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How to use this book

Chapter opening page 
The chapter opening page links 
the syllabus to the chapter 
content. Science Understanding 
and Science as a Human 
Endeavour addressed in the 
chapter is clearly listed.
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4 In the vertical direction it is important to clearly specify whether up or down is 
the positive or negative direction. Either choice will work just as effectively. The 
same convention needs to be used consistently throughout each problem.

5 If a projectile is launched horizontally, its horizontal velocity throughout the 
flight is the same as its initial velocity. 

6 Pythagoras’ theorem can be used to determine the actual speed of the projectile 
at any point. 

7 If the velocity of the projectile is required, it is necessary to provide a direction 
with respect to the horizontal plane as well as the speed of the projectile.

Worked example 2.2.1

PROJECTILE LAUNCHED HORIZONTALLY

A golf ball of mass 150 g is hit horizontally from the top of a 40.0 m–high cliff with a 
speed of 25.0 m s−1. In your working, use g = −9.80 m s−2 and ignore air resistance.

+

–
40.0 m

25.0 m s–1 g = ‒9.80 m s–2

a Calculate the time that the ball takes to land.

Thinking Working

Let the downwards direction be 
negative. Write out the information 
relevant to the vertical component 
of the motion. Note that the instant 
the ball is hit, it is travelling only 
horizontally, so its initial vertical 
velocity is zero. Note also that the 
ball ends up travelling 40 m below 
its original point so the vertical 
displacement is negative.

Down is negative.

Vertically:

s = −40.0 m

u = 0 m s−1

v = ?
a = −9.80 m s−2

t = ?

In the vertical direction, the ball has 
constant acceleration, so use equations 
for uniform acceleration. Select the 
equation that best fits the information 
you have.

= +s ut at
1
2

2

Substitute values, rearrange and solve 
for t. − = + − t40.0 0

1
2

( 9.80) 2

= −
−

t
40.0
4.90

t = 2.86 s

PHYSICSFILE

Cartoon physics 
It is easy to get the wrong idea about 
projectile motion when you watch 
cartoon characters running or driving 
off cliffs. In many cartoons, the 
character leaves the cliff and travels 
horizontally outwards, stopping in 
mid-air (Figure 2.2.3). Once they realise 
where they are, they immediately fall 
vertically downwards. This is not what 
happens in reality. The character should 
start falling in a smooth parabolic arc 
as soon as they leave the cliff top. 

FIGURE 2.2.3 Many misconceptions can 
arise from what is shown in cartoons. In 
real life, this car would start falling as soon 
as it leaves the cliff top and it would travel 
in a parabolic arc.
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PhysicsFiles include a range of 
interesting information and real 
world examples.
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PHYSICS IN ACTION   
Physics of shot-putting

In shot-put competitions, there is an 
advantage in being tall. This enables 
the release height of the shot to be 
higher, which means the distance 
travelled by the shot will be greater. At 
the London Olympic Games in 2012, 
the men’s event was won by Poland’s 
Tomasz Majewski, with a distance of 
21.89 m. Tomasz is 201 cm tall. The 
gold medal for women was won by 
Valerie Adams of New Zealand, who 
threw 20.70 m (Figure 2.3.3). Valerie 
is 193 cm tall.

FIGURE 2.3.3 Valerie Adams, of New Zealand, 
is a tall woman, which helps her to throw the 
put long distances.

When a projectile is launched at an 
angle to the horizontal, the theoretical 
launch angle that gives the optimum 
range is 45°. This applies only where 
the projectile is launched from zero 
elevation—that is, when a projectile 
lands at the same height as it was 
launched. It is also possible that 
a projectile lands at a point lower 

than its launch height. For example, 
in the shot-put, the projectile is 
launched from above the ground. 
The theoretical launch angle for 
maximum range in this case is around 
43°, depending on the actual release 
height. In reality, however, shot-putters 
never release at this angle. This is 
because the speed at which they can 
launch the shot decreases as the 
angle gets further from the horizontal. 
The graph in Figure 2.3.4 shows the 
relationship between launch speed 
and launch angle.

0
0
2
4
6
8

10
12
14
16

10 20 30 40 50 60 70 80 90

Pr
oj

ec
tio

n 
sp

ee
d

(m
 s–1

)

Projection angle (degrees)

FIGURE 2.3.4 A graph showing that launch 
speed is greatest with a horizontal launch, 
and decreases as the launch angle increases.

The decrease in launch speed with 
increasing projection angle is caused 
by two factors:

• When throwing with a high 
projection angle, the shot-putter 
must expend a greater effort during 
the delivery phase to overcome the 
weight of the shot. This reduces the 
projection speed.

• The structure of the shoulder 
and arm favours the production 
of putting force in the horizontal 
direction more than in the vertical 
direction.

The optimum projection angle for 
an athlete is obtained by combining 
the speed–angle relation for the 
athlete with the equation for the range 
of a projectile in free flight. For these 
reasons, the optimum projection 
angle for shot-putters is actually 
about 34° (Figure 2.3.5).

FIGURE 2.3.5 Tomasz Majewski from Poland 
won the gold medal for the shot-put in 
London 2012 with a throw of 21.87 m. He 
would have launched the shot at an angle of 
about 34°.
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Physics in Action boxes place 
physics in an applied situation or 
relevant context and encourage 
students to think about the 
development of physics and its 
use and influence of physics 
in society.

Worked examples 
Worked examples are set out in 
steps that show both thinking 
and working. This enhances 
student understanding by clearly 
linking underlying logic to the 
relevant calculations.

Each Worked example is followed 
by a Try yourself: Worked 
example. This mirror problem 
allows students to immediately 
test their understanding. 

Pearson Physics 12 
Western Australia
Pearson Physics 12 Western Australia 
has been written to the WACE 
Physics ATAR Course, Year 12 Syllabus 
2017. Each chapter is clearly 
divided into manageable sections 
of work. Best practice literacy and 
instructional design are combined 
with high quality, relevant photos and 
illustrations. Explore how to use this 
book below.
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Worked example 7.4.4

CALCULATING THE KINETIC ENERGY OF PHOTOELECTRONS

Calculate the kinetic energy (in eV) of the photoelectrons emitted from lead by 
ultraviolet light with a frequency of 1.20 × 1015 Hz. The work function of lead is 
4.14 eV. 

Thinking Working

Recall Einstein’s photoelectric 
equation.

Ek max = hf − ϕ

Substitute values into this 
equation. hf = 

6.63 ×10−34

1.6 ×10−19 ×1.20 ×1015 = 4.97 eV

Ek max = 4.97 − 4.14
            = 0.83 eV

Worked example: Try yourself 7.4.4

CALCULATING THE KINETIC ENERGY OF PHOTOELECTRONS

Calculate the kinetic energy (in eV) of the photoelectrons emitted from lead by 
ultraviolet light with a frequency of 1.50 × 1015 Hz. The work function of lead 
is 4.14 eV.

Resistance to the quantum model of light 
This new particle or ‘quantum’ model of light was not initially well received by the 
scientific community. It had already been well established that a discrete particle 
model for light could not explain many of light’s properties such as polarisation and 
the interference patterns produced in Young’s experiment.

Most scientists believed instead that wave explanations for the photoelectric effect 
would be found. However, eventually the quantum model of light was accepted and 
the Nobel Prize in Physics was awarded to both Planck (1918) and Einstein (1921) 
for their groundbreaking work in this field.

PHYSICSFILE

Einstein’s Nobel Prize
Although Albert Einstein is most famous 
for his work on relativity (and its related 
equation E = mc2), he gained his Nobel 
Prize ‘for his services to Theoretical 
Physics, and especially for his discovery 
of the law of the photoelectric effect’. 
His work on relativity was never 
formally recognised with a Nobel Prize.

PHYSICS IN ACTION

Photovoltaic cells

The photovoltaic cells that are used in many solar 
panels work on the principle of the photoelectric effect 
(Figure 7.4.13). Sunlight falling on the solar panel 
provides energy that causes photoelectrons to be 
emitted as a current that can be used to drive electrical 
appliances.

However, whereas many photoelectric effect 
experiments use high-energy photons of ultraviolet 
light, photovoltaic cells use materials that will produce 
photoelectrons when exposed to visible light. Most 
commonly these are semiconducting materials based 
on silicon ‘doped’ with small amounts of other elements. 
Although solar cells are designed to produce the highest 
current possible from sunlight, most commercially 
available solar cells have an energy efficiency of less 
than 20%.

FIGURE 7.4.13 Solar panels are used to convert sunlight into electrical 
energy using the photoelectric effect.

Scientists hope to improve this in order to make solar cells 
an economic alternative to fossil fuels for large-scale energy 
generation.

One approach includes research on other semiconductors 
that absorb light more efficiently. 

In 1820, Hans Christian Oersted discovered that an electric current could produce a 
magnetic field. His work established the initial ideas behind electromagnetism. Since 
then, our understanding and application of electromagnetism has developed to the 
extent that much of our modern way of living relies upon it. 

In this chapter you will investigate electric and magnetic fields, the concepts 
that apply to each, and some of the interactions between these closely related 
phenomena.

Science as a Human Endeavour
Electromagnetism is utilised in a range of technological applications, including:

• DC electric motor with commutator, and back emf
• AC and DC generators 
• transformers 
• regenerative braking 
• induction hotplates 
• large-scale AC power distribution systems

Science Understanding
• electrostatically charged objects exert a force upon one another; the magnitude  

of this force can be calculated using Coulomb’s Law

This includes applying the relationship

F = 1
4πe0

q1 q2

r2

• point charges and charged objects produce an electric field in the space that 
surrounds them; field theory attributes the electrostatic force on a point charge  
or charged body to the presence of an electric field 

• a positively charged body placed in an electric field will experience a force in the 
direction of the field; the strength of the electric field is defined as the force per 
unit charge
This includes applying the relationship

E = F
q
= V
d

• when a charged body moves or is moved from one point to another in an electric 
field and its potential energy changes, work is done on the charge by the field 
This includes applying the relationship

V = W
q

WACE Physics ATAR Course Year 12 Syllabus © School Curriculum and Standards Authority,  
Government of Western Australia, 2014; reproduced by permission

Electric fields 
CHAPTER
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2.1 Inclined planes 
If you have ever ridden a bike down a steep hill, you will know that on your way 
down you will accelerate and be travelling quite fast by the end. An external observer 
would see you travelling in both the relative horizontal and vertical directions. This 
motion down the street is an example of motion on an inclined plane, and this 
chapter aims to quantify your intuition in calculating how Newton’s laws affect 
a body on an inclined plane. The steepest residential street in the world, Baldwin 
Street, is located in Dunedin, New Zealand (Figure 2.1.1).

FIGURE 2.1.1 The steepest residential street in the world. Its upper level is surfaced in concrete—
bitumen would flow down the slope in warmer temperatures.

In Year 11 you looked at Newton’s laws of motion in one dimension and how an 
object will behave with different forces applied. These laws can also be applied in 
two dimensions to analyse the problem of inclined planes.

REVISION  

Newton’s third law 
Newton’s third law states that when one body exerts a 
force on another body (an action force), the second body 
exerts an equal force in the opposite direction on the first 
body (the reaction force):

Fon A by B = −Fon B by A

To simplify the notation, this text will use the convention 
to mean FAB = Fon A by B.

Hence the first subscript always shows the body 
experiencing the force.

