Number

Conceptual Thread:

Extends whole number understanding to 100000.

Explores decimal fractions to tenths (e.9., 0.1, 0.5 , 0.8) and hundredths (e.g., $0.42,0.05,0.90$).

Extends whole numbe understanding to 000000 .

Extends decimal number understanding to thousandths.

$$
\begin{aligned}
& \text { Understands that } \\
& \text { there are infinitely } \\
& \text { many whole numbers } \\
& \text { and explores the } \\
& \text { concept of infinity. }
\end{aligned}
$$

Generates fractions and decimal fraction between any two numbers (i.e., rational number density) e.g., between 2.3 and 2.4 is 2.31 ; and between 2.3 and 2.31 is 2.305).

Extends whole number understanding to negative numbers.

BIG IDEA:
Numbers are related in many ways.

Conceptual Thread:
COMPARING AND ORDERING QUANTITIES (MULTITUDE OR MAGNITUDE)

Compares, orders, and locates whole numbers based on place-valu records using $<,=,>$ symbols.

Compares, orders, and locates fractions with the same or denomin or denominator (e.g., $\frac{3}{5}>\frac{3}{6}$ because fifths are larger parts)

Compares, orders, and locates decimal numbers using place-value understanding.

Compares, orders, and locates fractions using flexible strategies (e.g., comparing models; creating common denominators or numerators).

Compares, orders, and locates positive rational numbers using flexible strategies (e.g., $\frac{2}{5}<0.6$ because $\frac{2}{5}$ is less than one-half).

Conceptual Thread:

estimating quantities and numbers

Rounds whole numbers using place-value understanding (e.9., 4736 can be rounded to 5000 4700, 4740).

```
Estimates the location of decimals
``` and fractions on

Provides approximat decimal values using multiple strategie (e.g., estimation, rounding, truncating).

Estimates the size and magnitude of fractions by comparing to benchmarks.

Estimates quantities using percentage enchmarks (e.9., 25\%, \(50 \%, 75 \%\)).

Estimates the size and magnitude of rational numbers by comparing to benchmarks.

Understands that a positive integer and its negative opposite are the same distance from zero (e.g., both 5 and -5 are five units from zero on number line).

Distinguishes between numbers that do and do not have whole number square roots.

Extends decimal and fraction understanding to positive and negative rational numbers.
xplores irrational numbers (e.g., \(\sqrt{2}\) and T are numbers that annot be expressed as ratios, but hav nique locations on the number line).

PURPOSE:
Number relationships provide the basis for developing flexibility with
different representations of numbers and fluency with operations.

Estimates the location of positive and negative on a number line.

Estimates square roots of numbers that are mperfect squares (e.g., \(\sqrt{28}\) is between 5 and 6 , and closer to 5).

Uses scientific notation to approximate large and small values (e.g., 395674213 is approximately \(4.0 \times 10^{8}\)).

\section*{Number}

BIG IDEA: (cont'd)
Numbers are related in many ways.

\section*{Conceptual Thread:}

DECOMPOSING AND COMPOSING NUMBERS TO INVESTIGATE EQUIVALENCIES

Composes and decomposes whole numbers using standard and non-standard partitioning (e.g., 1000 is 10 hundreds or 100 tens).

Composes and decomposes decimal numbers using andard and non-standard artitioning (e.g., 1.6 is 16 tenths or 0.16 tens).

Models and explains the relationship between a fraction and its equivalent decimal form
(e.g. \(\frac{2}{5}=\frac{4}{10}=0.4\))
(e.g., \(\frac{2}{5}=\frac{4}{10}=0.4\)).
\[
\begin{aligned}
& \text { Generates and } \\
& \text { identifies equivalent } \\
& \text { fractions using } \\
& \text { flexible strategies } \\
& \text { (e.g., represents } \\
& \text { the same part of a } \\
& \text { whole; same part of } \\
& \text { a set; same location } \\
& \text { on a number line). }
\end{aligned}
\]

\section*{Understands that} all fractions are equivalent to either erminating or repeating decimals. Decomposes number into prime factors.

