26/09/22 7:55 PM

M05_LIANG4125_03_GE_C05.indd 190M05_LIANG4125_03_GE_C05.indd 190 26/09/22 7:55 PM26/09/22 7:55 PM

Objectives
	■ To store a list using a linked structure (§18.2).

	■ To design the linked list class (§18.3).

	■ To implement the methods in the linked list class (§18.4).

	■ To show the difference between lists and linked lists (§18.5).

	■ To explore variations of linked lists (§18.6).

	■ To define and create iterators for traversing elements in a container
(§18.7).

	■ To generate iterators using generators (§18.8).

	■ To design and implement stacks (§18.9).

	■ To design and implement queues (§18.10).

	■ To design and implement priority queues (§18.11).

	■ To parse and evaluate expressions using stacks (§18.12).

Linked Lists, Stacks,
Queues, and
Priority Queues

CHAPTER

18

M18_LIANG4125_03_GE_C18.indd 589M18_LIANG4125_03_GE_C18.indd 589 26/09/22 9:15 PM26/09/22 9:15 PM

590 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

18.1 Introduction
This chapter focuses on designing and implementing custom data structures.

A data structure is a collection of data organized in some fashion. The structure not only stores
data but also supports operations for accessing and manipulating the data.

In object-oriented thinking, a data structure, also known as a container, is an object that
stores other objects, referred to as data or elements. Some people refer to data structures as
container objects. To define a data structure is essentially to define a class. The class for a data
structure should use data fields to store data and provide methods to support such operations
as search, insertion, and deletion. To create a data structure is therefore to create an instance
from the class. You can then apply the methods on the instance to manipulate the data structure,
such as inserting an element into or deleting an element from the data structure.

Python provides the built-in data structures lists, tuples, sets, and dictionaries. This chapter
introduces linked lists, stacks, queues, and priority queues. They are classic data structures
widely used in programming. Through these examples, you will learn how to design and
implement custom data structures.

18.2 Linked Lists
Linked list is implemented using a linked structure.

A list is a data structure for storing data in sequential order—for example, a list of students,
a list of available rooms, a list of cities, a list of books. The typical operations for a list are:

	■ Retrieve an element from a list.

	■ Insert a new element to a list.

	■ Delete an element from a list.

	■ Find how many elements are in a list.

	■ Find whether an element is in a list.

	■ Find whether a list is empty.

Python provides the built-in data structure called list. This section introduces linked lists.
A linked list can be used just like a list. The difference lies in performance. Using linked
lists is more efficient for inserting and removing elements from the beginning of the list
than using a list. Using a list is more efficient for retrieving an element via an index than
using a linked list.

A linked list is implemented using a linked structure that consists of nodes linked together
to form a list. In a linked list, each element is contained in a structure called the node. When a
new element is added to the list, a node is created to contain it. Each node is linked to its next
neighbor, as shown in Figure 18.1.

Point
Key

Point
Key

element 1head
next

Node 1
element 2
next

Node 2
… element n

None

Node n
tail

Figure 18.1 A linked list consists of any number of nodes chained
together.

Animation: Linked List

Pedagogical Note
For an interactive demo on how linked lists work, see http://liveexample.pearsoncmg.
com/liang/animation/web/LinkedList.html.

M18_LIANG4125_03_GE_C18.indd 590M18_LIANG4125_03_GE_C18.indd 590 26/09/22 9:15 PM26/09/22 9:15 PM

18.2 Linked Lists 591

A node can be defined as a class, as follows:

class Node:
 def __init__(self, e):
 self.elmenet = e
 self.next = None # Point to the next node, default None

We use the variable head to refer to the first node in the list and the variable tail to the
last node. If the list is empty, both head and tail are None. Here is an example that creates
a linked list to hold three nodes. Each node stores a string element.

Step 1: Declare head and tail:

head = None The list is empty now

tail = None

head and tail are both None. The list is empty.

Step 2: Create the first node and append it to the list:
After the first node is inserted in the list, head and tail point to this node, as shown
in Figure 18.2c.

(c) After executing tail = head.

"Chicago"

next: None

head

tail

head: None

tail: None

(a) The list is empty. (b) After executing head = Node("Chicago").

head tail: None

"Chicago"

next: None

Figure 18.2 Append the first node to the list.

Step 3: Create the second node and append it into the list:
To append the second node to the list, link the first node with the new node, as shown
in Figure 18.3b. The new node is now the tail node. So you should move tail to point
to this new node, as shown in Figure 18.3c.

(a) After executing Node("Denver"). (b) After executing tail.next = Node("Denver").

(c) After executing tail = tail.next.

head "Chicago"
next

"Denver"

next: None

tail

head "Chicago"

next: None

"Denver"

next: None

tail

head "Chicago"
next

"Dallas"

next: None

tail

Figure 18.3 Append the second node to the list.

M18_LIANG4125_03_GE_C18.indd 591M18_LIANG4125_03_GE_C18.indd 591 26/09/22 9:15 PM26/09/22 9:15 PM

592 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

Step 4: Create the third node and append it to the list:
To append the new node to the list, link the last node in the list with the new node, as
shown in Figure 18.4b. The new node is now the tail node. So you should move tail
to point to this new node, as shown in Figure 18.4c.

(c) After executing tail = tail.next.

(a) After executing Node("Dallas").

(b) After executing tail.next = Node("Dallas").

"Denver"
next: None

"Dallas"
next: None

head "Chicago"
next

tail

"Denver"
next

"Dallas"
next: None

head "Chicago"
next

tail

head "Chicago"
next

"Denver"
next

"Dallas"

next: None

tail

Figure 18.4 Append the third node to the list.

Each node contains the element and a data field named next that points to the next element.
If the node is the last in the list, its pointer data field next contains the value None. You can
use this property to detect the last node. For example, you may write the following loop to
traverse all the nodes in the list.

1 current = head
2 while current != None:
3 print(current.element)
4 current = current.next

The variable current points initially to the first node in the list (line 1). In the loop, the
element of the current node is retrieved (line 3), and then current points to the next node
(line 4). The loop continues until the current node is None.

18.3 The LinkedList Class
The LinkedList class can be defined in a UML diagram in Figure 18.5. The solid diamond
indicates that LinkedList contains nodes. For references on the notations in the diagram, see
Section 12.8, “Class Relationships.”

M18_LIANG4125_03_GE_C18.indd 592M18_LIANG4125_03_GE_C18.indd 592 26/09/22 9:15 PM26/09/22 9:15 PM

18.2 The LinkedList Class 593

Assuming that the class has been implemented, Listing 18.1 gives a test program that uses
the class.

Listing 18.1 TestLinkedList.py
 1 from LinkedList import LinkedList
 2
 3 lst = LinkedList() # Create a linked list
 4

Node

element: object

next: Node

Link
1

m

-head: Node

LinkedList

LinkedList()

-tail: Node

-size: int

addFirst(e: object): None

getFirst(): object

getLast(): object

removeFirst(): object

add(e: object): None

clear(): None

contains(e: object): bool

get(index: int): object

indexOf(e: object): int

isEmpty(): bool

getSize(): int

remove(e: object): bool

removeAt(index: int): object

_ _iter_ _(): Iterator

set(index: int, e: object):

 object

lastIndexOf(e: object): int

insert(index: int, e:

 object): None

removeLast(): object

addLast(e: object): None

0

Figure 18.5 LinkedList implements a list using a linked list of nodes.