It is important to note that action–reaction pairs can 
never be added together, because they act on different 
bodies (Figure 2.1.2). The forces in an action–reaction pair:

• are the same magnitude (size)

• act in opposite directions 

• are exerted on two different objects. 

a b

FIGURE 2.1.2 (a) An action–reaction pair. The hand pulls on the spring 
and the spring pulls back on the hand with an equal and opposite 
force. (b) Not an action–reaction pair. This is because the force due to 
gravity and the normal reaction force both act on the same object, the 
basketball.
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In Year 11 you looked at Newton’s laws of motion in one dimension and how an 
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two dimensions to analyse the problem of inclined planes.

REVISION  

Newton’s third law 
Newton’s third law states that when one body exerts a 
force on another body (an action force), the second body 
exerts an equal force in the opposite direction on the first 
body (the reaction force):

Fon A by B = −Fon B by A

To simplify the notation, this text will use the convention 
to mean FAB = Fon A by B.

Hence the first subscript always shows the body 
experiencing the force.

It is important to note that action–reaction pairs can 
never be added together, because they act on different 
bodies (Figure 2.1.2). The forces in an action–reaction pair:

• are the same magnitude (size)

• act in opposite directions and 

• are exerted on two different objects. 

a b

FIGURE 2.1.2 (a) An action–reaction pair. The hand pulls on the spring 
and the spring pulls back on the hand with an equal and opposite 
force. Figure (b) does not show an action–reaction pair. This is because 
the force due to gravity and the normal reaction force both act on the 
same object, the basketball.
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2.3 Review
SUMMARY

• Projectiles move in parabolic paths that can 
be analysed by considering the horizontal and 
vertical components of the motion.

• If air resistance is ignored, the only force acting 
on a projectile is its weight; that is, the force due 
to gravity, Fg . This results in the projectile having 
an acceleration of 9.80 m s−2 vertically downwards 
during its flight.

• The equations for uniform acceleration

 v = u + at

 = +s ut at
1
2

2 

 v2 = u2 + 2as
 must be used for the vertical component.

• The horizontal velocity of a projectile remains 
constant throughout its flight if air resistance is 
ignored, and so =v

s
tav  is used.

• For objects initially launched at an angle to the 
horizontal, use trigonometry to calculate the initial 
horizontal and vertical velocities.

• At its highest point, the projectile is moving 
horizontally. Its velocity at this point is given by 
the horizontal component of its launch velocity. 
The vertical component of the velocity is zero at 
this point.

• Ignoring air resistance, the total energy of the 
projectile must always be conserved. Therefore, 
the following equations can be used:

  =E mv
1
2k

2

  Eg = mgh

  = +E mv mgh
1
2total

2

KEY QUESTIONS

For the following questions, assume that the acceleration 
due to gravity is 9.80 m s−2 and ignore the effects of air 
resistance unless otherwise stated.

1 A javelin thrower launches her javelin at 40.0° above 
the horizontal. Select the correct statement regarding 
the javelin at the highest point of its path.
A It has zero acceleration.
B It has its slowest speed.
C There are forwards and downwards forces acting 

on it.
D There are no forces acting on it since it is in 

free-fall.

2 A child is holding a garden hose at ground level 
and the water stream from the hose is travelling at 
15 m s−1. Which angle to the horizontal will result in 
the water stream travelling the greatest horizontal 
distance through the air?

3 At the annual birdman competition, Arun dresses 
up in his wing-suit and jumps off the edge of a 
cliff at 30.0° to the horizontal at 5.00 m s−1 into 
the water 6.00 m below. Unfortunately, the suit is 
poorly designed and rather than gliding, he falls with 
negligible air resistance on a parabolic trajectory. Use 
conservation of energy methods to calculate: 
a Arun’s speed when he is 2.70 m below the launch 

point
b Arun’s height above the water when he is travelling 

at 11.1 m s−1.

4 A basketballer shoots for a basket by launching the 
ball at 15 m s−1 at 25° to the horizontal.
a Calculate the initial horizontal speed of the ball.
b What is the initial vertical speed of the ball?
c What are the magnitude and direction of the 

acceleration of the ball when it is at its maximum 
height?

d What is the speed of the ball when it is at its 
maximum height?

5 In a shot-put event a 2.0 kg shot is launched from 
a height of 1.5 m, with an initial velocity of 8.0 m s−1 
at an angle of 60° to the horizontal. Answer the 
questions below about the motion of the shot-put.

1.5 m

8.0 m s–1

60°

a What is the initial horizontal speed of the shot?
b What is the initial vertical speed of the shot?

Chapter review
Each chapter finishes with a 
set of higher order questions to 
test students’ ability to apply 
the knowledge gained from the 
chapter.

Section review questions 
Each section finishes with 
questions to test students’ 
understanding and ability to recall 
the key concepts of the section.

Section summary
Each section includes a summary 
to assist students consolidate key 
points and concepts.

Answers
Numerical answers and key 
short response answers are 
included at the back of the book. 
Comprehensive answers and fully 
worked solutions for all section 
review questions, Try yourself: 
Worked examples, chapter 
review questions and Unit 
review questions are provided 
via Pearson Physics 12 Western 
Australia Reader+ and Teacher 
Resource

Key terms and glossary
Key terms are shown in bold and 
listed at the end of each chapter. 
A comprehensive glossary at the 
end of the book includes and 
defines all the key terms.

Unit review
Each unit finishes with a 
comprehensive set of exam-style 
questions that assist students to 
draw together their knowledge 
and understanding and apply it 
to this style of question.
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Chapter review

KEY TERMS

air resistance
banked track
centripetal force
conserved
design speed

frequency
friction
inclined plane
law of conservation of 

energy

mechanical energy
period
projectile
satellite
tangential

1 Diana rolls a bowling ball down a smooth straight 
ramp. Choose the option below that best describes the 
way the ball will travel.
A with constant speed
B with constant acceleration
C with decreasing speed
D with increasing acceleration

2 A bowling ball is rolling down a smooth track that is 
inclined at 30° to the horizontal. 
a What is the magnitude of the acceleration of the 

ball? 
b How does the magnitude of the normal force that 

acts on the ball compare to its weight?

3 A marble is rolled from rest down a smooth slide that 
is 2.5 m long. The slide is inclined at an angle of 30° to 
the horizontal.
a Calculate the acceleration of the marble.
b What is the speed of the marble as it reaches the 

end of the slide?

4 Marshall has a mass of 54 kg and he is riding his 
3.0 kg skateboard down a 5.0 m long ramp that is 
inclined at an angle of 65° to the horizontal. Ignore 
friction when answering parts a–d.
a Calculate the magnitude of the normal force acting 

on Marshall and his skateboard.
b What is the acceleration of Marshall on his 

skateboard as he travels down the ramp?
c What is the net force acting on Marshall and his 

board when no friction acts?
d If Marshall’s initial speed is zero at the top of the 

ramp, calculate his final speed as he reaches the 
bottom of the ramp.

e Marshall now stands halfway up the incline while 
holding his board in his hands. Friction now acts 
on Marshall. Calculate the frictional force acting 
on Marshall while he is standing stationary on the 
ramp.

5 A very high waterslide is 50.0 m tall and is inclined 
at an angle of 70° to the horizontal. It is known that 
riders reach a speed of 100 km h−1 on this slide. Do not 
assume friction is negligible.
a For a 70.0 kg teenager using the slide, calculate the 

net force on the teenager as he slides. 
b For the same teenager, calculate the magnitude of 

the average frictional force opposing the motion.
c If the friction acts on the teenager to slow him 

down, what is the reaction force to this?
d What is the reaction force to the teenager’s weight 

force?

6 A toy car is moving at 2.5 m s−1 as it rolls off a 
horizontal table. The car takes 1.0 s to reach the floor. 
a How far does the car land from the foot of the table? 
b What is the magnitude and direction of acceleration 

when the car is halfway to the floor? 

7 A bowling ball of mass 7.5 kg travelling at 10 m s−1 rolls 
off a horizontal table that is 0.97 m high. 
a What is the horizontal speed of the ball as it strikes 

the floor?
b What is the vertical speed of the ball as it strikes the 

floor?
c Calculate the speed of the ball as it reaches the 

floor.

8 In a tennis match, a tennis ball is hit from a height of 
1.2 m with an initial velocity of 16 m s−1 at an angle 
of 50° to the horizontal. Ignore drag forces for the 
following questions.
a What is the initial horizontal speed of the ball? 
b What is the initial vertical speed of the ball?
c What is the maximum height that the ball reaches 

above the court surface? 

225REVIEW QUESTIONS

Section 1: Short response
1  Use Newton’s law of gravitation to calculate the size of 

the force between two masses of 24.0 kg and 903 kg 
with a distance of 0.670 m between their centres. 

2  The orbital period of Mars around the Sun is 687 days 
at an average distance of 227.9 million kilometres. If the 
distance between Jupiter and the Sun is 778.5 million 
kilometres, what is Jupiter’s orbital period in days?

3  A 21.0 kg child slides down a curved frictionless slide 
from 3.50 m off the ground with no initial kinetic energy.

3.50 m

a  Calculate the speed of the child as she reaches the 
bottom of the slide. 

b  Assume now that the slide has some friction. If the 
child is travelling at 5.00 m s−1 when she reaches the 
bottom, calculate the energy lost to friction.

4  A cannonball is launched from level ground with a 
speed of 35.0 m s−1 at an angle of 40.0° to the horizontal. 
Assume there is no air resistance.

a  Determine the speed and direction of the cannonball 
the instant before hitting a target on the ground.

b  Another cannonball was fired from the edge of a cliff. 
Using conservation of energy, calculate the speed 
of the cannonball when it is 30.0 m below its initial 
launch level.

5 A cantilever is attached to a wall as shown. The weight of 
the beam is 100 g and it is connected to a freely rotating 
hinge on the wall at X. The string is attached 0.350 m 
along the 1.30 m beam. Assume the string has no mass. 
Calculate the tension in the string AB.

0.350 m

A

X B45°

1.30 m

6 An electron beam travelling through a cathode ray 
tube at a speed of 2.00 × 107 m s−1 is subjected to 
simultaneous electric and magnetic fields. The electric 
and magnetic fields are oriented perpendicular to each 
other such that the electrons emerge with no deflection. 
Given that the potential difference across the parallel 
plates X and Y is 3.00 kV, and that the applied magnetic 
field is of strength 1.60 × 10−3 T, calculate the distance 
between plates X and Y.  

electron

B

E –

Y

X
× × × × ×

× × × × ×

× × × × ×

× × × × ×

×

×

×

×

7 A long bar magnet is dropped, with its north pole first, 
through a conducting coil and induces a current. The 
coil is connected to an oscilloscope, which measures 
the amplitude and direction of the current. If positive 
is taken to be a clockwise current when viewed from 
above, and negative is an anticlockwise current, sketch 
the shape of the current signal that will be observed 
on the oscilloscope over time.

8 a Draw a solenoid with at least seven magnetic field 
lines in each direction. Indicate the direction of 
current and the north and south poles in your sketch.

b  List three ways to improve the strength of the 
solenoid’s magnetic field. 

c  If two solenoids are placed next to each other with 
current running in opposite directions, will they 
attract or repel each other? Why?

Section 2: Problem solving
9 An elaborate remote-control car track is set up at a 

department store, and the employees are trying to 
calculate the speeds and specifications necessary 
for the track to work optimally. The track is set up as 
shown below with a banked curve at section A and a 
loop-the-loop section at B. The points g and f have also 
been labelled at the centre of the banked section and 
at the top of the loop-the-loop. The mass of the car is 
0.800 kg. Section A can be taken as a perfect circle of 
radius 2.50 m, with a banked angle θ ; section B is a 
vertical loop-the-loop with a radius of 0.500 m.