Models and
explains the
relationships among fractions, decimals, and percents
Translates flexibly between representations

Models equivalent forms of improper fractions and mixed numbers using flexible strategies.

Conceptual Thread:

\section*{USING RATIOS, RATES, PROPORTIONS, AND PERCENTS CREATES A RELATIONSHIP BETWEEN QUANTITIES}

Demonstrates multiplicative reasoning by applying unit rates in whole numbe ontexts (e.g., If she earns \(\$ 12\) per hour, how much will she earn for 5 hours of work?).

Understands the concept of ratio as a relationship between wo quantities (e.g. wins to 2 losses).

Understands and applies the concept of unit rates (e.g., If 3 1 kg or how many for \$1?).

Understands and applies the concep of percentage as a rate per 100
(e.g., calculating sales tax, tips, or discounts)

\section*{BIG IDEA:}

Quantities and numbers can be grouped by or partitioned into equal-sized units.

\section*{UNITIZING QUANTITIES INTO BASE-TEN UNITS}

Writes and reads whole numbers in multiple forms (e.g., 1358; one
thousand thre thousand three \(1000+300+50+8)\)

Uses fractions with denominators of 10 fraction understand and notation (e.g., five tenths is or 0.5).

Counts forward and
backward by decimal \(0.9,1.0\)).

Understands that th value of a digit is ten times the value of th to the right.

Understands that th value of a digit is one-tenth the value of the same digit on place to the left.

Selects and justifies the most appropriate rational number representation (i.e., fraction, decimal, percent) for a given context.

Unitizing provides a necessary foundation for multiplication, division, fractions, decimals, and ratios.

Understands the meaning of percents greater than 100 less than \(1 \%\).

Uses equations to represent proportiona solve problems (e.g., using exchange rates to convert between currencies)

Solves for missing values and determines ates using flexible rates using flexible raphing, unit rates, graphing, unit rates,
\(\frac{a}{b}=\frac{c}{d}\) relationship).

Distinguishes between proportional and non-propo
situations.

Uses understanding of place value to write numbers in expanded form using powers of 10 (e.g., \(3107=3 \times 10^{3}+1 \times 10^{2}+7 \times 10^{0}\)).

Uses place value, rounding, and powers of 10 to represent very large and very small numbers using scientific notation (e.g., 3241782 can be represented as \(3.24 \times 10^{6}\)).
Partitions fractional
parts into smaller
fractional units
(e.g., partitions halves
into thirds to create
sixths).

Uses models to
describe, name, and
count forward
and backward by unit fractions.
```

Decomposes fraction into sums using ike denominato (e.g., $\frac{3}{5}=\frac{2}{5}+\frac{1}{5}$ ).

```
 nderstands the meaning of an \(\frac{b}{b}\) of the unit fraction \(\frac{1}{b}\) (e.g., \(\frac{3}{5}=3 \times \frac{1}{5}\)).

\section*{Understands the fraction \(\frac{a}{b}\) as \(a \div b\).}

Explains that two equivalent fractions represent the same part of a whole but not necessarily equal quantities and \(\frac{1^{2}}{2}\) of a set of 6 are equal fractions, but unequal quantities).

\section*{ses models to compose and decompose fraction} e.g., uses area to model \(\frac{1}{2}=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}\)),
```

Continues to extend fraction understanding to multiple contexts (e.g., sharing, division

``` ratios).

BIG IDEA:
Quantities and numbers can be operated on to determine how many and how much.
ecognizes and generates equivalent numerical expressions using commutative and associative properties. addition/subtraction).

pplies order perations for whole numbers and explains he effect when order is not followed.

Determines whether one number is a multiple of any one-digit number Examines and classifies whole numbers based on their properties (e.g., even/odd; prime composite; divisible by \(2,5,10\)).

properties of prime and composite numbers (e.g., prime factorization). Extends exponent notation to any repeated multiplication (e.g., \(2 \times 2 \times 2 \times 2\) expressions using exponents e.g., \(3^{4}=3 \times 3 \times 3 \times 3\) \(=81\)).