M18_LIANG4125_03_GE_C18.indd 593M18_LIANG4125_03_GE_C18.indd 593 26/09/22 9:15 PM26/09/22 9:15 PM

594 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

 5 # Add elements to the list
 6 lst.add("America") # Add America to the list
 7 print("(1)", lst)
 8
 9 lst.insert(0, "Canada") # Add Canada to the beginning of the list
10 print("(2)", lst)
11
12 lst.add("Russia") # Add Russia to the end of the list
13 print("(3)", lst)
14
15 lst.addLast("France") # Add France to the end of the list
16 print("(4)", lst)
17
18 lst.insert(2, "Germany") # Add Germany to the list at index 2
19 print("(5)", lst)
20
21 lst.insert(5, "Norway") # Add Norway to the list at index 5
22 print("(6)", lst)
23
24 lst.insert(0, "Poland") # Same as list.addFirst("Poland")
25 print("(7)", lst)
26
27 # Remove elements from the list
28 lst.removeAt(0) # Remove the element at index 0
29 print("(8)", lst)
30
31 lst.removeAt(2) # Remove the element at index 2
32 print("(9)", lst)
33
34 lst.removeAt(lst.getSize() − 1) # Remove the last element
35 print("(10)", lst)

(1) [America]

(2) [Canada, America]

(3) [Canada, America, Russia]

(4) [Canada, America, Russia, France]

(5) [Canada, America, Germany, Russia, France]

(6) [Canada, America, Germany, Russia, France, Norway]

(7) [Poland, Canada, America, Germany, Russia, France, Norway]

(8) [Canada, America, Germany, Russia, France, Norway]

(9) [Canada, America, Russia, France, Norway]

(10) [Canada, America, Russia, France]

18.4 Implementing LinkedList
Now let us turn our attention to implementing the LinkedList class. We will discuss how
to implement methods addFirst(e), addLast(e), add(index, e), removeFirst(),
removeLast(), and removeAt(index) and leave other methods in the LinkedList class
as exercises. The addLast(e) method is same as the add(e) method. The reason for defining
both is for convenience.

18.4.1 Implementing addFirst(e)
The addFirst(e) method creates a new node for holding element e. The new node becomes
the first node in the list. It can be implemented as follows:

M18_LIANG4125_03_GE_C18.indd 594M18_LIANG4125_03_GE_C18.indd 594 26/09/22 9:15 PM26/09/22 9:15 PM

18.4 Implementing LinkedList 595

1 def addFirst(self, e):
2 newNode = Node(e) # Create a new node
3 newNode.next = self.__head # link the new node with the head
4 self.__head = newNode # head points to the new node
5 self.__size += 1 # Increase list size
6
7 if self.__tail == None: # the new node is the only node in list
8 self.__tail = self.__head

The addFirst(e) method creates a new node to store the element (line 2) and insert
the node to the beginning of the list (line 3), as shown in Figure 18.6b. After the inser-
tion, head should point to this new element node (line 4), as shown in Figure 18.6c.

(a) Before inserting an element to the front.

(b) After executing newNode = Node(e) in line 2.

(c) After executing newNode.next = self.__head in line 3.

(d) After executing self.__head = newNode in line 4.

head

…

tail

…e0

next
ei

next
ei+1

next
ek

None

newNode

head

…

newNode
will be
inserted in
the front.

tail

…e0

next
ei

next
ei+1

next
ek

None

None
e

head is now
pointing to
newNode.

head

… …e0

next

e
None

ei
next

ei+1

next
ek

None

tail

newNode

head

newNode is
inserted in
the front.

… …e0

next

e
None

ei
next

ei+1

next
ek

None

tail

newNode

Figure 18.6 A new element is added to the beginning of the list.

If the list is empty (line 7), both head and tail will point to this new node (line 8). After
the node is created, size should be increased by 1 (line 5).

Clearly, the addFirst(e) method takes O(1) time.

M18_LIANG4125_03_GE_C18.indd 595M18_LIANG4125_03_GE_C18.indd 595 26/09/22 9:15 PM26/09/22 9:15 PM

596 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

18.4.2 Implementing addLast(e)
The addLast(e) method creates a node to hold the element and appends the node at the end
of the list. It can be implemented as follows:

 1 def addLast(self, e):
 2 newNode = Node(e) # Create a new node for e
 3
 4 if self.__tail == None:.
 5 self.__head = self.__tail = newNode # The only node in list
 6 else:
 7 self.__tail.next = newNode # Link the new with the last node
 8 self.__tail = self.__tail.next # tail now points to the last node
 9
10 self.__size += 1 # Increase size

The addLast(e) method creates a new node to store the element (line 2) and appends it
to the end of the list, as shown in Figure 18.7b. Consider two cases:

1. If the list is empty (line 4), both head and tail will point to this new node (line 5);

2. Otherwise, link the node with the last node in the list (line 7). tail should now point
to this new node (line 8), as shown in Figure 18.7c.

In any case, after the node is created, the size should be increased by 1 (line 10).

(a) Before appending an element to the end.

(b) After executing newNode = Node(e) in line 2.

(c) After executing self.__tail.next = newNode
in line 7.

(d) After executing self.__tail = self.__tail.next
in line 8.

newNode

head

…
newNode
will be
appended
at the end.

tail

…e0

next

e
None

ei
next

ei+1

next
ek

None

head

…

tail

…e0

next
ei

next
ei+1

next
ek

None

newNode

tail is now
pointing to
the new
node.

head

… tail…e0

next

e
None

ei
next

ei+1

next
ek

next

newNode

newNode
is now
appended
at the end.

head

… …e0

next

e
None

ei
next

ei+1

next
ek

next

tail

Figure 18.7 A new element is added at the end of the list.

Clearly, the addLast(e) method takes O(1) time.

M18_LIANG4125_03_GE_C18.indd 596M18_LIANG4125_03_GE_C18.indd 596 26/09/22 9:15 PM26/09/22 9:15 PM

18.4 Implementing LinkedList 597

18.4.3 Implementing insert(index, e)
The insert(index, e) method inserts an element into the list at the specified index. It can
be implemented as follows:

 1 def insert(self, index, e):
 2 if index == 0:
 3 self.addFirst(e) # Insert first
 4 elif index >= self.__size:.
 5 self.addLast(e) # Insert last
 6 else: # Insert in the middle
 7 current = self.__head
 8 for i in range(1, index):
 9 current = current.next
10 temp = current.next
11 current.next = Node(e)
12 (current.next).next = temp
13 self.__size += 1

There are three cases when inserting an element into the list:

1. If index is 0, invoke addFirst(e) (line 3) to insert the element at the beginning of the list;

2. If index is greater than or equal to size, invoke addLast(e) (line 5) to insert the
element at the end of the list;

3. Otherwise, locate where to insert it (lines 7–10) as shown in Figure 18.8a. Create a
new node to store the new element. The new node is to be inserted between the nodes
current and temp, as shown in Figure 18.8b. The method assigns the new node to
current.next and assigns temp to the new node’s next, as shown in Figure 18.8c.
The size is now increased by 1 (line 13).

(a) Before adding an element to the list. (b) Locate the insertion point in lines 7–10.

The new element will be inserted between current and temp.

(c) After executing current . next = Node (e) in line 11. (d) After executing current . next.next = temp
 in line 12.

Link the
new node
with temp

current temphead

…

tail

…e0

next

e
next

ei
next

ei+1

next
ek

None

head

…

Create the
new node
and link it
with current.

tail

…e0

next
ei

next
ei+1

next
ek

None

current temp

e
None

head

…

tail

…e0

next
ei

next
ei+1

next
ek

None

current temphead

…

tail

…e0

next
ei

next
ei+1

next
ek

None

Figure 18.8 A new element is inserted in the middle of the list.

Clearly, the insert(index, e) method takes O(n) time.

M18_LIANG4125_03_GE_C18.indd 597M18_LIANG4125_03_GE_C18.indd 597 26/09/22 9:15 PM26/09/22 9:15 PM

598 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

18.4.4 Implementing removeFirst()
The removeFirst() method is to remove the first element from the list. It can be imple-
mented as follows:

(a) Before deleting the first element. (b) After executing self._ _head = self.__head . next
 in line 6.

head

…

The node to be deleted

tail

e1

next next
ek-1

None
e0

next
ek

… e1

next next
ek-1

None
e0

next

head

The list is from head to tail.
The node for e0 is not in the list.

tail

ek

Figure 18.9 The first node is deleted from the list.

Clearly, the removeFirst() method takes O(1) time.