A

2.50 m 0.500 m

Bf

g
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REVIEW QUESTIONS
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a Determine the components of the weight of the skier perpendicular to the 
slope and parallel to the slope.

Thinking Working

Draw a sketch including the values 
provided.

Fg cos 20°

Fg sin 20°

Fg 20°

20°

Resolve the weight into a component 
perpendicular to the slope.

The perpendicular component is:

F⊥ = Fg cos 20°
 = 490 cos 20°
 = 460 N

Resolve the weight into a component 
parallel to the slope. This is the net 
force.

The parallel component is 

Fnet = Fg sin 20°
 = 490 sin 20°
 = 168 N

b Determine the normal force that acts on the skier.

Thinking Working

The normal force is equal in 
magnitude to the perpendicular 
component of the weight force.

FN = 460 N

c Calculate the acceleration of the skier down the slope.

Thinking Working

Apply Newton’s second law.

The net force along the plane is the 
component of the weight parallel to 
the slope.

=a
F
m
net

 
= 168

50
 = 3.36 m s−2 down the slope

Worked example: Try yourself 2.1.1

INCLINED PLANES

A much heavier skier of mass 85 kg travels down the same icy slope inclined at 20° 
to the horizontal. Assume that friction is negligible and that the acceleration due to 
gravity is 9.80 m s−2.

a Determine the components of the weight of the skier perpendicular to the 
slope and parallel to the slope.

b Determine the normal force that acts on the skier.

c Calculate the acceleration of the skier down the slope.

Aside from rounding differences, the acceleration calculated in the Worked 
example and Try yourself questions above were equal. That’s because acceleration 
is independent of the mass of the object. This is because:

 

θ θ= = =a
F

m

mg

m
g

sin
sinnet
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In effect, the rms values are the values of a DC supply that would be needed 
to provide the same average power as the AC supply. It is the rms value of the 

voltage 
340

2
= 240⎛

⎝⎜
⎞
⎠⎟  that is normally quoted. This is the effective average value of 

the voltage and is the value that should be used to find the actual power supplied 
each cycle by an AC supply.

  Vrms =
Vpeak

2

 Irms =
Ipeak
2

 Prms = Vrms × Irms =
1

2
VpeakIpeak, and

Ppeak = 2Vrms × 2Irms = 2VrmsIrms  

EXTENSION

Deriving the root mean square formulae

In an AC circuit, the power produced in a resistor is  

equal to 
V2

R
sin2θ .

The average power will be given by:

1
2

Vpeak
2

R

If this same power was to be supplied by a steady (DC) 
source, the voltage Vav of this source would have to be  
such that:

Vav
2

R
= 1

2

Vpeak
2

R

Simplifying:

Vav
2 =

Vpeak
2

2

Vav =
Vpeak

2

This average voltage is known as the root mean square 
voltage or Vrms. It is the value of a steady voltage that would 
produce the same power as an alternating voltage with a 

peak value equal to 2  times as much.

FIGURE 6.4.9 The power transmitted is proportional to the area 
under a V 2 graph. Clearly, the power transmitted by an AC circuit 
(with Vpeak) is the same as that in a DC circuit with a voltage equal to 

the square root of 
1

2
Vpeak
2 , that is 

Vpeak

2
.

0

1
2

Vp
2

Vp
2

V 2

mean value

Time (ms)
10 20
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Worked example: Try yourself 2.5.1

BANKED CORNERS

A curved section of track on an Olympic velodrome has radius of 40 m and is 
banked at an angle of 37° to the horizontal. A cyclist of mass 80 kg is riding on this 
section of track at the design speed.

a Calculate the net force acting on the cyclist at this instant as they are riding at 
the design speed. 

b Calculate the design speed for this section of the track.

EXTENSION

Leaning into corners

In many sporting events, participants need to travel 
around corners at high speeds. As shown in Figure 2.5.7, 
motorbike riders lean their bikes over almost onto the 
track as they corner. This leaning technique is also evident 
in ice skating, bicycle races, skiing and even when you run 
round a corner. It enables the competitor to corner at high 
speed without falling over. 

FIGURE 2.5.7 Australia’s Casey Stoner won the 2012 Moto GP 
championship. Here he is leaning his bike as he takes a corner at 
Phillip Island. Leaning into the corner enables him to corner at higher 
speeds. In fact, the bike would go out of control if he did not lean it.

Consider a bike rider cornering on a horizontal road 
surface (Figure 2.5.8). The forces acting on the bike and 
rider are unbalanced. The forces are the weight force, Fg , 
and the force from the track. The track exerts a reaction 
force on the rider that acts both inwards and upwards. The 
inwards component is the frictional force, Ff , between the 
track and the tyres. The upwards component is the normal 
force, FN , from the track.

The rider is travelling in a horizontal circular path at 
constant speed, and so has a centripetal acceleration 
directed towards the centre of the circle. Therefore, the 
net force is directed towards the centre of the circle. 

By analysing the vertical and horizontal components 
in Figure 2.5.8, you see that the weight force, Fg , must 
balance the normal force, FN . The net force that is 
producing the centripetal acceleration is supplied by the 
frictional force, Ff . In other words, the rider is depending 
on a sideways frictional force to turn the corner. An icy or 
oily patch on the track would cause the tyres to slide out 
from under the rider, and he or she would slide painfully 
along the road at a tangent to the circular path.

FIGURE 2.5.8 The forces acting as the rider turns a corner are the 
weight, Fg, the normal force, FN, and the friction, Ff, between the tyres 
and the road. The friction supplies the unbalanced force that leads to 
the corner-turning motion.
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The force due to gravity
CHAPTER

Gravity is the force that drives the universe. It was gravity that first caused particles 
to coalesce into atoms, and atoms to congregate into nebulas, planets and stars. An 
understanding of gravity is fundamental to understanding the universe.

This chapter centres on Newton’s law of universal gravitation. This will be used to 
predict the size of the force experienced by an object at various locations on the 
Earth and other planets. It will also be used to develop the idea of a gravitational 
field and to refine the understanding of gravitational potential energy developed 
in Year 11. Since the field concept is also used to describe other basic forces such 
as electromagnetism and the strong and weak nuclear forces, this will provide an 
important foundation for further areas of study later in this unit.

Science as a Human Endeavour 
Artificial satellites are used for communication, navigation, remote-sensing and 
research. Their orbits and uses are classified by altitude (low, medium or high 
Earth orbits) and by inclination (equatorial, polar and sun-synchronous orbits). 
Communication via satellite is now used for global positioning systems (GPS), satellite 
phones and television. Navigation services support management and monitoring 
of traffic and aircraft movement. Geographic information science uses data from 
satellites to monitor population movement, biodiversity and ocean currents. 

Science Understanding 
• all objects with mass attract one another with a gravitational force; the magnitude of 

gravitational force, Fg, can be calculated using Newton’s Law of Universal Gravitation 
This includes applying the relationship

 F G
m m

rg
1 2
2=

• gravitational field strength is defined as the net force per unit mass at a particular 
point in the field 
This includes applying the relationships

 
g

F

m
G

M

r
g

2= =

• the movement of free-falling bodies in Earth’s gravitational field is predictable
• objects with mass produce a gravitational field in the space that surrounds them; 

field theory attributes the gravitational force on an object to the presence of a 
gravitational field 
This includes applying the relationship

 Fweight = mg

• when a mass moves or is moved from one point to another in a gravitational field 
and its potential energy changes, work is done on the mass by the field 
This includes applying the relationships

 = = = =E mg h W Fs W E E mv∆ , , ∆ ,
1
2p k

2

WACE Physics ATAR Course Year 12 Syllabus © School Curriculum and Standards Authority,  
Government of Western Australia, 2017; reproduced by permission
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4 AREA OF STUDY 1   |   GRAVITY AND MOTION

1.1 Newton’s law of universal 
gravitation 
In 1687, Sir Isaac Newton (Figure 1.1.1) published a book that changed the world. 
Entitled Philosophiæ Naturalis Prinicipia Mathematica (Mathematical Principles of 
Natural Philosophy), Newton’s book (Figure 1.1.2) used a new form of mathematics, 
now known as calculus, and outlined his famous laws of motion. 

The Principia also introduced Newton’s law of universal gravitation. This 
was particularly significant because, for the first time in history, it was possible to 
scientifically explain the motion of the planets. This led to a change in humanity’s 
understanding of its place in the universe.

UNIVERSAL GRAVITATION 
Newton’s law of universal gravitation states that any two bodies in the universe 
attract each other with a force that is directly proportional to the product of their 
masses and inversely proportional to the square of the distance between them.

As the radius, r, appears in the denominator of Newton’s law of universal 
gravitation, the relationship indicates an inverse relationship. Since r is also squared, 
this relationship is known as an inverse square law. The implication is that as r 
increases, Fg will decrease dramatically. This law will reappear again later in the 
chapter when gravitational fields are examined in detail.

Mathematically, Newton’s law of universal gravitation can be expressed as:  

=F G
m m

rg
1 2
2

where Fg is the gravitational force (N)

 m1 is the mass of object 1 (kg)

 m2 is the mass of object 2 (kg)

 r is the distance between the centres of m1 and m2 (m)

 G is the gravitational constant, 6.67 × 10−11 N m2 kg−2

FIGURE 1.1.1 Sir Isaac Newton was one of the 
most influential physicists who ever lived.

FIGURE 1.1.2 The Principia is one of the most 
influential books in the history of science.

PHYSICS IN ACTION

Measuring the gravitational constant, G

The gravitational constant, G, was first accurately measured 
by the British scientist Henry Cavendish in 1798, over a 
century after Newton’s death. Cavendish used a torsion 
balance (Figure 1.1.3), a device that can measure very small 
twisting forces. Cavendish’s experiment could measure 
forces smaller than 1 µN (i.e. 10−6 N). He used this balance 
to measure the force of attraction between lead balls held a 
small distance apart. Once the size of the force was known 
for a given combination of masses at a known separation 
distance, a value for G could be determined. 

FIGURE 1.1.3 Henry 
Cavendish used a torsion 
balance to measure 
the small twisting 
force created by the 
gravitational attraction of 
lead balls. A very similar 
method is still in use in 
introductory labs in senior 
secondary schools and 
universities today.
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5CHAPTER 1   |   THE FORCE DUE TO GRAVITY

The law of universal gravitation predicts that any two objects that have mass will 
attract each other. However, because the value of G is so small, the gravitational 
force between two everyday objects, such as you and the person seated next to you, 
is too small to be noticed.

Worked example 1.1.1

GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS

A man with a mass of 90 kg and a woman with a mass of 75 kg have a distance 
of 80 cm between their centres. Calculate the force of gravitational attraction 
between them.

Thinking Working

Recall the formula for Newton’s law of 
universal gravitation.

F G
m m

r
g

1 2
2=

Identify the information required, and 
convert values into appropriate units 
when necessary.

G = 6.67 × 10−11 N m2 kg−2

m1 = 90 kg

m2 = 75 kg

r = 80 cm = 0.80 m

Substitute the values into the equation. F 6.67 10
90 75
0.80g

11
2= × ×

×−

Solve the equation. Fg = 7.0 × 10−7 N

Worked example: Try yourself 1.1.1

GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS

Two bowling balls are sitting next to each other on a shelf so that the centres of 
the balls are 60 cm apart. Ball 1 has a mass of 7.0 kg and ball 2 has a mass of 
5.5 kg. Calculate the force of gravitational attraction between them.