Evaluates equations with brackets using order of operations. Models and applies distributive property understanding to whole number equations (e.g., \(75+55=\) \(5(15)+5(11)=\) \(5(15+11)\)
OR
\(75+55\)
\(=2(5=15(5)+11(5)\) \(=26(5)\)).

Determines the greatest common factor and least common multiple of whole numbers. Uses reasoning and knowledge of factors to examine divisibility of numbers (by 4, 8, 3,6 and 9).

\section*{PURPOSE:}

The actions, properties, and meaning of mathematical operations hold true for all real numbers, thereby extending our understanding of a broader range of problems.

Explains the result of applying order of operations and the distributive property to the same equation (e.g., \(3(4+2)\) can be visualized as the distributive property).

Applies order of operations to equations involving exponents to evaluate expressions.

Conceptual Thread:
developing conceptual meaning of operations

\section*{Conceptual Thread:}

\section*{DEVELOPING FLUENCY OF OPERATIONS}

\section*{luently recalls multiplication and division} facts to 100

Estimates the result of whole number operations using contextually relevant strategies (e.g., How many buses are needed to take the museum?).
solves whole number computation using efficient strategies (e.g., mental computation, algorithms, calculating cost of transactions and change owing, saving money to make a purchase).

\begin{abstract}
Models and develops meanings for division of whole numbers that
\end{abstract} result in fractions.

Understands and
explains the effect explains the effect
of multiplying and of multiplying and
dividing decimal dividing decimal umbers by powers i.e., 0.1, 0.

Explores multiplication as scaling and estimates the resulting product when scaling a given number by a number less than equal to, or greater
than 1 (e.g. \(\frac{1}{2} \times 12\); \(5.2 \times 12 ; 0.3 \times 12\)).

Models and symbolizes fraction addition and subtraction with like denominators (e.g., \(\frac{2}{5}+\frac{1}{5}\)) and where one denominator is a (e.g., \(\frac{2}{5}+\frac{3}{10}\)).

Models and
demonstrates an
understanding of
integer addition and
subtraction.
Models multiplication of a whole number by a fraction (e.g., \(3 \times \frac{2}{3}\))

Models and demonstrates an understanding of fraction addition and subtraction
Models and demonstrates an understanding of multiplying unit \(=\frac{1}{5 \times 3}=\frac{1}{15}\))., \(\frac{1}{5}\) \(=\frac{1}{5 \times 3}=\frac{1}{15}\).

\section*{Models and} demonstrates an understanding of integer multiplication and division.
Estimates and
explains the results of multiplying a whole number by fractions greater than and less than 1.

Models and
demonstrates an understanding of division of a whole number by a unit fraction (e.g., 5 m of
ribbon cut into
\(\frac{1}{1} \mathrm{~m}\) ribbon cut into \(\frac{1}{3}\) 15 strips or \(5 \div \frac{1}{3}=15\))

Models and
demonstrates an nderstanding of squares and square roots.

Models and demonstrates an understanding of multiplication and division of fractions.

Models and solves expressions with whole-number exponents, and positive and whole-number exponents,

BIG IDEA
Regularity and repetition form patterns that can be

Conceptual Thread:
REPRESENTING PATTERNS, RELATIONS, AND FUNCTIONS
\begin{tabular}{l|l}
Describes, generates, & \(\begin{array}{l}\text { Uses multiple approaches to model situations } \\
\text { involving repetition (i.e., repeating patterns) } \\
\text { extends, translates, } \\
\text { and corrects number } \\
\text { and shape patterns }\end{array}\) \\
\(\begin{array}{l}\text { and change (i.e., increasing/decreasing patterns) } \\
\text { (e.g., using objects, tables, graphs, symbols, loops }\end{array}\) \\
\hline
\end{tabular} and shape patterns hat follow a
predetermined rule.

Conceptual Thread:
xplains the rule for umeric patterns including the starting point and change (e.g., given: 16, 22, 28 \(34, \ldots\). Start at 16 and
add 6 each time).

Describes numeric and shape patterns using words and numbers.