18.4.5 Implementing removeLast()
The removeLast() method removes the last element from the list. It can be implemented as
follows:

 1 def removeLast(self):
 2 if self.__size == 0:
 3 return None # Nothing to remove
 4 elif self.__size == 1: # Only one element in the list
 5 temp = self.__head
 6 self.__head = self.__tail = None # list becomes empty
 7 self.__size = 0
 8 return temp.element
 9 else:
10 current = self.__head
11 for i in range(self.__size – 2):
12 current = current.next
13
14 temp = self.__tail
15 self.__tail = current
16 self.__tail.next = None
17 self.__size -= 1
18 return temp.element

 1 def removeFirst(self):
 2 if self.__size == 0:
 3 return None # Nothing to delete
 4 else:
 5 temp = self.__head.element # Keep the first node temporarily
 6 self.__head = self.__head.next # Move head to point the next node
 7 self.__size –= 1 # Reduce size by 1
 8 if self.__head == None:
 9 self.__tail = None # List becomes empty
10 return temp # Return the deleted element

Consider two cases:

1. If the list is empty, there is nothing to delete, so return None (line 3);

2. Otherwise, remove the first node from the list by pointing head to the second node, as
shown in Figure 18.9b. The size is reduced by 1 after the deletion (line 7). If there is one
element, after removing the element, tail should be set to None (line 9).

M18_LIANG4125_03_GE_C18.indd 598M18_LIANG4125_03_GE_C18.indd 598 26/09/22 9:15 PM26/09/22 9:15 PM

18.4 Implementing LinkedList 599

Consider three cases:

1. If the list is empty, return None (line 3);

2. If the list contains only one node, this node is destroyed; head and tail both become
None (line 6);

3. Otherwise, the last node is removed (line 14) and the tail is repositioned to point to
the second-to-last node, as shown in Figure 18.10c. For the last two cases, the size is
reduced by 1 after the deletion (lines 7 and 17) and the element value of the deleted
node is returned (lines 8 and 18).

(a) Before deleting the last element. (b) Locate the node before tail in lines 10–13.

(c) After executing self.__tail = current in the 16. (d) After executing current . next = None in the 17.

head

…

The node to be deleted

tail

e1

next next None

eke0

next

ek–1

head

…

The node to be deleted

tail

e1

next next None

eke0

next

ek–1

head

…

The node to be deleted

tail

e1

next next None

eke0

next

ek–1

current currenthead

…

The node to be deleted

tail

e1

next None
ek

None
e0

next
ek–1

Figure 18.10 The last node is deleted from the list.

Since the algorithm needs to find the pointer before tail, it takes O(n) time to locate it.
The removeLast() method takes O(n) time. The linked list used here is called a singly
linked list, where nodes are traversed in one direction forward. In Programming Exercise
18.4, you can achieve O(1) time for the removeLast() method using a doubly linked
list.

18.4.6 Implementing removeAt(index)
The removeAt(index) method finds the node at the specified index and then removes it. It
can be implemented as follows:

 1 def removeAt(self, index):
 2 if index < 0 or index >= self.__size:.
 3 return None # Out of range
 4 elif index == 0:
 5 return self.removeFirst() # Remove first
 6 elif index == self.__size − 1:
 7 return self.removeLast() # Remove last
 8 else:
 9 previous = self.__head
10 for i in range(1, index):
11 previous = previous.next
12
13 current = previous.next
14 previous.next = current.next
15 self.__size −= 1
16 return current.element

M18_LIANG4125_03_GE_C18.indd 599M18_LIANG4125_03_GE_C18.indd 599 26/09/22 9:15 PM26/09/22 9:15 PM

600 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

Consider four cases:

1. If index is beyond the range of the list (i.e., index < 0 or index >= size), return
None (line 3);

2. If index is 0, invoke removeFirst() to remove the first node (line 5);

3. If index is size − 1, invoke removeLast() to remove the last node (line 7);

4. Otherwise, locate the node at the specified index. Let current denote this node
and previous denote the node before this node, as shown in Figure 18.11a. Assign
current.next to previous.next to eliminate the current node, as shown in
Figure 18.11b.

(a) Before deleting an element from the list. (b) Locate the node to be deleted in lines 9–14.

current is the node to be deleted. previous points to the node before current

head

… e0

next
ei–1

next
ei

next

previous current tail

…ei+1

next
ek

None

current.nexthead

… e0

next
ei–1

next
ei

next

tail

…ei+1

next
ek

None

(c) After executing previous . next = current . next in line 15.

previous is now linked to current.next. current node is not in the list.

head

… e0

next
ei–1

next
ei

next

previous current tail

…ei+1

next
ek

None

current.next

Figure 18.11 A node is deleted from the list.

Clearly, the removeAt(index) method takes O(n) time.

18.4.7: The Source Code for LinkedList
Listing 18.2 gives the implementation of LinkedList. The implementation of get
(index), indexOf(e), lastIndexOf(e), contains(e), remove(e), and set(index,
e) is omitted and left as an exercise.

Listing 18.2 LinkedList.py
 1 class LinkedList:
 2 def __init__(self):
 3 self.__head = None
 4 self.__tail = None
 5 self.__size = 0
 6
 7 # Return the head element in the list
 8 def getFirst(self):
 9 if self.__size == 0:
 10 return None
 11 else:
 12 return self.__head.element
 13
 14 # Return the last element in the list
 15 def getLast(self):
 16 if self.__size == 0:
 17 return None
 18 else:
 19 return self.__tail.element
 20

M18_LIANG4125_03_GE_C18.indd 600M18_LIANG4125_03_GE_C18.indd 600 26/09/22 9:16 PM26/09/22 9:16 PM

18.4 Implementing LinkedList 601

 21 # Add an element to the beginning of the list
 22 def addFirst(self, e):
 23 newNode = Node(e) # Create a new node
 24 newNode.next = self.__head # link the new node with the head
 25 self.__head = newNode # head points to the new node
 26 self.__size += 1 # Increase list size
 27
 28 if self.__tail == None: # the new node is the only node in list
 29 self.__tail = self.__head
 30
 31 # Add an element to the end of the list
 32 def addLast(self, e):
 33 newNode = Node(e) # Create a new node for e
 34
 35 if self.__tail == None:
 36 self.__head = self.__tail = newNode # The only node in list
 37 else:
 38 self.__tail.next = newNode # Link the new with the last node
 39 self.__tail = self.__tail.next # tail now points to the last node
 40
 41 self.__size += 1 # Increase size
 42
 43 # Same as addLast
 44 def add(self, e):
 45 self.addLast(e)
 46
 47 # Insert a new element at the specified index in this list
 48 # The index of the head element is 0
 49 def insert(self, index, e):
 50 if index == 0:
 51 self.addFirst(e) # Insert first
 52 elif index >= self.__size:
 53 self.addLast(e) # Insert last
 54 else: # Insert in the middle
 55 current = self.__head
 56 for i in range(1, index):
 57 current = current.next
 58 temp = current.next
 59 current.next = Node(e)
 60 (current.next).next = temp
 61 self.__size += 1
 62
 63 # Remove the head node and
 64 # return the object that is contained in the removed node.
 65 def removeFirst(self):
 66 if self.__size == 0:
 67 return None # Nothing to delete
 68 else:
 69 temp = self.__head # Keep the first node temporarily
 70 self.__head = self.__head.next # Move head to point the next node
 71 self.__size −= 1 # Reduce size by 1
 72 if self.__head == None:
 73 self.__tail = None # List becomes empty
 74 return temp.element # Return the deleted element
 75
 76 # Remove the last node and
 77 # return the object that is contained in the removed node
 78 def removeLast(self):
 79 if self.__size == 0:
 80 return None # Nothing to remove

M18_LIANG4125_03_GE_C18.indd 601M18_LIANG4125_03_GE_C18.indd 601 26/09/22 9:16 PM26/09/22 9:16 PM