GRAVITATIONAL ATTRACTION BETWEEN 
MASSIVE OBJECTS 
Gravitational forces between everyday objects are so small (as seen in Worked 
example 1.1.1) that they are hard to detect without specialised equipment, and can 
usually be considered as negligible.

For the gravitational force to become significant, at least one of the objects must 
have a very large mass—for example, our planet Earth (Figure 1.1.4).

Worked example 1.1.2

GRAVITATIONAL ATTRACTION BETWEEN MASSIVE OBJECTS

Calculate the force of gravitational attraction between the Sun and the Earth, 
given the following data:

mSun = 2.0 × 1030 kg

mEarth = 6.0 × 1024 kg

rSun–Earth = 1.5 × 1011 m

Thinking Working 

Recall the formula for Newton’s law of 
universal gravitation.

F G
m m

r
g

1 2
2=

FIGURE 1.1.4 Gravitational forces become 
significant when at least one of the objects has 
a large mass. Both the Earth and the Moon have 
significant mass.
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6 AREA OF STUDY 1   |   GRAVITY AND MOTION

Identify the information required. G = 6.67 × 10−11 N m2 kg−2

m1 = 2.0 × 1030 kg

m2 = 6.0 × 1024 kg

r = 1.5 × 1011 m

Substitute the values into the equation. 
= × ×

× × ×

×

−F 6.67 10
2.0 10 6.0 10

(1.5 10 )
g

11
30 24

11 2

Solve the equation. Fg = 3.6 × 1022 N 

Worked example: Try yourself 1.1.2

GRAVITATIONAL ATTRACTION BETWEEN MASSIVE OBJECTS

Calculate the force of gravitational attraction between the Earth and the Moon, 
given the following data:

mEarth = 6.0 × 1024 kg

mMoon = 7.3 × 1022 kg

rMoon–Earth = 3.8 × 108 m

The force in Worked example 1.1.2 is much greater than that in Worked 
example 1.1.1, illustrating the difference in the gravitational force when at least one 
of the objects has a much larger mass.

FIGURE 1.1.5 Nicolaus Copernicus proposed a 
heliocentric model of the solar system.

FIGURE 1.1.6 Johannes Kepler discovered that the 
orbits of planets around the Sun are elliptical.

EXTENSION

Understanding the structure of the solar system
In the century before Newton, there 
had been some controversy about 
the structure of the solar system. 
In 1543, the commonly accepted 
geocentric (i.e. Earth-centred) 
model of the solar system had been 
challenged by the Polish astronomer 
Nicolaus Copernicus. He proposed 
that the Sun was the centre of 
the solar system. Unfortunately, 
some faulty assumptions meant 
that the predictions of Copernicus’ 
Sun-centred or heliocentric model 
(shown in Figure 1.1.5) did not 
match observations any better than 
the geocentric model. 

The Danish astronomer Tycho 
Brahe had been observing 
and studying the heavens for 
many years, accumulating a 
comprehensive collection of data. 
Using Brahe’s documentation, his 
assistant, German mathematician 
Johannes Kepler, refined the 
Copernican model to reflect actual 
observations. 

Through these calculations, 
Kepler discovered that the orbits 
of the planets around the Sun 
are elliptical and not circular as 
previously thought (Figure 1.1.6). At 
the time, this discovery challenged 
conventional beliefs about the 
‘perfection’ of heavenly bodies, and, 
as a consequence, Kepler’s ideas 
were not widely accepted. In fact, 
in some countries his books were 
banned and publicly burned.

One of Newton’s great 
achievements was that he was able 
to use his law of universal gravitation 
to mathematically derive all of 
Kepler’s planetary laws.

This allowed Newton to accurately 
explain the motion of the planets 
in terms of gravitational attraction. 
Within a few years of the publication 
of Newton’s work, the geocentric 
model of our solar system had 
largely been abandoned in favour of 
the heliocentric model.
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7CHAPTER 1   |   THE FORCE DUE TO GRAVITY

EFFECT OF GRAVITY 
According to Newton’s third law of motion, forces occur in action–reaction pairs. An 
example of such a pair is shown in Figure 1.1.7. The Earth exerts a gravitational force 
on the Moon and, conversely, the Moon exerts an equal and opposite force on the Earth. 
Using Newton’s second law of motion, you can see that the effect of the gravitational 
force of the Moon on the Earth will be much smaller than the corresponding effect of 
the Earth on the Moon. This is because of the Earth’s larger mass.

Worked example 1.1.3

ACCELERATION CAUSED BY A GRAVITATIONAL FORCE

The force of gravitational attraction between the Moon and the Earth is 
approximately 2.0 × 1020 N. Calculate the acceleration of the Earth and the Moon 
caused by this force. Compare these accelerations by calculating the ratio a

a
Moon

Earth
.

Use the following data:

mEarth = 6.0 × 1024 kg

mMoon = 7.3 × 1022 kg

Thinking Working 

Recall the formula for Newton’s 
second law of motion.

F = ma

Transpose the equation to make a 
the subject. =a

F
m

Substitute values into this equation 
to find the accelerations of the Moon 
and the Earth. 

=
×

×
= × − −a

2.0 10

6.0 10
3.3 10 msEarth

20

24
5 2

=
×

×
= × − −a

2.0 10

7.3 10
2.7 10 msMoon

20

22
3 2

Compare the two accelerations.
=

×

×
=

−

−

a
a

2.7 10

3.3 10
82Moon

Earth

3

5

The acceleration of the Moon is 
82 times greater than the acceleration 
of the Earth.

Worked example: Try yourself 1.1.3

ACCELERATION CAUSED BY A GRAVITATIONAL FORCE

The force of gravitational attraction between the Sun and the Earth is approximately 
3.6 × 1022 N. Calculate the acceleration of the Earth and the Sun caused by this 
force. Compare these accelerations by calculating the ratio 

a
a
Earth

Sun

.

Use the following data:

mEarth = 6.0 × 1024 kg

mSun = 2.0 × 1030 kg

FIGURE 1.1.7 The Earth and Moon exert 
gravitational forces on each other.
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8 AREA OF STUDY 1   |   GRAVITY AND MOTION

Gravity in the solar system 
Although the accelerations caused by gravitational forces in Worked example 1.1.3 
are small, over billions of years they have created the motion of the solar system. 

In the Earth–Moon system, the acceleration of the Moon is many times greater 
than that of the Earth, which is why the Moon orbits the Earth. Although the Moon’s 
gravitational force causes a much smaller acceleration of the Earth, it does have 
other significant effects, such as causing the tides.

Similarly, the Earth and other planets orbit the Sun because their masses are 
much smaller than the Sun’s mass. However, the combined gravitational effect of 
the planets of the solar system (and Jupiter in particular) causes the Sun to wobble 
slightly as the planets orbit it.

WEIGHT AND GRAVITATIONAL FORCE 
In Year 11 Physics the weight of an object was calculated using the formula 
Fweight = mg. Weight is another name for the gravitational force acting on an object 
near the Earth’s surface. 

Worked example 1.1.4 below shows that the formula Fweight = mg and Newton’s 
law of universal gravitation give the same answer for the gravitational force acting 
on objects on the Earth’s surface. It is important to note that the distance used in 
these calculations is the distance between the centres of the two objects, which is 
effectively the radius of the Earth.

Worked example 1.1.4

GRAVITATIONAL FORCE AND WEIGHT

Compare the weight of an 80 kg person calculated using Fweight = mg with the 
gravitational force calculated using =F G

m m

r
g

1 2
2 .

Use the following dimensions of the Earth in your calculations:

g = 9.80 m s−2

mEarth = 6.0 × 1024 kg
rEarth = 6.4 × 106 m

Thinking Working 

Apply the weight equation. Fweight = mg

 = 80 × 9.80

 = 784 N

 =  780  N (to two significant figures)

Apply Newton’s law of universal 
gravitation. 

=

= × ×
× ×

×

=

−

F G
m m

r

6.67 10
6.0 10 80

(6.4 10 )
780N

g
1 2
2

11
24

6 2

Compare the two values. The equations give the same result to 
two significant figures.

Worked example: Try yourself 1.1.4

GRAVITATIONAL FORCE AND WEIGHT

Compare the weight of a 1.0 kg mass on the Earth’s surface calculated using the 
formulae Fweight = mg and =F G

m m
rg
1 2
2 . Use the following dimensions of the Earth 

where necessary:
g = 9.80 m s−2

mEarth = 6.0 × 1024 kg
rEarth = 6.4 × 106 m

PHYSICSFILE

Extrasolar planets
In recent years, scientists have been 
interested in discovering whether other 
stars have planets like those in our 
own solar system. One of the ways in 
which these ‘extrasolar planets’ (or 
‘exoplanets’) can be detected is from 
their gravitational effect.

When a large planet (Jupiter-sized 
or larger) orbits a star, it causes the 
star to wobble. This causes variations 
in the star’s appearance, which can 
be detected on Earth. Hundreds of 
exoplanets have been discovered using 
this technique, including one orbiting 
the closest star to our Sun, Proxima 
Centauri, in the potentially habitable 
zone where temperatures are similar to 
those on Earth.
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9CHAPTER 1   |   THE FORCE DUE TO GRAVITY

Worked example 1.1.4 shows that the constant for the acceleration due to 
gravity, g, can be derived directly from the dimensions of the Earth. An object 
with mass m sitting on the surface of the Earth is a distance of 6.4 × 106 m from the 
centre of the Earth.

Given that the Earth has a mass of 6.0 × 1024 kg, then:
Fweight = Fg

∴  =

=

( )

( )

Earth

Earth
2

Earth

Earth
2

mg G
m m

r

mG
m

r

∴    =

= × ×
×
×

=

−

−

( )

6.67 10
6.0 10

(6.4 10 )

9.8ms

Earth

Earth
2

11
24

6 2

2

g G
m
r

The rate of acceleration of objects near the surface of the Earth is a result of the 
Earth’s mass and radius. A planet with a different mass and/or different radius will 
have a different value for g. Likewise, if an object is above the Earth’s surface, the 
value of r will be greater and the value of g will be smaller (due to the inverse square 
law). This explains why the strength of the Earth’s gravity reduces as you travel 
away from the Earth.

APPARENT WEIGHT 
Scientists use the term ‘weight’ simply to mean ‘the force due to gravity’. It is also 
correct to interpret weight as the contact force (or normal reaction force) between 
an object and the Earth’s surface. In most situations these two definitions are effectively 
the same. However, there are some cases, for example when a person is accelerating up 
or down in an elevator, where they give different results. In these situations, the normal 
force (FN) is referred to as the apparent weight since you do not feel the force you 
apply to the floor, you will only experience with your senses the forces that are applied 
on you. What you feel is the normal force acting up on you from the floor. Normally, 
when you stand on a surface that is either stationary or in constant vertical motion, 
your apparent weight is constant and equal to your weight force (Figure 1.1.9).

stationary or
constant vertical

motion

FN

FN

Fg

Fg

Fnet = 0

Fnet = 0

FIGURE 1.1.9 In this case, the forces that act on 
the person, FN and Fg, are equal in size. The person 
will ‘feel’ his or her normal apparent weight.

EXTENSION

Multi-body systems
So far, only gravitational systems involving two objects have 
been considered, such as the Moon and the Earth. In reality, all 
objects experience gravitational force from every other object 
around them. Usually, most of these forces are negligible 
and only the gravitational effect of the largest object nearby 
(i.e. the Earth) needs to be considered.

When there is more than one significant gravitational force 
acting on a body, the gravitational forces must be added 
together as vectors to determine the net gravitational force 
(Figure 1.1.8).