Generates terms of pattern based on a given starting point and rule (limited to addition, subtraction multiplication: e.g., each time creates th pattern 4, 9, 14, 19, etc.; writing or alterin code to generate patterns).
nvestigates and generalizes linear numeric and shape patterns using recursive rules e.g., add 3 to the in relation to multiplication tables multiplication table 13 similar to 3, 6, 9, 12?).

Generates paired values (i.e., ordered pairs) for simple
near relations
(e.g., \(\mathrm{T}=5 \times p\) (2, 10); (3, 15); etc.).

Represents a numeric or shape pattern using a table of values by pairing the term valu with a term number model to represent simple number pattern
(e.g., \(2 n+3\) :

뚜 ...)

Represe mathematical ontext or problem with expressions nd equations using unknowns.

\section*{Visualizes graphica} representations o one-step equations (e.g., \(n+3=m ; 5 x=y\)).

Translates one-step and two-step equations a table of values and represents ordered pair graphically (e.g., plots grid or a double number line dynagraph). (Limited to the first quadrant.)

Generates ordered
pairs for a linear
relation and plots
the coordinates on
a graph. (Limited
to integer values
on four quadrants.
INDICATORS

Matches different representations of the same linear relation (e.g., graph, equation, table of values).

\section*{Differentiates} between linear and non-linear relations by their graphical representation.

> Describes the characteristics of linear relations (e.g., one or two variables; variable powers not greater than 11 plotting ordered pairs forms a line; constant rate of change).

\section*{Analyzes the}
relationship between values of two linea number patterns
(e.g., P 1 is \(2,4,6,8\), \(\ldots\)
and P2 is \(3,6,9,12\),.
(1) as P1 goes up
(2) P1 \(\times 1.5=\) P2
(2) P 1
(3)

Investigates whethe here is more than one value for variables in expressions and equations (e.g., \(=12\)). Investigates, an equations and graphs of linear relations to make generalization and predictions (e.g., How will the
graphs of \(y=3 x-\) and \(y=3 x-8\) be alike/ different?).

Models and solve problems with integers using linear equations in different forms (e.g., \(a x=b\) \(a x+b=c ; a(x+b)=c)\).

\section*{Uses the \\ characteristics of linear relations to distinguish between \\ Models and solves linear inequalities graphically and symbolically} proportional \((y=4 x)\) \((y=4 x+2)\) linear \((y=4 x+2)\) linear \((y=4 x+2)\) and non-linear \(\left(y=\frac{4}{x}+2\right)\) relations.

\section*{Models problems} and solves linear relations with rational coefficients, variables, nstants in different forms.

Models linear functions with the equation \(y=m x+b\) and relates the equation to
a graph.

Recognizes and generates contextual problems that can be modelled with a linear relation where there is one solution no solution.

BIG IDEA
Patterns and relations can be represented with

\section*{Conceptual Thread:}

UNDERSTANDING EQUALITY AND INEQUALITY, BUILDING ON GENERALIZED PROPERTIES OF NUMBERS AND OPERATIONS

Expresses a one-step mathematical problem \(s\) an equation using a symbol or letter to represent an unknown number (e.g., Sena had some tokens and used four. She has seven left: \(\square-4=7\)).

Uses arithmetic properties to investigate and transform one-step addition and multiplication equati \(5+a=9\) have the tructure and can be rearranged in similar ways to maintain equality: \(4+5=9\) and \(a+5=9\)).

Determines an unknown number in simple one-step equations using different strategies
\(13-\square=8\)).

Recognizes that an equal sign between wo expressions wit variables indicates hat the expression eg \(5 n-4=3 n\) \(3 r=2+s\)).

Uses arithmetic properties to investigate and transform one-step subtraction and division equations (e.g., \(12-5=7\) and \(12-b=7\) have the same structure and can be rearranged in similar ways to maintain equality: \(12-7=5\) and \(12-7=b\)).

Investigates and models the meaning of preservation of equality of single variable equations (e.g., \(3 x=12\))

Conceptual Thread:

Understands an unknown quantity (i.e., variable) may be represented by a symbol or letter (e.g., 12

Flexibly uses symbols and letters to represent unknown quantities in equations (e.g., knows that \(4+\square=7 ; 4+x=7\); and \(4+y=7\) all represen the same equation with \(\square, x\), and \(y\) representing the same value).
nterprets and
writes numeric expressions (e.g., twice the sum of 3 and 4 is

Interprets and writes algebraic expressions (e.g., \(2 n\) means two times a number subtracting a numb from 7 can be written as \(7-n\)).