602 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

 81 elif self.__size == 1: # Only one element in the list
 82 temp = self.__head
 83 self.__head = self.__tail = None # list becomes empty
 84 self.__size = 0
 85 return temp.element
 86 else:
 87 current = self.__head
 88
 89 for i in range(self.__size − 2):
 90 current = current.next
 91
 92 temp = self.__tail
 93 self.__tail = current
 94 self.__tail.next = None
 95 self.__size −= 1
 96 return temp.element
 97
 98 # Remove the element at the specified position in this list.
 99 # Return the element that was removed from the list.
100 def removeAt(self, index):
101 if index < 0 or index >= self.__size:
102 return None # Out of range
103 elif index == 0:
104 return self.removeFirst() # Remove first
105 elif index == self.__size − 1:
106 return self.removeLast() # Remove last
107 else:
108 previous = self.__head
109
110 for i in range(1, index):
111 previous = previous.next
112
113 current = previous.next
114 previous.next = current.next
115 self.__size −= 1
116 return current.element
117
118 # Return true if the list is empty
119 def isEmpty(self):
120 return self.__size == 0
121
122 # Return the size of the list
123 def getSize(self):
124 return self.__size
125
126 def __str__(self):
127 result = "["
128
129 current = self.__head
130 for i in range(self.__size):
131 result += str(current.element)
132 current = current.next
133 if current != None:
134 result += ", " # Separate two elements with a comma
135 else:
136 result += "]" # Insert the closing] in the string
137
138 return result
139
140 # Clear the list */
141 def clear(self):
142 self.__head = self.__tail = None

M18_LIANG4125_03_GE_C18.indd 602M18_LIANG4125_03_GE_C18.indd 602 26/09/22 9:16 PM26/09/22 9:16 PM

18.4 Implementing LinkedList 603

143
144 # Return true if this list contains the element o
145 def contains(self, e):
146 print("Implementation left as an exercise")
147 return True
148
149 # Remove the element and return true if the element is in the list
150 def remove(self, e):
151 print("Implementation left as an exercise")
152 return True
153
154 # Return the element from this list at the specified index
155 def get(self, index):
156 print("Implementation left as an exercise")
157 return None
158
159 # Return the index of the head matching element in this list.
160 # Return −1 if no match.
161 def indexOf(self, e):
162 print("Implementation left as an exercise")
163 return 0
164
165 # Return the index of the last matching element in this list
166 # Return –1 if no match.
167 def lastIndexOf(self, e):
168 print("Implementation left as an exercise")
169 return 0
170
171 # Replace the element at the specified position in this list
172 # with the specified element. */
173 def set(self, index, e):
174 print("Implementation left as an exercise")
175 return None
176
177 # Return elements via indexer
178 def __getitem__(self, index):
179 return self.get(index)
180
181 # Return an iterator for a linked list
182 def __iter__(self):
183 return LinkedListIterator(self.__head)
184
185 # The Node class
186 class Node:
187 def __init__(self, e):
188 self.element = e
189 self.next = None
190
191 class LinkedListIterator:
192 def __init__(self, head):
193 self.current = head
194
195 def __next__(self):
196 if self.current == None:
197 raise StopIteration
198 else:
199 element = self.current.element
200 self.current = self.current.next
201 return element

M18_LIANG4125_03_GE_C18.indd 603M18_LIANG4125_03_GE_C18.indd 603 26/09/22 9:16 PM26/09/22 9:16 PM

604 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

A linked list contains nodes defined in the Node class (lines 186–189). You use iterators
for traversing the elements in a linked list (lines 182–183). Iterators will be discussed in
Section 18.7.

The no-arg constructor (lines 2–5) constructs an empty linked list with head and tail
nullptr and size 0. The implementation for methods addFirst(e) (lines 22–29),
addLast(e) (lines 32–41), removeFirst() (lines 65–74), removeLast() (lines 78–96),
add(e) (lines 44–45), insert(index, e) (lines 49–61), and removeAt(index) (lines
100–116) was discussed in Sections 18.4.1–18.4.6.

The methods getFirst() and getLast() (lines 8–19) return the first and last elements
in the list, respectively.

The implementation of lastIndexOf(e), remove(e), get(index), constains(e),
and set(index, e) (lines 145–175) is omitted and left as an exercise.

18.5 List vs. Linked List
Both list and LinkedList can be used to store a list. Due to their implementation, the time
complexities for some methods in list and LinkedList differ. Python list is implemented
using an array in the C language. The LinkedList is implemented using a linked structure.
Table 18.1 summarizes the complexity of the methods in list and LinkedList.

Note that you can implement LinkedList without using the size data field. But then the
getSize() method would take O(n) time.

tabLe 18.1 Time Complexities for Methods in list and LinkedList

 Methods for list/Complexity Methods for LinkedList/Complexity

 append(e: E) O(1) add(e: E) O(1)

 insert(index: int, e: E) O(n) insert(index: int, e: E) O(n)

 N/A clear() O(1)

 e in myList O(n) contains(e: E) O(n)

 lst[index] O(1) get(index: int) O(n)

 index(e: E) O(n) indexOf(e: E) O(n)

 len(lst) == 0? O(1) isEmpty() O(1)

 N/A lastIndexOf(e: E) O(n)

 remove(e: E) O(n) remove(e: E) O(n)

 len(lst) O(1) getSize() O(1)

 del lst[index] O(n) removeAt(index: int) O(n)

 lst[index] = e O(n) set(index: int, e: E) O(n)

 insert(0, e) O(n) addFirst(e: E) O(1)

 del × [0] O(n) removeFirst() O(1)

 del × [len(lst) − 1] O(1) removeLast() O(n)

The overhead of list is smaller than that of LinkedList. However, LinkedList is
more efficient if you need to insert and delete the elements from the beginning of the list.
Listing 18.3 gives a program that demonstrates this.

Listing 18.3 LinkedListPerformance.py
 1 from LinkedList import LinkedList
 2 import time
 3
 4 startTime = time.time()
 5 list = LinkedList()

M18_LIANG4125_03_GE_C18.indd 604M18_LIANG4125_03_GE_C18.indd 604 26/09/22 9:16 PM26/09/22 9:16 PM

18.6 Variations of Linked Lists 605

 6 for i in range(100000):
 7 list.insert(0, "Chicago")
 8 elapsedTime = time.time() − startTime
 9 print("Time for LinkedList is", elapsedTime, "seconds")
10
11 startTime = time.time()
12 list = []
13 for i in range(100000):
14 list.insert(0, "Chicago")
15 elapsedTime = time.time() − startTime
16 print("Time for list is", elapsedTime, "seconds")

Time for LinkedList is 0.23491573333740234 seconds
Time for list is 3.4948792457580566 seconds

The program creates a LinkedList (line 5) and inserts 100,000 elements to the beginning
of the linked list (line 7). The execution time is 2.6 seconds, as shown in the output. The pro-
gram creates a list (line 12) and inserts 100,000 elements to the beginning of the list (line 14).
The execution time is 18.37 seconds, as shown in the output.

18.6 Variations of Linked Lists
The linked list introduced in the preceding section is known as a singly linked list. It contains
a pointer to the list’s first node, and each node contains a pointer to the next node sequentially.
Several variations of the linked list are useful in certain applications.

A circular, singly linked list is like a singly linked list except that the pointer of the last
node points back to the first node, as shown in Figure 18.12a. Note that tail is not needed for
circular linked lists. A good application of a circular linked list is in the operating system that
serves multiple users in a time-sharing fashion. The system picks a user from a circular list and
grants a small amount of CPU time then moves on to the next user in the list.

A doubly linked list contains the nodes with two pointers. One points to the next node and
the other to the previous node, as shown in Figure 18.1 2b. The se two po inters are conve niently
called a forward pointer and a backward pointer. So, a doubly linked list can be traversed
forward and backward.

(a) Circular linked list

...
Node 1 Node 2 Node n

element1
next

element2
next

elementn
next

head

(b) Doubly linked list

...

...

Node 1

element1
next
None

head tail

tail

tail

Node 2

element2
next

previous

Node n

elementn
None

previous

(c) Circular doubly linked list

Node 1

element1
next

previous

head

Node 2

element2
next

previous

Node n

elementn
next

previous

Figure 18.12 Linked lists may appear in various forms.

M18_LIANG4125_03_GE_C18.indd 605M18_LIANG4125_03_GE_C18.indd 605 26/09/22 9:16 PM26/09/22 9:16 PM

606 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

A circular doubly linked list is a doubly linked list except that the forward pointer of the
last node points to the first node and the backward pointer of the first pointer points to the last
node, as shown in Figure 18.12c.