The direction and relative magnitude of the net gravitational 
force in a multi-body system depends entirely on the masses 
and the positions of the attracting objects (i.e. m1, m2 and m3 
in Figure 1.1.8).

m3 m2

m1

FIGURE 1.1.8 For the three 
masses m1 = m2 = m3, the 
gravitational forces acting 
on the central red ball 
are shown by the green 
arrows. The vector sum of 
the green arrows is shown 
by the blue arrow. This will 
be the direction of the net 
(or resultant) gravitational 
force on the red ball due 
to the other three masses. 
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10 AREA OF STUDY 1   |   GRAVITY AND MOTION

The apparent weight that you experience changes when the surface you are 
standing on is accelerating upwards or downwards. If the floor is accelerating 
downwards at a rate less than 9.80 m s−2, your feet will be pressing less firmly on the 
surface than when the floor was not accelerating. Therefore, the normal force is also 
less and so your apparent weight appears to be less. That is, you would feel lighter 
than usual (Figure 1.1.10).

The opposite happens when the floor is accelerating upwards. In this case, the 
floor is pushing up against your feet with a greater force than the normal reaction 
force due to your weight alone. The upwards push of the floor must provide the 
force to accelerate you upwards. This accelerating force adds to the normal force to 
make it appear that your apparent weight is greater than it would be if you weren’t 
accelerating. That is, you would feel heavier than usual (Figure 1.1.11).

The normal reaction force (felt as apparent weight) and the force due to gravity 
(weight force) add as vectors to give the net force that causes the acceleration.

Fnet = FN + Fweight 

where FN is the apparent weight force that acts upwards on your feet

 Fweight is the weight force due to gravity (which never changes)

 Fnet is the net force causing the acceleration

Worked example 1.1.5

CALCULATING APPARENT WEIGHT

A 79.0 kg student rides a lift up to the top floor of an office block. During the 
journey, the lift accelerates upwards at 1.26 m s−2 before travelling at a constant 
velocity of 3.78 m s−1 and then finally decelerating at 1.89 m s−2. 

a Calculate the apparent weight of the student in the first part of the journey 
while accelerating upwards at 1.26 m s−2. 

Thinking Working

Ensure that the variables are in their 
standard units.

m = 79.0 kg

a = 1.26 m s−2 up

g = 9.80 m s−2 down 

Apply the sign and direction 
convention for motion in one 
dimension. Up is positive and down 
is negative.

m = 79.0 kg

a = +1.26 m s−2

g = −9.80 m s−2 

Apply the equation for apparent 
weight (the normal force).

Fnet = FN + Fg

FN = Fnet − Fg

 = ma − mg

 = (79.0 × 1.26) − (79.0 × −9.80)

 = 99.54 + 774.2

 = 874 N

b Calculate the apparent weight of the student in the second part of the journey 
while travelling at a constant speed of 3.78 m s−1.

Thinking Working

Ensure that the variables are in their 
standard units.

m = 79.0 kg

a = 0 m s−2 

g = 9.80 m s−2 down

accelerating
downwards

FN

Fnet Fg

FN

Fnet

Fg

FIGURE 1.1.10 In this case, the forces that 
act on the person in the lift cause him to feel 
lighter than his normal apparent weight. When 
accelerating downwards, FN < Fg.

accelerating
upwards

FN

Fnet

Fg

Fnet

FN
Fg

FIGURE 1.1.11 In this case, the forces that 
act on the person in the lift cause him to feel 
heavier than his normal apparent weight. When 
accelerating upwards, FN > Fg.

Sam
ple

 pa
ge

s



11CHAPTER 1   |   THE FORCE DUE TO GRAVITY

Apply the sign and direction 
convention for motion in one 
dimension. Up is positive and down 
is negative.

m = 79.0 kg

a = 0 m s−2 

g = −9.80 m s−2

Apply the equation for apparent 
weight (the normal force).

Fnet = FN + Fweight

FN = Fnet − Fweight

 = ma − mg

 = (79.0 × 0) − (79.0 × −9.80)

 = 0 + 774.2

 = 774 N

c Calculate the apparent weight of the student in the last part of the journey 
while travelling upwards and decelerating at 1.89 m s−2.

Thinking Working

Ensure that the variables are in 
their standard units. Also consider 
that deceleration is a negative 
acceleration.

m = 79.0 kg

a = −1.89 m s−2 up

g = 9.80 m s−2 down

Apply the sign and direction 
convention for motion in one 
dimension. Up is positive and down 
is negative.

m = 79.0 kg

a = −1.89 m s−2 

g = −9.80 m s−2

Apply the equation for apparent 
weight (the normal force).

Fnet = FN + Fweight

FN = Fnet − Fweight

 = ma − mg

 = (79.0 × −1.89) − (79.0 × −9.80)

 = −149.3 + 774.2

 = 625 N

Worked example: Try yourself 1.1.5

CALCULATING APPARENT WEIGHT

A 79.0 kg student rides a lift down from the top floor of an office block to the 
ground. During the journey the lift accelerates downwards at 2.35 m s−2, before 
travelling at a constant velocity of 4.08 m s−1 and then finally decelerating at 
4.70 m s−2.

a Calculate the apparent weight of the student in the first part of the journey 
while accelerating downwards at 2.35 m s−2. 

b Calculate the apparent weight of the student in the second part of the journey 
while travelling at a constant speed of 4.08 m s−1.

c Calculate the apparent weight of the student in the last part of the journey 
while travelling downwards and decelerating at 4.70 m s−2.

From Worked example 1.1.5, you can see that: 
• when accelerating upwards the student will feel heavier than normal (FN > mg) 

(Note: this is the same as decelerating while travelling downwards)
• when accelerating downwards, the student will feel lighter than normal (FN < mg) 

(Note: this is the same as decelerating while travelling upwards)
• when travelling upwards or downwards at a constant velocity, the student will 

feel their normal weight, just as they would if the lift was stationary (FN = mg).

Sam
ple

 pa
ge

s



12 AREA OF STUDY 1   |   GRAVITY AND MOTION

Apparent weightlessness 
Defining apparent weight makes it possible to identify the situations in which you 
will experience apparent weightlessness. Your apparent weight is a contact 
reaction force that acts upwards on you from a surface because gravity is pulling you 
down on that surface. So if you are not standing on a surface, you will experience 
zero apparent weight; that is, apparent weightlessness. This means that you will 
experience apparent weightlessness the moment you step off the top platform of a 
diving pool or as you skydive from a plane, although the rushing air will hardly let 
you experience the sensation of floating as you skydive.

Felix Baumgartner experienced apparent weightlessness as he fell from his 
balloon 39 km above the Earth (Figure 1.1.12). This vertical height is equivalent to 
the distance from Perth to the west end of Rottnest.

path of
astronaut Fg

v

FIGURE 1.1.13 Astronauts are in free-fall while 
orbiting the Earth.

FIGURE 1.1.12 Felix Baumgartner experienced apparent weightlessness on his return to Earth from 
39 000 m.

Astronauts also experience apparent weightlessness in the International Space 
Station, which orbits about 370 km above the surface of the Earth (about the 
horizontal distance from Perth to Albany).

Whenever you are in free-fall, you experience apparent weightlessness. It 
follows then that whenever you experience apparent weightlessness, you must be in 
free-fall. When astronauts experience apparent weightlessness, they are not floating 
in space as they orbit the Earth. They are actually in free-fall. Astronauts and their 
spacecraft are both falling, but not directly towards the Earth like Baumgartner. The 
astronauts are actually moving horizontally, as shown in Figure 1.1.13. Baumgartner 
stayed approximately above the same place on the Earth from where he departed. 
Astronauts, on the other hand, are moving at a velocity relative to the Earth, so they 
are moving across the sky at the same time as they are falling. The combined effect is 
that they fall in a curved path that almost mirrors the curve of the Earth. So they fall, 
but continually miss the Earth as the surface of the Earth curves away from their path.

Importantly there is a significant difference between apparent weightlessness 
and true weightlessness. True weightlessness only occurs when the gravitational field 
strength is zero and hence Fweight = 0. This only occurs in deep space, far enough away 
from any planets so that their gravitational effect is zero. Apparent weightlessness, 
however, can occur when still under the influence of a gravitational field.
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13CHAPTER 1   |   THE FORCE DUE TO GRAVITY

EXTENSION

Falling at constant speed

Galileo was able to show, more than 400 years ago, that the mass 
of a body does not affect the rate at which it falls towards the 
ground. However, our common experience is that not all objects 
behave in this way. A light object, such as a feather or a balloon, 
does not accelerate at 9.80 m s−2 as it falls. It drifts slowly to the 
ground, far slower than other dropped objects. Parachutists and 
skydivers also eventually fall with a constant speed. However, they 
can change their falling speed by changing their body profile, as 
pictured in Figure 1.1.14. If they assume a tuck position, they will 
fall faster, and if they spread out their arms and legs, they will fall 
slower. This enables them to form spectacular patterns as they fall.

FIGURE 1.1.14 Skydivers performing intricate manoeuvres in free-fall.

FIGURE 1.1.15 The forces involved in skydiving.

Far

Fg

v 

Fnet

a

Far

Fg

v 

Fnet

b

v 

Far

Fg

Fnet = 0

c

v 

Far

Fg

Fnet = 0

d

Skydivers, base-jumpers and air-surfers are able to use the force 
of air resistance to their advantage. As a skydiver first steps out of 
the plane, the forces acting on them are drag (air resistance), Far, 
and weight due to gravity, Fweight. Since their speed is low, the drag 
force is small, as shown in Figure 1.1.15(a). There is a large net 
force (Fnet) downwards, so they will experience a large downwards 
acceleration of just less than 9.80 m s−2, causing them to speed up. 
This causes the drag force to increase because they are colliding 
harder with the air molecules. In fact, the drag force increases in 
proportion to the square of the speed, Far ∝ v2. This results in a 
smaller net force downwards as shown in Figure 1.1.15(b). Their 
downwards acceleration is therefore reduced. (It is important to 
remember that they are still speeding up, but at a reduced rate.)

As their speed continues to increase, so too does the magnitude 
of the drag force. Eventually, the drag force becomes as large as 
the weight force due to gravity, as shown in Figure 1.1.15(c). When 
this happens, the net force is zero and the skydiver will fall with a 
constant velocity. As the velocity is now constant, the drag force 
will also remain constant and the motion of the skydiver will not 
change, as shown in Figure 1.1.15(d). This velocity is commonly 
known as the terminal velocity.
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PHYSICS IN ACTION

Satellites 

Natural satellites have existed 
throughout the universe for billions of 
years. The planets and asteroids of the 
solar system are natural satellites of 
the Sun. 

Earth has one natural satellite: the 
Moon. The largest planets—Jupiter 
and Saturn—each have more than 
sixty natural satellites in orbit around 
them. Most of the stars in the Milky 
Way galaxy have planets and more of 
these exoplanets are being discovered 
each year.

Since the space age began in 1957 
with the launch of Sputnik, about 6000 
artificial satellites have been launched 
into orbit around the Earth. Today 
there are about 4000 artificial satellites 
still in orbit, although only about 1200 
of these are operational.

Satellites in orbit around the Earth 
are classified as being in low, medium 
or high orbit.

• Low orbit: 180 km to 2000 km 
altitude. Most satellites orbit in 
this range (an example is shown in 
Figure 1.1.16). These include the 
Hubble Space Telescope, which is 
used by astronomers to view objects 
right at the edge of the universe.