Identifies and describes the meaning of parts of an equation using mathematical terms (e.g., sum coefficient, factor, variable, constant).

Investigates
the process of decomposing arithmetic equations and comparing them of operations used to solve algebraic equations
e.g., \(4 \times 5+6=26\) compared to solving \(4 x+6=26\)).

\section*{Applies arithmetic} properties to transform, simplify, and identify equivalent linear expressions \(4 x+5 x=9 x\)).

\section*{Models the}
preservation of equality to solve equations involving integer coefficients
(e.g., \(-4 m+16=-12\)

Applies the
distributive property oo expressions and identifies common factors to create equivalent expressions equivalent expre
(e.g., \(4 a+12=\) \(4(a+3)\)).

Applies arithmetic properties to linear expressions with rational coefficients to simplify, factor, expand, equate, and generate new and generate ne
expressions (e.g., \(14 x-5(x+8)=\) \(9 x-40\)).

Solves linear relati with rational coefficients, constants, and solutions (e.g., \(\frac{2}{3} m-2=-\frac{7}{6}\)).

A
p
in
properties to solve
nequalities (e.g., \(2 x>9\)) and determines which nequalities have finite or infinitely many solutions.

Applies arithmetic properties to operate on polynomial expressions and solve problems (e.g.
find area of rectangle (Limited to degrees of 2).

Evaluates algebraic expressions given the rationa values of one or more variables (e.g., \(3 x-3 y+\frac{3}{4}\), if \(x=\frac{1}{2}\) and \(y=\frac{2}{3}\)).

Extends understanding of algebraic
expressions to include writing and evaluatin expressions with polynomials of degre two (e.g., \(3 x^{2}-7\)).

Distinguishes between
polynomials
(e.g., \(3 x ; 4 x^{2}+3 x-5\))
and non-polynomials (e.g., \(\frac{2}{x+2} ; 3 y^{2}\)).

Evaluates algebraic
expressions, including
ormulas, given specific
alues for the variables
.g., evaluate \(3 r-12\),
when base is 12 cm
and height is 5 cm).

Writes expressions to describe patterns and contexts representing linear relations (e.g., 5, 8, 11, 14 can be represented as \(3 n+2\)).

Understands area as an attribute of
2-D shapes that can
be measured and
compared.
is additive (e.g., th area of an irregular shape can be solved by
\[
\begin{aligned}
& \text { orders the area of } \\
& \text { 2-D shapes through } \\
& \text { decomposition. }
\end{aligned}
\] decomposing it into rectangles and adding their areas)

Understands volume nd capacity as attributes of 3-D objects that can ee measured and compared.

Understands angle as an attribute that can be measured and compared.

Compares and orders the volume and capacity of 3-D objects through decomposition.
Understands angle is additive (e.g., \(90^{\circ}\) can be visualized as nine sectors that are \(10^{\circ}\) each).

Understands surface area as an attribute of 3-D objects that can be measured and compared.

\section*{BIG IDEA:}

Assigning a unit to a continuous attribute allows us to measure and make comparisons.

\section*{conceptual Thread:}

SELECTING AND USING UNITS TO ESTIMATE, MEASURE, CONSTRUCT, AND MAKE COMPARISONS
```

Develops
understanding of
understandits
(e.g., square unit,
(e.g., square unit,
square cm, square
to measure area
of 2-D shapes
Reads and records
Reads and record
time (i.e., digital
calendar dates.

```

Measures, constructs and estimates perimeter and area of regular and irregula polygons.
 appropriate unit to measure a given attribute of an object measured in square metres).

\section*{Develops}
understanding of unit cube and uses uni ubes to estimate of 3-D objects.

Measures, constructs, and estimates volum using standard cube units (e.g., cubic cube units (e.g.