The implementations of these linked lists are left as exercises.
In a singly linked list, removeLast() takes O(n) time. In a doubly linked list, removeL-

ast() can be implemented to take O(1) time. See CheckPoint 18.6.1.

18.7 Iterators
An iterator is an object that provides a uniform way for traversing the elements in a
container object.

Recall that you can use a for loop to traverse the elements in a list, a tuple, a set, a dictionary, and
a string. For example, the following code displays all the elements in set1 that are greater than 3.

set1 = {4, 5, 1, 9}
for e in set1:
 if e > 3:
 print(e, end = ' ')

Can you use a for loop to traverse the elements in a linked list? To enable the tra-
versal using a for loop in a container object, the container class must implement the
__iter__(self) method that returns an iterator as shown in lines 182–183 in List-
ing 18.2, LinkedList.py.

Return an iterator for a linked list
def __iter__(self):
 return LinkedListIterator(self.__head)

An iterator class must contain the __next__(self) method that returns the next element
in the container object as shown in lines 191–201 in Listing 18.2, LinkedList.py.

 1 class LinkedListIterator:
 2 def __init__(self, head):
 3 self.current = head
 4
 5 def __next__(self):
 6 if self.current == None:
 7 raise StopIteration
 8 else:
 9 element = self.current.element
10 self.current = self.current.next
11 return element

The data field current serves as a pointer that points to the current element in the con-
tainer. Invoking the __next__() method returns the current element at the current point (lines
9 and 11) and moves current to point to the next element (line 10). When there are no items left
to iterate, the __next__() method must raise a StopIteration exception.

To be clear, an iterator class needs two things:

	■ A __next__() method that returns the next item in the container.

	■ The __next__() method that raises a StopIteration exception after all elements
are iterated.

 Listing 18.4 gives an example for using th e iterator.

Listing 18.4 TestIterator.py
 1 from LinkedList import LinkedList
 2
 3 lst = LinkedList() # Create a linked list

Point
Key

M18_LIANG4125_03_GE_C18.indd 606M18_LIANG4125_03_GE_C18.indd 606 26/09/22 9:16 PM26/09/22 9:16 PM

18.7 Iterators 607

 4 lst.add(1)
 5 lst.add(2)
 6 lst.add(3)
 7 lst.add(–3)
 8
 9 for e in lst:
10 print(e, end = ' ')
11 print()
12
13 iterator = iter(lst) # Create an iterator
14 print(next(iterator))
15 print(next(iterator))
16 print(next(iterator))
17 print(next(iterator))
18 print(next(iterator))

1 2 3 –3

1

2

3

–3

Traceback (most recent call last):

 File "TestIterator.py", line 18, in <module>

 print(next(iterator))

 File "D:\py1e\etext2014\firsttimeworkarea\LinkedList.py",

 line 197, in __next__ raise StopIteration

StopIteration

The program creates a LinkedList lst (line 3) and adds numbers into the list (lines 4–7).
It uses a for loop to traverse all the elements in the list (lines 9–10). Using a for loop, an iterator
is implicitly created and used.

The program creates an iterator explicitly (line 13). iter(lst) is the same as lst.__
iter__(). next(iterator) returns the next element in the iterator (line 14), which is the
same as iterator.__next__(). When all elements are traversed in the iterator, invoking
next(iterator) raises a StopIteration exception (line 18).

Note
The Python built-in functions sum, max, min, tuple, and list can be applied
to any iterator. So, for the linked list lst in the preceding example, you can apply the
following functions:

 print(sum(lst))
 print(max(lst))
 print(min(lst))
 print(tuple(lst))
 print(list(lst))

Note
An object c is iterable if it can produce an iterator using the syntax iter(c). List,
tuple, set, dictionary, and string are all iterable. For example, for lst = [3, 5, 1],
you can use iterator = iter(lst) to obtain an iterator and use next
(iterator) to traverse all the elements in the list.

Python iterators are very flexible. The elements in the iterator may be generated dynamically
and may be infinite. Listing 18.5 gives an example of generating Fibonacci numbers using an
iterator.

M18_LIANG4125_03_GE_C18.indd 607M18_LIANG4125_03_GE_C18.indd 607 26/09/22 9:16 PM26/09/22 9:16 PM

608 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

Listing 18.5 FibonacciNumberIterator.py
 1 class FibonacciIterator:
 2 def __init__(self):
 3 self.fn1 = 0 # Current two consecutive fibonacci numbers
 4 self.fn2 = 1
 5
 6 def __next__(self): # Define the next method
 7 current = self.fn1
 8 self.fn1, self.fn2 = self.fn2, self.fn1 + self.fn2
 9 return current
10
11 def __iter__(self):
12 return self # Return iterator
13
14 def main():
15 iterator = FibonacciIterator()
16 # Display all Fibonacci numbers <= 10000
17 for i in iterator:
18 if i <= 10000:
19 print(i, end = ' ')
20 else: break
21
22 main()

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

The FibonacciIterator class is an iterator class. It contains the __next__() method
that returns the next element in the iterator (lines 6–9). Note that this is an infinite iterator. So, it
does not raise a StopIteration exception. This iterator class also contains the __iter__()
method that returns self (line 12), which is an iterator object.

The main function creates an iterator (line 15), uses a for loop to traverse the elements in
the iterator, and displays the Fibonacci numbers less than or equal to 10000 (lines 17–19).

18.8 Generators
Generators are special Python functions for generating iterators. They are written like
regular functions but use the yield statement to return data.

To see how generators work, we rewrite Listing 18.5 FibnacciNumberIterator.py using a gen-
erator in Listing 18.6.

Listing 18.6 FibonacciNumberGenerator.py
 1 def fib():
 2 fn1 = 0 # Current two consecutive fibonacci numbers
 3 fn2 = 1
 4 while True:
 5 current = fn1
 6 fn1, fn2 = fn2, fn1 + fn2
 7 yield current # yield a Fibonacci number
 8
 9 def main():
10 iterator = fib()
11 # Display all Fibonacci numbers <= 10000
12 for i in iterator:
13 if i <= 10000:
14 print(i, end = ' ')
15 else: break
16
17 main()

Point
Key

M18_LIANG4125_03_GE_C18.indd 608M18_LIANG4125_03_GE_C18.indd 608 26/09/22 9:16 PM26/09/22 9:16 PM

18.9 Stacks 609

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

The function fib() is a generator (lines 1–7). It uses the yield keyword to return data
(line 7). When this function is invoked (line 10), Python automatically generates an itera-
tor object with the __next__ and __iter__ methods. When you define an iterator class,
the __next__ and __iter__ methods must be defined explicitly. Using a generator, these
two methods are automatically defined when you create an iterator from a generator.

Generators are defined as functions but executed differently from functions. When an iter-
ator’s __next__() method is called for the first time, it starts to execute the generator and
 continue until the yield keyword is encountered. When the __next__() method is called
again, execution resumes in the generator function on the statement immediately following the
yield keyword. All local variables in the function will remain intact. If the yield statement
occurs within a loop, execution will continue within the loop as though execution had not been
interrupted. When the generator terminates, it automatically raises a StopIteration exception.

Generators provide a simpler and a more convenient way to create iterators. You may replace
the __iter__ method (lines 182–183) and the LinkedListIterator class (lines 191–201)
in Listing 18.2 LinkedList.py with the following generator:

 1 # Return an iterator for a linked list
 2 def __iter__(self):
 3 return self.linkedListGenerator()
 4
 5 def linkedListGenerator(self):
 6 current = self.__head
 7
 8 while current != None:
 9 element = current.element
10 current = current.next
11 yield element

The new __iter__ method defined in the LinkedList class returns an iterator created
by the generator function linkedListGenerator(). current initially points to the first
element in the linked list (line 6). Every time the __next__ method is called, the generator
resumes execution to return an element in the iterator. The generator ends execution when
current is None. If the __next__ method is called after the generator is finished, a Sto-
pIteration exception will be automatically raised.