• Medium orbit: 2000 km to 
36 000 km altitude. The most 
common satellites in this region are 
the global positioning system (GPS) 
satellites used to run navigation 
systems.

• High orbit: 36 000 km altitude or 
greater. Australia uses the Optus 
satellites for communications, and 
deep-space weather pictures come 
from the Japanese Himawari-8 
satellite. The satellites that sit at 
an altitude of 36 000 km and orbit 
with a period of 24 hours are 
known as geostationary satellites 
(or geosynchronous satellites). 
Most communications satellites are 
geostationary.

Earth satellites can have different 
orbital paths depending on their 
function:

• equatorial orbits in which the satellite 
always travels above the equator

• polar or near-polar orbits in which the 
satellite travels over or close to the 
North and South poles as it orbits

• inclined orbits, which lie between 
equatorial and polar orbits.

Satellites are used for a multitude 
of different purposes, with 60% used 
for communications. Many low-orbit 
American NOAA satellites have an 
inclination of 99° and an orbit that 
allows them to pass over each part of 
the Earth at the same time each day. 
These satellites are also known as 
Sun-synchronous satellites.

Artificial and natural satellites are not 
propelled by rockets or engines. They 
orbit in free-fall, and the only force 
acting on them is the gravitational 
attraction between the satellite and the 
body about which it orbits. This means 
that the satellites have a centripetal 
acceleration that is equal to the 
gravitational field strength at their 
location (Figure 1.1.18). Centripetal 
acceleration is covered in more detail 
in Chapter 2 ‘Motion in a gravitational 
field’.

Artificial satellites are often equipped 
with tanks of propellant that is squirted 
in the appropriate direction when 
the orbit of the satellite needs to be 
adjusted.

Artificial satellites of 
particular value to Australia 

Geostationary meteorological satellites 
Himawari-8 and 9

The Himawari-8 satellite was launched 
from the Tanegashima Space Centre, 
Japan, on 7 October 2014, and orbits 
at approximately 35 786 km directly 
over the equator in a geostationary orbit 

of 24 hours. At its closest point to the 
Earth (perigee), its altitude is 35 784 km. 
At its furthest point from the Earth 
(apogee), it is at 35 789 km. Himawari-8 
orbits at a longitude of around 140.7°E, 
so it is just to the north of Cape York. At 
this position it is ideally located for use 
by Australian forecasters.

Scans from Himawari-8 are made 
every 10 minutes and transmitted in 
near real-time to a satellite dish on the 
roof of the head office at the Bureau 
of Meteorology in Perth. Himawari-8 
is the first geostationary weather 
satellite to take true-colour pictures at a 
much greater resolution than previous 
satellites. 16 different types of image 
show the temperature variations in 
the atmosphere and are invaluable in 
weather forecasting. Himawari-8 is box-
like and measures about 2.6 m along 
each side. It had a mass of 3500 kg 
when it was launched, and is powered 
by solar panels that, when deployed, 
take its overall length to approximately 
8 m. Himawari-9 was launched on 
2 November 2016 and is positioned 
very near to Himawari-8. Its role is to 
remain on standby until 2022, when 
Himawari-8 will switch from observing to 
standing-by while Himawari-9 takes over.

FIGURE 1.1.16 A low-orbit satellite called 
the Soil Moisture and Ocean Salinity (SMOS) 
probe was launched in August 2014. Its role 
is to measure water movements and salinity 
levels on Earth as a way of monitoring climate 
change. It was launched from northern Russia 
by the European Space Agency (ESA).
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Hubble Space Telescope (HST)

This cooperative venture between 
NASA and the European Space 
Agency (ESA) was launched by the 
crew of the space shuttle Discovery 
on 25 April 1990. The HST is a 
permanent unoccupied space-based 
observatory with a 2.4 m-diameter 
reflecting telescope, spectrographs 
and a faint-object camera. It orbits 
above the Earth’s atmosphere, 
producing images of distant stars 
and galaxies far clearer than those 
from ground-based observatories 
(Figure 1.1.17). The HST is in a 
low-Earth orbit inclined at 28° to the 
equator. Its expected life span was 
originally around 15 years, but service 
and repair missions have extended its 
life and it is still in use today.

National Oceanic and Atmospheric 
Administration Satellite (NOAA-19)

Many of the US-owned and operated 
NOAA satellites are located in low-
altitude near-polar orbits. This means 
that they pass close to the poles of 
the Earth as they orbit. NOAA-19 
was launched in February 2009 and 
orbits at an inclination of 99° to the 
equator. Its low altitude means that it 
captures high-resolution pictures of 
small bands of the Earth. The data is 
used in local weather forecasting as 
well as to provide enormous amounts 
of information for monitoring global 
warming and climate change. 

Table 1.1.1 provides data for the 
three satellites discussed in this 
section.

Seeing the International 
Space Station (ISS) and 
other satellites 
It is easy to see low-orbit satellites 
if you are away from city lights. The 
best time to look is just after sunset. 
If you can, go outside and look for 
any slow-moving objects passing 
across the star background.

There are also many websites that 
will allow you to track and predict 
the real-time paths of satellites. You 
can use the NASA ‘Spot the Station’ 
website to see when the ISS is 
passing over your part of the planet. 
The ISS is so bright that it is easy to 
see from most locations.

FIGURE 1.1.17 In August 2014, astronomers used the Hubble Space Telescope to detect the blue 
companion star of a white dwarf in a distant galaxy. The white dwarf slowly siphoned fuel from its 
companion, eventually igniting a runaway nuclear reaction in the compact star, which produced a 
supernova blast.

TABLE 1.1.1 A comparison of the three satellites discussed in this section 

Satellite Orbit Inclination Perigee (km) Apogee (km) Period

Himawari-8 equatorial  0°  35 784  35 789      1 day

Hubble inclined 28°  591  599 96.6 min

NOAA-19 near polar  99°  846  866 102 min

FIGURE 1.1.18 The only force acting on 
these artificial and natural satellites is the 
gravitational attraction of the Earth. Both 
orbit with a centripetal acceleration equal 
to the gravitational field strength at their 
locations.
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1.1 Review 
SUMMARY

• All objects with mass attract one another with a 
gravitational force.

• The gravitational force acts equally on each of the 
masses.

• The magnitude of the gravitational force is given 
by Newton’s law of universal gravitation: 

  
=F G

m m
rg
1 2
2

• Gravitational forces are usually negligible unless 
one of the objects is massive, e.g. a planet.

• The weight of an object on the Earth’s surface is 
due to the gravitational attraction of the Earth, i.e. 
weight = Fweight.

• The acceleration due to gravity of an object near 
the Earth’s surface can be calculated using the 
dimensions of the Earth: 

  
= = −g G

m
r( )

9.80msEarth

Earth
2

2

• Objects can have an apparent weight that is 
greater or less than their normal weight. This 
occurs when they are accelerating vertically. 

• Artificial satellites are used for communication, 
navigation, remote-sensing and research. Their 
orbits and uses are classified by altitude (low-, 
medium- or high-Earth orbits) and by inclination 
(equatorial, polar and Sun-synchronous orbits).

KEY QUESTIONS

1 Newton’s law of universal gravitation links the 
relationships (or proportionalities) between several key 
factors influencing the force due to gravity between 
two objects. What are the individual proportionalities?

2 What does the symbol r represent in Newton’s law of 
universal gravitation?

3 Calculate the force of gravitational attraction between 
the Sun and Mars, given the following data:
mSun = 2.0 × 1030 kg 
mMars = 6.4 × 1023 kg 
rSun–Mars = 2.2 × 1011 m 

4 The force of gravitational attraction between the Sun 
and Mars is 1.8 × 1021 N. Calculate the acceleration of 
Mars given that mMars = 6.4 × 1023 kg.

5 On 14 April 2014, Mars came within 93 million km 
of Earth. Its gravitational effect on the Earth was 
the strongest it had been for over 6 years. Use the 
following data to answer the questions below.
mSun = 2.0 × 1030 kg
mEarth = 6.0 × 1024 kg
mMars = 6.4 × 1023 kg
a Calculate the gravitational force between the Earth 

and Mars on 14 April 2014.
b Calculate the force of the Sun on the Earth if the 

distance between them was 153 million km.
c Compare your answers to parts (a) and (b) above 

by expressing the Mars–Earth force as a percentage 
of the Sun–Earth force.

6 The acceleration of the Moon caused by the 
gravitational force of the Earth is much larger than the 
acceleration of the Earth due to the gravitational force 
of the Moon. What is the reason for this?

7 Calculate the acceleration of an object dropped near 
the surface of Mercury if this planet has a mass of 
3.3 × 1023 kg and a radius of 2500 km. Assume that 
the gravitational acceleration on Mercury can be 
calculated similarly to that on Earth.

8 Calculate the weight of a 65 kg cosmonaut standing on 
the surface of Mars, given that the planet has a mass 
of 6.4 × 1023 kg and a radius of 3.4 × 106 m.

9 In your own words, explain the difference between 
the terms ‘weight’ and ‘apparent weight’, giving an 
example of a situation where the magnitudes of these 
two forces would be different.

10 Calculate the apparent weight of a 50 kg person in an 
elevator under the following circumstances.
a accelerating upwards at 1.2 m s−2

b moving upwards at a constant speed of 5 m s−1

11 Calculate the apparent weight of a 45.0 kg child 
standing in a lift that is decelerating at 3.15 m s−2 
while travelling upwards.
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1.1 Review 
12 Which statement best describes the motion of 

astronauts when orbiting the Earth?
A They float in a zero-gravity environment.
B They float in a reduced gravity environment.
C They fall down very slowly due to the very small 

gravity.
D They fall in a reduced gravity environment.

13 Select the statement below that correctly describes 
how a satellite in a stable circular orbit 200 km 
above the Earth will move.
A It will have an acceleration of 9.80 m s−2.
B It will have constant velocity.
C It will have zero acceleration.
D It will have acceleration of less than 9.80 m s−2.

14 What can be said about an object if that object 
is orbiting the Earth in space and appears to be 
weightless?
A It is in free-fall.
B It is in zero gravity.
C It has no mass.
D It is floating.

15 A geostationary satellite orbits above Singapore, 
which is on the equator. Which of the following 
statements about the satellite is correct?
A It is in a low orbit.
B It is in a high orbit.
C It passes over the North Pole.
D It is not moving.
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1.2 Gravitational fields 
Newton’s law of universal gravitation describes the force acting between two 
mutually attracting bodies. In reality, complex systems like the solar system involve 
a number of objects (i.e. the Sun and planets shown in Figure 1.2.1) that are all 
exerting attractive forces on each other at the same time.

In the 18th century, to simplify the process of calculating the effect of 
simultaneous gravitational forces, scientists developed a mental construct known as 
the gravitational field. In the following centuries, the idea of a field was also applied 
to other forces and has become a very important concept in physics.

FIGURE 1.2.1 The solar system is a complex gravitational system.

PHYSICS IN ACTION

Discovery of Neptune

The planet Neptune was discovered 
through its gravitational effect on other 
planets. Two astronomers, Urbain  
Le Verrier of France and John Couch Adams 
of England, each independently identified 
that the observed orbit of Uranus varied 
significantly from predictions made based 
on the gravitational effects of the Sun 

and other known planets. Both suggested that this was due to the 
influence of a distant, undiscovered planet.

Le Verrier sent a prediction of the location of the new planet to 
Gottfried Galle at the Berlin Observatory and, on 23 September 
1846, Neptune was discovered within 1° of Le Verrier’s prediction 
(Figure 1.2.2).