18.9 Stacks
Stacks can be implemented using lists.

A stack can be viewed as a special type of list whose elements are accessed, inserted, and
deleted only from the end (top), as shown in Figure 18.13.

Point
Key

Data1

Data2
Data1

Data3

Data3
Data2
Data1

Data1

Data1

Data2

Data1

Data2

Data2
Data1

Data3

Figure 18.13 A stack holds data in a last-in, first-out fashion.

M18_LIANG4125_03_GE_C18.indd 609M18_LIANG4125_03_GE_C18.indd 609 26/09/22 9:16 PM26/09/22 9:16 PM

610 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

Stacks have many applications. For example, the compiler uses a stack to process method
invocations. When a method is invoked, its parameters and local variables are pushed into a
stack. When a method calls another method, the new method’s parameters and local variables
are pushed into the stack. When a method finishes its work and returns to its caller, its asso-
ciated space is popped out from the stack. You can view an element on the top of the stack
without removing it using the peek method.

Since the elements are appended and retrieved from the end in a stack, using a list to store
the elements of a stack is efficient. The Stack class can be defined as shown in Figure 18.14,
and it is implemented in Listing 18.7.

Stack

-elements: list

Stack()

push(value: object): None

peek(): object

pop(): object

getSize(): int

isEmpty(): bool

Figure 18.14 The Stack class encapsulates the stack storage
and provides the operations for manipulating the stack.

Listing 18.7 Stack.py
 1 class Stack:
 2 def __init__(self):
 3 self.__elements = []
 4
 5 # Return true if the stack is empty
 6 def isEmpty(self):
 7 return len(self.__elements) == 0
 8
 9 # Returns the element at the top of the stack
10 # without removing it from the stack.
11 def peek(self):
12 if self.isEmpty():
13 return None
14 else:
15 return self.__elements[len(self.__elements) − 1]
16
17 # Stores an element into the top of the stack
18 def push(self, value):
19 self.__elements.append(value)
20
21 # Removes the element at the top of the stack and returns it
22 def pop(self):
23 if self.isEmpty():
24 return None
25 else:
26 return self.__elements.pop()
27

M18_LIANG4125_03_GE_C18.indd 610M18_LIANG4125_03_GE_C18.indd 610 26/09/22 9:16 PM26/09/22 9:16 PM

18.10 Queues 611

28 # Return the size of the stack
29 def getSize(self):
30 return len(self.__elements)

Listing 18.8 gives a test program that uses the Stack class to create a stack (line 3),
stores ten integers 0, 1, 2, . . . , and 9 (line 6), and displays them in reverse order
(line 9).

Listing 18.8 TestStack.py
1 from Stack import Stack
2
3 stack = Stack()
4
5 for i in range(10):
6 stack.push(i) # Push i to stack
7
8 while not stack.isEmpty():
9 print(stack.pop(), end = " ") # Pop from stack

9 8 7 6 5 4 3 2 1 0

For a stack, the push(e) method adds an element to the top of the stack, and the pop()
method removes the top element from the stack and returns the removed element. It is easy to
see that the time complexity for the push and pop methods is O(1).

Pedagogical Note
For an interactive demo on how stacks and queues work, go to http://liveexample.
pearsoncmg.com/liang/animation/web/Stack.html, and http://liveexample.pearsoncmg.
com/liang/animation/web/Queue.html.

18.10 Queues
Queues can be implemented using linked lists.

A queue represents a waiting list. It can be viewed as a special type of list whose elements
are inserted into the end (tail) of the queue and are accessed and deleted from the beginning
(head), as shown in Figure 18.15.

Point
Key

Data1
Data2

Data1 Data1
Data2
Data3

Data2 Data3

Data2
Data3

Data1 Data2

Data3

Data1

Data3

Figure 18.15 A queue holds objects in a first-in, first-out fashion.

Since deletions are made at the beginning of the list, it is more efficient to implement a
queue using a linked list than a list. The Queue class can be defined as shown in Figure 18.16,
and it is implemented in Listing 18.9.

M18_LIANG4125_03_GE_C18.indd 611M18_LIANG4125_03_GE_C18.indd 611 26/09/22 9:16 PM26/09/22 9:16 PM

612 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

Listing 18.9 Queue.py
 1 from LinkedList import LinkedList
 2
 3 class Queue:
 4 def __init__(self):
 5 self.__elements = LinkedList()
 6
 7 # Adds an element to this queue
 8 def enqueue(self, e):
 9 self.__elements.add(e)
10
11 # Removes an element from this queue
12 def dequeue(self):
13 if self.getSize() == 0:
14 return None
15 else:
16 return self.__elements.removeAt(0)
17
18 # Return the size of the queue
19 def getSize(self):
20 return self.__elements.getSize()
21
22 # Returns a string representation of the queue
23 def __str__(self):
24 return self.__elements.__str__()
25
26 # Return true if queue is empty
27 def isEmpty(self):
28 return self.getSize() == 0

A linked list is created to store the elements in a queue (line 5). The enqueue(e) method
(lines 8–9) adds element e into the tail of the queue. The dequeue() method (lines 12–16)
removes an element from the head of the queue and returns the removed element. The get-
Size() method (lines 19–20) returns the number of elements in the queue.

Listing 18.10 gives a test program that uses the Queue class to create a queue (line 3), the
enqueue method to add strings to the queue, and the dequeue method to remove strings from
the queue.

Listing 18.10 TestQueue.py
 1 from Queue import Queue
 2
 3 queue = Queue() # Create a queue

-elements: LinkedList

Queue()

enqueue(e: object): None

dequeue(): object

getSize(): int

isEmpty(): bool

__str__(): str

Queue

Figure 18.16 Queue uses a linked list to
provide a first-in, first-out data structure.

M18_LIANG4125_03_GE_C18.indd 612M18_LIANG4125_03_GE_C18.indd 612 26/09/22 9:16 PM26/09/22 9:16 PM

18.11 Priority Queues 613

(1) [Nylah]

(2) [Nylah, Ashley]

(3) [Nylah, Ashley, Curtis, Marisa]

(4) Nylah

(5) Ashley

(6) [Curtis, Marisa]

-heap: Heap

enqueue(element: object): None

dequeue(): object

getSize(): int

PriorityQueue

Figure 18.17 PriorityQueue uses a heap to
provide a largest-in, first-out data structure.

For a queue, the enqueue(o) method adds an element to the tail of the queue, and the
dequeue() method removes the element from the head of the queue. It is easy to see that the
time complexity for the enqueue and dequeue methods is O(1).

18.11 Priority Queues
Priority queues can be implemented using heaps.

An ordinary queue is a first-in, first-out data structure. Elements are appended to the end of
the queue and removed from the beginning. In a priority queue, elements are assigned with
priorities. When accessing elements, the element with the highest priority is removed first. For
example, the emergency room in a hospital assigns priority numbers to patients; the patient
with the highest priority is treated first.

A priority queue can be implemented using a heap, where the root is the element with
the highest priority in the queue. Heap was introduced in Section 17.6, “Heap Sort.” The
class diagram for the priority queue is shown in Figure 18.17. Its implementation is given in
Listing 18.11.

Point
Key

 4
 5 # Add elements to the queue
 6 queue.enqueue("Nylah") # Add Nylah to the queue
 7 print("(1)", queue)
 8
 9 queue.enqueue("Ashley") # Add Ashley to the queue
10 print("(2)", queue)
11
12 queue.enqueue("Curtis") # Add Curtis to the queue
13 queue.enqueue("Marisa") # Add Marisa to the queue
14 print("(3)", queue)
15
16 # Remove elements from the queue
17 print("(4)", queue.dequeue())
18 print("(5)", queue.dequeue())
19 print("(6)", queue)

M18_LIANG4125_03_GE_C18.indd 613M18_LIANG4125_03_GE_C18.indd 613 26/09/22 9:16 PM26/09/22 9:16 PM

614 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

Listing 18.11 PriorityQueue.py
 1 from Heap import Heap
 2
 3 class PriorityQueue:
 4 def __init__(self):
 5 self.__heap = Heap()
 6
 7 # Adds an element to this queue
 8 def enqueue(self, e):
 9 self.__heap.add(e)
10
11 # Removes an element from this queue
12 def dequeue(self):
13 if self.getSize() == 0:
14 return None
15 else:
16 return self.__heap.remove()
17
18 # Return the size of the queue
19 def getSize(self):
20 return self.__heap.getSize()

 Listing 18.12 gives an example of using a priority queue for patients. Each patient is a list
with two elements. The first is the priority value and th e second is the name. Four patients are
created with associated priority values in lines 3–6. Line 8 creates a priority queue. The patients
are enqueued in lines 9–12. Line 15 dequeues a patient from the queue.

Listing 18.12 TestPriorityQueue.py
 1 from PriorityQueue import PriorityQueue
 2
 3 patient1 = [2, "Ashley"]
 4 patient2 = [1, "Emilia"]
 5 patient3 = [5, "Bakary"]
 6 patient4 = [7, "Abbi"]
 7
 8 priorityQueue = PriorityQueue() # Create a PriorityQueue
 9 priorityQueue.enqueue(patient1)
10 priorityQueue.enqueue(patient2)
11 priorityQueue.enqueue(patient3)
12 priorityQueue.enqueue(patient4)
13
14 while priorityQueue.getSize() > 0:
15 print(priorityQueue.dequeue(), end = " ")

[7, 'Abbi'] [5, 'Bakary'] [2, 'Ashley'] [1, 'Emilia']

18.12 Case Study: Evaluating Expressions
Stacks can be used to evaluate expressions.

Stacks, queues, and priority queues have many applications. This section gives an application
of using stacks. You can enter an arithmetic expression from Google to evaluate the expression
a s shown in Figure 18.18.

Point
Key

M18_LIANG4125_03_GE_C18.indd 614M18_LIANG4125_03_GE_C18.indd 614 26/09/22 9:16 PM26/09/22 9:16 PM

18.12 Case Study: Evaluating Expressions 615

Figure 18.18 You can evaluate an arithmetic expression from Google.
(Screenshot of Google.)

How does Google evaluate an expression? This section presents a program that evaluates
a compound expression with multiple operators and parentheses (e.g., (1 + 2) * 4 − 3).
For simplicity, assume that the operands are integers and operators are of four types: +, −,
*, and /.

The problem can be solved using two stacks, named operandStack and operatorStack,
for storing operands and operators, respectively. Operands and operators are pushed into the
stacks before they are processed. When an operator is processed, it is popped from opera-
torStack and applied on the first two operands from operandStack (the two operands are
popped from operandStack). The resultant value is pushed back to operandStack.

The algorithm takes two phases:
Phase 1: Scanning expression
The program scans the expression from left to right to extract operands, operators, and the

parentheses.

1.1 If the extracted item is an operand, push it to operandStack.

1.2 If the extracted item is a + or − operator, process all the operators at the top of
operatorStack with higher or equal precedence (i.e., +, −, *, /), push the extracted
operator to operatorStack.

1.3 If the extracted item is a * or / operator, process all the operators at the top of oper-
atorStack with higher or equal precedence (i.e., *, /), push the extracted operator
to operator Stack.

1.4 If the extracted item is a (symbol, push it to operatorStack.

1.5 If the extracted item is a) symbol, repeatedly process the operators from the top of
operatorStack until seeing the (symbol on the stack.

Phase 2: Clearing stack
Repeatedly process the operators from the top of operatorStack until operatorStack

is empty.
Listing 18.13 gives the program.

Listing 18.13 EvaluateExpression.py
 1 import Stack
 2
 3 def main(): .

M18_LIANG4125_03_GE_C18.indd 615M18_LIANG4125_03_GE_C18.indd 615 26/09/22 9:16 PM26/09/22 9:16 PM

616 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

 4 expression = input("Enter an expression: ").strip()
 5 try:
 6 print(expression, "=", evaluateExpression(expression))
 7 except:
 8 print("Wrong expression: ", expression)
 9
10 # Evaluate an expression
11 def evaluateExpression(expression):
12 # Create operandStack to store operands
13 operandStack = Stack.Stack()
14
15 # Create operatorStack to store operators
16 operatorStack = Stack.Stack()
17
18 # Insert blanks around (,), +, −, /, and *
19 expression = insertBlanks(expression)
20
21 # Extract operands and operators
22 tokens = expression.split()
23
24 # Phase 1: Scan tokens
25 for token in tokens:
26 if len(token) == 0: # Blank space
27 continue # Back to the while loop to extract the next token
28 elif token[0] == '+' or token[0] == '−':
29 # Process all +, -, *, / in the top of the operator stack
30 while not operatorStack.isEmpty() and \
31 (operatorStack.peek() == '+' or
32 operatorStack.peek() == '−' or
33 operatorStack.peek() == '*' or
34 operatorStack.peek() == '/'):
35 processAnOperator(operandStack, operatorStack)
36
37 # Push the + or - operator into the operator stack
38 operatorStack.push(token[0])
39 elif token[0] == '*' or token[0] == '/':
40 # Process all *, / in the top of the operator stack
41 while not operatorStack.isEmpty() and \
42 (operatorStack.peek() == '*' or
43 operatorStack.peek() == '/'):
44 processAnOperator(operandStack, operatorStack)
45
46 # Push the * or / operator into the operator stack
47 operatorStack.push(token[0])
48 elif token.strip()[0] == '(':
49 operatorStack.push('(') # Push '(' to stack
50 elif token.strip()[0] == ')':
51 # Process all the operators in the stack until seeing '('
52 while operatorStack.peek() != '(':
53 processAnOperator(operandStack, operatorStack)
54
55 operatorStack.pop() # Pop the '(' symbol from the stack
56 else: # An operand scanned
57 # Push an operand to the stack
58 operandStack.push(float(token))
59
60 # Phase 2: process all the remaining operators in the stack
61 while not operatorStack.isEmpty():
62 processAnOperator(operandStack, operatorStack)
63

M18_LIANG4125_03_GE_C18.indd 616M18_LIANG4125_03_GE_C18.indd 616 26/09/22 9:16 PM26/09/22 9:16 PM

18.12 Case Study: Evaluating Expressions 617

64 # Return the result
65 return operandStack.pop()
66
67 # Process one operator: Take an operator from operatorStack and
68 # apply it on the operands in the operandStack
69 def processAnOperator(operandStack, operatorStack):
70 op = operatorStack.pop()
71 op1 = operandStack.pop()
72 op2 = operandStack.pop()
73 if op == '+':
74 operandStack.push(op2 + op1)
75 elif op == '−':
76 operandStack.push(op2 - op1)
77 elif op == '*':
78 operandStack.push(op2 * op1)
79 elif op == '/':
80 operandStack.push(op2 / op1)
81
82 def insertBlanks(s):
83 result = ""
84
85 for ch in s:
86 if ch == '(' or ch == ')' or ch == '+' or ch == '−' or \
87 ch == '*' or ch == '/':
88 result += " " + ch + " "
89 else:
90 result += ch
91
92 return result
93
94 main()

Enter an expression: (13 + 2) * 4 − 3

(13 + 2) * 4 − 3 = 57.0

The program reads an expression as a string (line 4) and invokes the evaluateExpres-
sionfunction (line 6) to evaluate the expression.

The evaluateExpression function creates two stacks operandStack and opera-
torStack (lines 13 and 16) and invokes the insertBlanks (line 19) function to insert
spaces around the operators and the parentheses. It then invokes the split function to extract
numbers, operators, and parentheses from the expression (line 22) into tokens. The tokens are
stored in a list of strings. For example, if the expression is (13 + 2) * 4 – 3, the tokens
are (, 13, +, 2,), *, 4, −, and 3.

The evaluateExpression function scans each token in the for loop (lines 25–58). If
a token is an operand, push it to operandStack (line 58). If a token is a + or – operator
(line 28), process all the operators from the top of operatorStack if any (lines 30–35) and
push the newly scanned operator to the stack (line 38). If a token is a * or / operator (line 39),
process all the * and / operators from the top of operatorStack if any (lines 41–44) and
push the newly scanned operator to the stack (line 47). If a token is a (symbol (line 48), push
it to operatorStack (line 49). If a token is a) symbol (line 50), process all the operators
from the top of operatorStack until seeing the) symbol (lines 52–53) and pop the) symbol
from the stack (line 55).