FIGURE 1.2.2 This star chart published in 1846 shows the 
location of Neptune in the constellation Aquarius when it was 
discovered on 23 September, and its location one week later.
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19CHAPTER 1   |   THE FORCE DUE TO GRAVITY

GRAVITATIONAL FIELDS 
A gravitational field is a region in which a gravitational force is exerted on all 
matter within that region. Every physical object has an accompanying gravitational 
field. For example, the space around your body contains a gravitational field 
because any other object that comes into this region will experience a (small) force 
of gravitational attraction to your body.

The gravitational field around a large object such as a planet is much more 
significant than that around a small object. The Earth’s gravitational field exerts a 
significant influence on objects on its surface and even up to thousands of kilometres 
into space.

REPRESENTING GRAVITATIONAL FIELDS 
Over time, scientists have developed a commonly understood method of representing 
fields using a series of arrows known as field lines (Figure 1.2.3). For gravitational 
fields, these are constructed as follows:
• The direction of the arrowhead indicates the direction of the gravitational force.
• The space between the field lines indicates the relative magnitude of the field.

 - Closely spaced field lines indicate a strong field.
 - Widely spaced field lines indicate a weaker field.
 - Parallel field lines indicate constant or uniform field strength.

An infinite number of field lines could be drawn, so only a few are chosen to 
represent the rest. The size of the gravitational force acting on a mass in the region 
of a gravitational field is determined by the strength of the field, and the force acts 
in the direction of the field.

Worked example 1.2.1

INTERPRETING GRAVITATIONAL FIELD DIAGRAMS

The diagram below shows the gravitational field of a moon.

A

B

a Use arrows to indicate the magnitude and direction of the gravitational force 
acting at points A and B.

Thinking Working

The direction of the field arrows 
indicates the direction of the 
gravitational force, which is inwards 
towards the centre of the moon.

A

B

FIGURE 1.2.3 The arrows in this gravitational 
field diagram indicate that objects will be 
attracted towards the mass in the centre; the 
spacing of the lines shows that force will be 
strongest at the surface of the central mass and 
weaker further away from it.

Sam
ple

 pa
ge

s



20 AREA OF STUDY 1   |   GRAVITY AND MOTION

PHYSICSFILE

N kg−1 = m s−2

It can be shown that N kg−1 and m s−1 
are equivalent units.

From Newton’s second law, F = ma,  
you will remember that:

           1 N = 1 kg m s−2

[  1 N kg−1 = 1 kg m s−2 × kg−1

 = 1 m s−2

b Describe the relative strength of the gravitational field at each point.

Thinking Working

The closer the field lines, the stronger 
the force. The field lines are closer 
together at point A than they are at 
point B, as point A is closer to the 
moon.

The field is stronger at point A than at 
point B.

Worked example: Try yourself 1.2.1

INTERPRETING GRAVITATIONAL FIELD DIAGRAMS

The diagram below shows the gravitational field of a planet.

A

B

C

a Use arrows to indicate the magnitude and direction of the gravitational force 
acting at points A, B and C.

b Describe the relative strength of the gravitational field at each point.

GRAVITATIONAL FIELD STRENGTH 
In theory, gravitational fields extend infinitely out into space. However, since the 
magnitude of the gravitational force decreases with the square of the distance, 
eventually these fields become so weak as to become negligible.

In Section 1.1, it was shown that it is possible to calculate the acceleration due to 
gravity of objects near the Earth’s surface using the dimensions of the Earth:

= = −g G
m
r( )

9.80 msEarth

Earth
2

2

The constant g can also be used as a measure of the strength of the gravitational 
field. When understood in this way, the constant is written with the equivalent units 
of N kg−1 rather than m s−2. This means gEarth = 9.80 N kg−1. 

These units indicate that objects on the surface of the Earth experience 9.80 N 
of gravitational force for every kilogram of their mass.

Accordingly, the familiar equation Fweight = mg can be transposed so that the 
gravitational field strength, g, can be calculated.

where g is gravitational field strength (N kg−1)

 Fweight is the force due to gravity (N)

 m is the mass of an object in the field (kg)

=g
F
m
weight
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Worked example 1.2.2

CALCULATING GRAVITATIONAL FIELD STRENGTH

When a student hangs a 1.0 kg mass from a spring balance, the balance 
measures a downwards force of 9.80 N.

According to this experiment, what is the gravitational field strength of the Earth 
in this location?

Thinking Working 

Recall the equation for gravitational 
field strength. =g

F

m
weight

Substitute in the appropriate values.
=g

9.8
1.0

Solve the equation. g = 9.8 N kg−1 

Worked example: Try yourself 1.2.2

CALCULATING GRAVITATIONAL FIELD STRENGTH

A student uses a spring balance to measure the weight of a piece of wood as 
2.5 N.

If the piece of wood is thought to have a mass of 260 g, calculate the 
gravitational field strength indicated by this experiment.

Newton's law of universal gravitation can be written as =F G
Mm

r
g 2

, to indicate 

the difference in mass between the large central body and the smaller object 

within the gravitational field. This formula can be used to develop the formula for 

gravitational field strength: 

= =g
F

m

G
Mm
r

m
weight 2

 

This simplifies to:

=g G
M

r2

where g is the gravitational field strength (N kg−1)

 G is the gravitational constant, 6.67 × 10−11 N m2 kg−2

 M is the mass of the planet or moon (the central body; kg)

 r is the radius of the planet or moon (m)

Sam
ple

 pa
ge

s



22 AREA OF STUDY 1   |   GRAVITY AND MOTION

field 
source

r

2r

3r

REVISION  

Inverse square law
The concept of a field is a very powerful tool for understanding forces 
that act at a distance. It has also been applied to forces such as the 
electrostatic force between charged objects and the force between 
two magnets.

The study of gravitational fields introduces the concept of the 
inverse square law. From the point source of a field, whether it be 
gravitational, electric or magnetic, the field will spread out radially in 
three dimensions. When the distance from the source is doubled, the 
field will be spread over four times the original area. 

In Figure 1.2.4, going from r to 2r to 3r, the area shown increases 
from one square to four squares (22) to nine squares (32). Using the 
inverse part of the inverse square law, at a distance 2r the strength of 
the field will be reduced to a quarter of that at r, as is the force that 
the field would exert. At 3r from the source, the field will be reduced to 
one-ninth of that at the source, and so on.

In terms of the gravitational field, the strength of the force varies 
inversely with the square of the distance between the objects:

∝F
M

r2

where F is the force
 r is the distance from the source of the gravitational field. 
This is referred to as the inverse square law.

One key difference between the gravitational force and other inverse 
square forces is that the gravitational force is always attractive, whereas 
like charges or magnetic poles repel one another.

Inverse square laws are an important concept in physics, not only 
in the study of fields but also for other phenomena where energy is 
moving away from its source in three dimensions, such as in sound 
and other waves. 

FIGURE 1.2.4 As the distance from the source of 
a field increases, the field is spread over an area 
that increases with the square of the distance 
from the source, resulting in the strength of the 
field decreasing by the same ratio.

Variations in gravitational field strength of the Earth 
The gravitational field strength of the Earth, g, is usually assigned a value of 
9.81 N kg−1 (and generally rounded further to 9.80 N kg−1 for Physics exams). 
However, the field strength experienced by objects on the surface of the Earth can 
vary between 9.76 N kg−1 and 9.83 N kg−1, depending on location.

Geological formations can also create differences in gravitational field strength, 
depending on their composition. Geologists use a sensitive instrument known as a 
gravimeter (Figure 1.2.5) that detects small local variations in gravitational field 
strength to indicate underground features. Rocks with above-average density, such 
as those containing mineral ores, create slightly stronger gravitational fields, whereas 
less-dense sedimentary rocks produce weaker fields.

FIGURE 1.2.5 A gravimeter can be used to 
measure the strength of the local gravitational 
field.
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g

FIGURE 1.2.6 The uniform gravitational field, g, is represented by evenly spaced parallel lines in the 
direction of the force.

If the surface of the Earth is considered a flat surface as it appears in everyday 
life, then the gravitational field lines are approximately parallel, indicating a uniform 
field (Figure 1.2.6). 

However, when the Earth is viewed from a distance as a sphere, it becomes clear 
that the Earth’s gravitational field is not uniform at all (Figure 1.2.7). The increasing 
distance between the field lines indicates that the field becomes progressively weaker 
out into space.

This is because gravitational field strength, like gravitational force, is governed 
by the inverse square law: 

=g G
M
r( )

Earth

Earth
2

The gravitational field strength at different altitudes can be calculated by adding 
the altitude to the radius of the Earth to calculate the distance of the object from 
Earth’s centre (Figures 1.2.8 and 1.2.9).

g

36 000 km g = 0.22 N kg–1

g = 7.3 N kg–11000 km

g = 8.7 N kg–1

g = 9.8 N kg–1
400 km
surface

6400 km g = 2.5 N kg–1

FIGURE 1.2.7 The Earth’s gravitational field 
becomes progressively weaker out into space.

FIGURE 1.2.9 The Earth’s gravitational field 
strength is weaker at higher altitudes.

FIGURE 1.2.8 As the distance from the surface of the Earth is increased from 0 to 40 × 106 m, the 
value for g decreases rapidly from 9.80 N kg−1, according to the inverse square law. The blue line on 
the graph gives the value of g at various altitudes (h).
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Worked example 1.2.3

CALCULATING GRAVITATIONAL FIELD STRENGTH AT DIFFERENT ALTITUDES

Calculate the strength of the Earth’s gravitational field at the top of Mt Everest 
using the following data:

rEarth = 6.38 × 106 m

mEarth = 5.97 × 1024 kg

height of Mt Everest = 8850 m

Thinking Working

Recall the formula for gravitational 
field strength.

=g G
M

r2

Add the height of Mt Everest to the 
radius of the Earth.

r = 6.38 × 106 + 8850 m

  = 6.389 × 106 m

Substitute the values into the formula. =

= × ×
×

×

=

−

−

g G
M
r

6.67 10
5.97 10

(6.389 10 )

9.76N kg

2

11
24

6 2

1

Worked example: Try yourself 1.2.3

CALCULATING GRAVITATIONAL FIELD STRENGTH AT DIFFERENT ALTITUDES

Commercial airlines typically fly at an altitude of 11 000 m. Calculate the 
gravitational field strength of the Earth at this height using the following data:

rEarth = 6.38 × 106 m

mEarth = 5.97 × 1024 kg

PHYSICSFILE

Variations in gravitational  
field strength
The Earth’s gravitational field strength 
is not the same at every point on the 
Earth’s surface. As the Earth is not a 
perfect sphere, objects near the equator 
are slightly further from the centre of 
the Earth than objects at the poles. This 
means that the Earth’s gravitational field 
is slightly stronger at the poles than at 
the equator.

The shape of the Earth is known as 
an oblate spheroid (Figure 1.2.10). 
Mathematically, this is the shape that’s 
made when an ellipse is rotated around 
its minor axis. The diameter of the Earth 
between the North and South poles is 
approximately 40 km shorter than its 
diameter at the equator.

North Pole

p
ol

ar
 d

ia
m

et
er

equatorial diameter

12756 km

South Pole

1
2

7
1
4
 k

m

FIGURE 1.2.10 The Earth is a flattened 
sphere, which means its gravitational field is 
slightly stronger at the poles.
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Gravitational field strengths of other planets 
The gravitational field strength on the surface of the Moon is much less than on 
Earth, at approximately 1.6 N kg−1. This is because the Moon’s mass is smaller than 
that of the Earth.