After all tokens are considered, the program processes the remaining operators in opera-
torStack (lines 61–62).

M18_LIANG4125_03_GE_C18.indd 617M18_LIANG4125_03_GE_C18.indd 617 26/09/22 9:16 PM26/09/22 9:16 PM

618 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

The processAnOperator function (lines 69–80) processes an operator. The function pops
the operator from operatorStack (line 70) and pops two operands from operandStack
(lines 71–72). Depending on the operator, the function performs an operation and pushes the
result of the operation back to operandStack (lines 74, 76, 78, and 80).

Key Terms

circular doubly linked list

circular singly linked list

dequeue

doubly linked list

enqueue

generator

iterator

linked list

peek

priority queue

push

queue

singly linked list

ChapTer summary

1. You learned how to design and implement linked lists, stacks, queues, and priority
queues.

2. To define a data structure is essentially to define a class. The class for a data structure
should use data fields to store data and provide methods to support such operations as
search, insertion, and deletion.

3. To create a data structure is to create an instance from the class. You can then apply the
methods on the instance to manipulate the data structure, such as searching an element,
inserting an element, or deleting an element from the data structure.

programming exerCises

Section 18.2
 18.1 (Implement set operations in LinkedList) Define a new class named

MyLinkedList that extends LinkedList with the following set methods:

 # Add the elements in otherList to this list.
 # Return true if this list changed as a result of the call
 def addAll(self, otherList):
 # Remove all the elements in otherList from this list
 # Return true if this list changed as a result of the call
 def removeAll(self, otherList):

 # Retain the elements in this list that are also in otherList
 # Return true if this list changed as a result of the call
 def retainAll(self, otherList):

Use https://liangpy.pearsoncmg.com/test/Exercise18_01py3e.txt to test your
code.

M18_LIANG4125_03_GE_C18.indd 618M18_LIANG4125_03_GE_C18.indd 618 26/09/22 9:16 PM26/09/22 9:16 PM

Programming Exercises 619

Enter list1: red green red black

Enter list2: red black yellow yellow

After list1.addAll(list2), list1 is [red, green, red, black,
red, black, yellow, yellow]

After list1.removeAll(list2), list1 is [green]

After list1.retainAll(list2), list1 is [red, red, black]

 *18.2 (Implement LinkedList) The implementations of methods clear(), con-
tains(e), get(index), and lastIndexOf(e) are omitted in the text.
Implement these methods.

 *18.3 (Implement LinkedList) The implementations of methods remove(e), in-
dexOf(e), and set(index, e) are omitted in the text. Implement these meth-
ods. Use https://liangpy.pearsoncmg.com/test/Exercise18_03.txt to test your
code.

 *18.4 (Create a doubly-linked list) The LinkedList class used in Listing 18.2 is a
singly linked list that enables one-way traversal of the list. Modify the Node class
to add the new field name previous to refer to the previous node in the list, as
follows:

 class Node:
 def Node(self, e):
 self.element = e
 self.previous = None
 self.next = None

Implement a new class named TwoWayLinkedList that uses a doubly-linked
list to store elements.

Section 18.6
 18.5 (Implement a Queue) The following code listing contains skeleton code for a

multithreaded program, where the main thread generates 50 messages and places
them in a Queue and another thread takes them from the Queue and prints them.

import threading
import queue

def main():
 threading.Thread(target=dequeuer, daemon=True).start()

 for i in range(50):
 # Add code to create a message,
 # add the message to the queue
 # and print the message
 print('All messages queued\n', end='')

 q.join()
 print('All work completed')

def dequeuer():
 while True:
 # Add code to read a message from the queue,
 # print the message
 # and call task_done() to inform the queue

q = queue.Queue()
main()

M18_LIANG4125_03_GE_C18.indd 619M18_LIANG4125_03_GE_C18.indd 619 26/09/22 9:16 PM26/09/22 9:16 PM

620 Chapter 18 Linked Lists, Stacks, Queues, and Priority Queues

Write a program that prompts the user to enter a postfix expression and evaluate it.

 **18.8 (Convert infix to postfix) Write a function that converts an infix expression into a
postfix expression using the following header:

 def infixToPostfix(expression):

For example, the function should convert the infix expression (1 + 2) * 3 to
1 2 + 3 * and 2 * (1 + 3) to 2 1 3 + *.

Write a program that prompts the user to enter an expression and displays its
corresponding postfix expression.

 **18.9 (Animation: Linked list) Write a program to animate search, insertion, and de-
letion in a linked list. The Search button searches whether the specified value is
in the list. The Delete button deletes the specified value from the list. The Insert
button inserts the value into the specified index in the list.

 *18.10 (Animation: Stack) Write a program to animate push and pop of a stack, as shown
in Figure 18.13.

 *18.11 (Animation: Queue) Write a program to animate the enqueue and dequeue oper-
ations on a queue, as shown in Figure 18.15.

 *18.12 (Animation: Doubly-linked list) Write a program to animate search, insertion,
and deletion in a doubly-linked list, as shown in Figure 18.19a. The Search but-
ton searches whether the specified value is in the list. The Delete button deletes
the specified value from the list. The Insert button inserts the value into the spec-
ified index in the list. The Forward Traversal and Backward Traversal buttons
display the elements in a message dialog box in forward and backward order,
respectively, as shown in Figure 18.19b.

1 1 3 3 9

1 2 + 3 *1 2 + 3 *1 2 + 3 *1 2 + 3 *1 2 + 3 *

scanned

32

scanned scanned scanned scanned

Complete the implementation in the for loop in main() and the while loop in
dequeuer().

 *18.6 (Implement a PriorityQueue) Change the implementation of Programming
Exercise 18.5 so that it uses a PriorityQueue instead of a Queue. For every mes-
sage generated, randomly decide whether to make it low or high priority. Include
this information in the message you queue. When processing messages, those
with high priority will be processed first. You could use a string to determine
priority, in which case “Low” would have lower priority than “High”, as priority
would be determined alphabetically.

 **18.7 (Postfix notation) Postfix notation is a way of writing expressions without using
parentheses. For example, the expression (1 + 2) * 3 would be written as 1 2
+ 3 *. A postfix expression is evaluated using a stack. Scan a postfix expression
from left to right. A variable or constant is pushed to the stack. When an operator
is encountered, apply the operator with the top two operands in the stack and
replace the two operands with the result. The following diagram shows how to
evaluate 1 2 + 3 *.

M18_LIANG4125_03_GE_C18.indd 620M18_LIANG4125_03_GE_C18.indd 620 26/09/22 9:16 PM26/09/22 9:16 PM

Programming Exercises 621

(a) (b)

Figure 18.19 The program animates the work of a doubly-linked list.
(Screenshots courtesy of Microsoft Corporation.)

 *18.13 (Triangular number iterator) A triangular number is defined as n(n + 1)/2 for
n = 1, 2, ..., and so on. So, the first few numbers are 1, 3, 6, 10, 15, etc. Write an
iterator class for triangular numbers. Invoking the __next__() method should
return the next triangular number. Write a test program that displays all triangu-
lar numbers less than 1000, ten numbers per line.

1 3 6 10 15 21 28 36 45 55

66 78 91 105 120 136 153 171 190 210

231 253 276 300 325 351 378 406 435 465

496 528 561 595 630 666 703 741 780 820

861 903 946 990

M18_LIANG4125_03_GE_C18.indd 621M18_LIANG4125_03_GE_C18.indd 621 26/09/22 9:16 PM26/09/22 9:16 PM

M18_LIANG4125_03_GE_C18.indd 622M18_LIANG4125_03_GE_C18.indd 622 26/09/22 9:16 PM26/09/22 9:16 PM

	Liang_IntroPython_3eGE_DetailedToC
	Preface
	M05_LIAN4125_03_GE_C05
	M18_LIAN4125_03_GE_C18