The formula =g G
M
r2  can be used to calculate the gravitational field strength on 

the surface of any astronomical object, such as Mars (Figure 1.2.11).

Worked example 1.2.4

GRAVITATIONAL FIELD STRENGTH ON ANOTHER PLANET OR MOON

Calculate the strength of the gravitational field on the surface of the Moon given 
that the Moon’s mass is 7.35 × 1022 kg and its radius is 1740 km.

Give your answer correct to two significant figures.

Thinking Working

Recall the formula for gravitational 
field strength.

=g G
M
r2

Convert the Moon’s radius to m. r = 1740 km

 = 1740 × 1000 m

 = 1.74 × 106 m

Substitute values into the formula. =

= × ×
×

×

=

−

−

g G
M
r

6.67 10
7.35 10

(1.74 10 )

1.6Nkg

2

11
22

6 2

1

Worked example: Try yourself 1.2.4

GRAVITATIONAL FIELD STRENGTH ON ANOTHER PLANET OR MOON

Calculate the strength of the gravitational field on the surface of Mars.

mMars = 6.42 × 1023 kg

rMars = 3390 km

Give your answer correct to two significant figures.

FIGURE 1.2.11 The gravitational field strength 
on the surface of Mars (shown here) is different 
from the gravitational field strength on the 
surface of the Earth, which, in turn, is different 
from that on the Moon.

PHYSICSFILE

Moon walking
Walking is a process of repeatedly stopping yourself from falling 
over. When astronauts first tried to walk on the Moon, they found 
that they fell too slowly to walk easily. Instead, they invented a 
kind of shuffling jump that was a much quicker way of moving 
around in the Moon’s weak gravitational field (Figure 1.2.12). 
This type of ‘moon walk’ should not be confused with the famous 
dance move of the same name!

FIGURE 1.2.12 Astronauts had to invent a new way of walking to deal 
with the Moon’s weak gravitational field.
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1.2 Review
SUMMARY

• A gravitational field is a region in which a 
gravitational force is exerted on all matter within 
that region.

• A gravitational field can be represented by a 
gravitational field diagram:

 - The arrowheads indicate the direction of the 
gravitational force.

 - The spacing of the field lines indicates the 
relative strength of the field. The closer the line 
spacing, the stronger the field.

• The strength of a gravitational field can be 
calculated using the following formulae:

  =g
F

m
weight  or =g G

M
r2

• The gravitational field strength on the Earth’s 
surface is approximately 9.80 N kg−1. This varies 
from location to location and with altitude.

• The gravitational field strength on the surface of 
any other planet depends on the mass and radius 
of the planet.

KEY QUESTIONS

1 What is the most appropriate unit for measuring 
gravitational field strength in the context of 
gravitational fields?

2 Students use a spring balance to measure the weight 
of a 150 g set of slotted masses to be 1.4 N. According 
to this measurement, what is the gravitational field 
strength in their classroom?

3 A gravitational field, g, is measured as 5.5 N kg−1 at 
a distance of 40 000 km from the centre of a planet. 
The distance from the centre of the planet is then 
increased to 120 000 km. What would be the ratio of 
the magnitude of the gravitational field at this new 
distance to the magnitude of original measurement?

4 Different types of satellite have different types of orbit, 
as shown in the table below. Calculate the strength of 
the Earth’s gravitational field in each orbit.
rEarth = 6380 km
mEarth = 5.97 × 1024 kg

Type of orbit Altitude (km)

a  low-Earth orbit 2 000

b medium-Earth orbit 10 000

c semi-synchronous orbit 20 200

d geosynchronous orbit 35 786

5 On 12 November 2014, the Rosetta spacecraft landed 
a probe on the comet 67P/Churyumov−Gerasimenko. 
Assuming this comet is a roughly spherical object 
with a mass of 1 × 1013 kg and a diameter of 1.8 km, 
calculate the gravitational field strength on its surface.

6 The masses and radii of three planets are given in 
the following table. Calculate the gravitational field 
strength, g, at the surface of each planet.

Planet Mass (kg) Radius (m)

Mercury 3.30 × 1023 2.44 × 106

Saturn 5.69 × 1026 6.03 × 107

Jupiter 1.90 × 1027 7.15 × 107

7 There are bodies outside our solar system, such as 
neutron stars, that produce very large gravitational 
fields. A typical neutron star can have a mass of 
3.0 × 1030 kg and a radius of just 10 km. Calculate 
the gravitational field strength at the surface of such 
a star.

8 A newly discovered solid planet located in a distant 
solar system is found to be distinctly non-spherical in 
shape. Its polar radius is 5000 km, and its equatorial 
radius is 6000 km.
The gravitational field strength at the poles is 
8.0 N kg−1. How would the gravitational field strength at 
the poles compare with the strength at the equator?

9 There is a point between the Earth and the Moon 
where the total gravitational field is zero. The 
significance of this is that returning lunar missions 
are able to return to Earth under the influence of the 
Earth’s gravitational field once they pass this point. 
Given that the mass of Earth is 6.0 × 1024 kg, the 
mass of the Moon is 7.3 × 1022 kg and the radius of 
the Moon’s orbit is 3.8 × 108 m, calculate the distance 
of this point from the centre of the Earth.

10 An astronaut travels away from Earth to a region in 
space where the gravitational force due to Earth is 
only 1.0% of that at Earth’s surface. What distance, 
in Earth radii, is the astronaut from the centre of 
the Earth?
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Chapter review

KEY TERMS

acceleration due to gravity
altitude
apparent weight
apparent weightlessness
artificial satellites
centripetal acceleration
field
free-fall

geostationary satellite 
gravimeter
gravitational constant
gravitational field
gravitational field strength
gravitational force
gravitational potential energy
inverse square law

kinetic energy
natural satellite
Newton’s law of universal 

gravitation
normal reaction force
torsion balance
uniform
weight

1 Use Newton’s law of universal gravitation to calculate 
the gravitational force acting on a person with a mass 
of 75 kg. Use the following data: 
mEarth = 6.0 × 1024 kg
rEarth = 6400 km

2 The gravitational force of attraction between 
Saturn and Dione, a moon of Saturn, is equal to 
2.79 × 1020 N. Calculate the orbital radius of Dione. 
Use the following data:
mass of Dione = 1.05 × 1021 kg
mass of Saturn = 5.69 × 1026 kg

3 Of all the planets in the solar system, Jupiter exerts 
the largest force on the Sun: 4.2 × 1023 N. Calculate 
the acceleration of the Sun due to this force, using the 
following data: mSun = 2.0 × 1030 kg.

4 The planet Jupiter and the Sun exert gravitational 
forces on each other. 
a Compare, qualitatively, the force exerted on Jupiter 

by the Sun to the force exerted on the Sun by 
Jupiter. 

b Compare, qualitatively, the acceleration of Jupiter 
caused by the Sun to the acceleration of the Sun 
caused by Jupiter.

5 Calculate the acceleration due to gravity on the 
surface of Mars if it has a mass of 6.4 × 1023 kg and a 
radius of 3400 km.

6 Calculate the apparent weight of a 50 kg person in an 
elevator under the following circumstances.
a accelerating downwards at 0.6 m s−2

b moving downwards at a constant speed of 2 m s−1

7 A comet of mass 1000 kg is plummeting towards 
Jupiter. Jupiter has a mass of 1.90 × 1027 kg and a 
planetary radius of 7.15 × 107 m. If the comet is about 
to crash into Jupiter, calculate the:
a magnitude of the gravitational force that Jupiter 

exerts on the comet
b magnitude of the gravitational force that the comet 

exerts on Jupiter
c acceleration of the comet towards Jupiter
d acceleration of Jupiter towards the comet.

8 A person standing on the surface of the Earth 
experiences a gravitational force of 900 N. What 
gravitational force will this person experience at a 
height of two Earth radii above the Earth’s surface?
A 900 N
B 450 N
C zero
D 100 N

9 During a space mission, an astronaut of mass 80 kg 
initially accelerates at 30 m s−2 upwards, then travels 
in a stable circular orbit at an altitude where the 
gravitational field strength is 8.2 N kg−1.
a What is the apparent weight of the astronaut during 

lift-off?
A zero
B 780 N
C 2400 N
D 3200 N

b During the lift-off phase, the astronaut will feel:
A lighter than usual
B heavier than usual
C the same as usual

c The weight of the astronaut during the lift-off  
phase is:
A lower than usual
B greater than usual
C the same as usual

d During the orbit phase, the apparent weight of the 
astronaut is:
A zero
B 780 N
C 2400 N
D 660 N

e During the orbit phase, the weight of the  
astronaut is:
A zero
B 780 N
C 2400 N
D 660 N

10 Describe the main rules to follow when drawing 
gravitational field lines.
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11 A set of bathroom scales is calibrated so that when the 
person standing on it has a weight of 600 N, the scales 
read 61.5 kg. What gravitational field strength has been 
assumed in this setting?

12 The Earth is a slightly flattened sphere. Its radius at the 
poles is 6357 km compared to 6378 km at the equator. 
The Earth’s mass is 5.97 × 1024 kg.
a Calculate the Earth’s gravitational field strength at 

the equator.
b Using the information in part (a), calculate how 

much stronger the gravitational field would be at 
the North Pole compared with at the equator. Give 
your answer as a percentage of the strength at the 
equator.

13 Neptune has a planetary radius of 2.48 × 107 m and a 
mass of 1.02 × 1026 kg.
a Calculate the gravitational field strength on the 

surface of Neptune.
b A 250 kg lump of ice is falling directly towards 

Neptune. What is its acceleration as it nears the 
surface of Neptune? Ignore any drag effects.
A 9.80 m s−2

B zero
C 11 m s−2

D 1.6 m s−2

14 Two stars of masses M and m are in orbit around 
each other. As shown in the following diagram, they 
are a distance R apart. A spacecraft located at point X 
experiences zero net gravitational force from these 

stars. Calculate the value of the ratio 
M
m

.

0.8R 0.2R
mM

X

R

15 A 20 kg rock is speeding towards Mercury. The 
following graph shows the force on the rock as a 
function of its distance from the centre of the planet. 
The radius of Mercury is 2.4 × 106 m.

Distance (× 106 m)
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When the rock is 3.0 × 106 m from the centre of the 
planet, its speed is estimated at 1.0 km s−1. Using the 
graph, estimate the:
a increase in kinetic energy of the rock as it moves to 

a point that is just 2.5 × 106 m from the centre of 
Mercury

b kinetic energy of the rock at this closer point
c speed of the rock at this point
d gravitational field strength at 2.5 × 106 m from the 

centre of Mercury.
The following information relates to questions 16–20.
The diagram shows the gravitational field strength and 
distance near the Earth. A wayward satellite of mass 
1000 kg is drifting towards the Earth.

 Height above Earth’s surface (× 105 m) 
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16 What is the gravitational field strength at an altitude of 
300 km?

17 Which of the following units is associated with the area 
under this graph?
A J
B m s−2

C J s
D J kg−1

18 Which one of the following quantities is represented by 
the shaded area on the graph? (Ignore air resistance.)
A the kinetic energy per kilogram of the satellite at an 

altitude of 600 km
B the loss in gravitational potential energy of the 

satellite
C the loss in gravitational potential energy per 

kilogram of the satellite as it falls to the Earth’s 
surface

D the increase in gravitational potential energy of the 
satellite as it falls to the Earth’s surface

19 How much kinetic energy does the satellite gain as 
it travels from an altitude of 600 km to an altitude of 
200 km?

20 In reality, would the satellite gain the amount of kinetic 
energy that you have calculated in Question 19? 
Explain your answer.
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