Measures, constructs, and estimates angles using degrees.

Understands a sector as a fraction of a circle and an arc as a fraction of the circumference.

PURPOSERing with units is a way we can count and compare "how much" based on continuous attributes that are not immediately countable.

Constructs circles based on radius and diameter measures.

INDICATORS

> Measures, constructs, and compares interior angles of regular and irregular polygons.

Relates angle measures to arcs and sectors f a circle.

Applies Pythagorean Theorem to find unknown side lengths and distance between points on a Cartesian plane.

Assigning a unit to a continuous attribute allows us
Understands
elationship among
ifferent measures of
time (e.g., seconds,
minutes, hours, days, decades)

Understands and applies the multiplicative relationship among metric units of length, mass, and capacity.

Develops an generalizes strategies compute area and perimeter of rectangles.

Investigates the relationship between perimeter and area in rectangles.

Develops and eneralizes strategies to compute area f triangles
quadrilaterals, and other polygons
e.g., decomposing parallelogram and a rectangle).

Develops and generalizes strategies and formulas to compute volumes of right rectangular prisms

Uses nets to determine the surface area of 3objects composed of rectangles and triangles.
Investigates and
generalizes sum of interior angles of triangles (i.e., sum of angles of a triangle is \(180^{\circ}\)).
Investigates the
minimum information
needed (e.g., side
length, angle measure)
to yield a unique
triangle.

Investigates and generalizes sum of interior angles
of quadrilaterals (i.e., sum of angles f a quadrilateral is \(360^{\circ}\)).

\section*{Investigates the proportional effe of a scale factor \\ on side lengths, \\ perimeter, and area \\ Develops and generalizes strategies to compute the circumference and area of circles.}
of similar (i.e., scalar)
2-D shapes.

\section*{Develops and generalizes strategies o construct, compute and apply the Pythagorean Theorem.}

\section*{Develops and} generalizes strategies and formulas to compute volume and surface area
of regular solids of regular solids (e.g., cones, cylinders,

Investigates and generalizes the sum of interior angles of polygons (e.g., subdivide a hexagon into triangles).

\section*{Determines volume and surface area of} composite 3-D objects.

Uses circle propertie to generalize and solve problems (e.g., central angle, inscribed angle, triangle applications, chord bisector).

Identifies and draws points, lines (including ertical, horizontal) line segments, and rays.
 parallel, intersecting, and perpendicular lines. Distinguishes between attributes of a specific shape, and properties of a class of shapes (e.g., this shape has 4 sides; al quadrilaterals have 4 sides).

Sorts, describes,
constructs, and classifies polygons based on side
parallel, perpendicular, regular/irregular).
regular/irregular)
Uses conditional tatements to describ sorting rules (e.g., are equal, then it is a regular polygon).

Understands angle as a geometric figur rays or line segmen sharing a common endpoint.

Sorts, describes, constructs, and classifies 3-D objects based on edges faces, vertices, and angles (e.g., prisms pyramids
Draws, compares, and classifies angles obtuse, straight, reflex).

Sorts, describes, and classifies 2-D shapes based on their geometric properties (e.g., side lengths, angles, diagonals).

Classifies 2-D shapes within a hierarchy based on their properties (e.g., rectangles are a subset of parallelograms).

Conceptual Thread:
INVESTIGATING 2-D SHAPES, 3-D SOLIDS, AND THEIR ATTRIBUTES THROUGH COMPOSITION AND DECOMPOSITION

Identifies types of lines in 2-D images (e.g., parallel, intersecting perpendicular).

Investigates 2-D shapes that do or do not have parallel and perpendicular lines.

Identifies and constructs nets for 3-D objects made from triangles and rectangles. with known areas (e.g., triangles, rectangles).

Visualizes 3-D objects from 2-D nets, including the spatial location and orientation of their face (e.g., given cube net with sides numbered 1-6 knows orientation and when net is folded).
Performs geometric constructions to
gain insight into gain insight into properties of lines, angles, and polygon (e.g., construct
bisectors, \(45^{\circ}\) angles, bisectors, \(45^{\circ}\) an equilateral triangle)

Sketches polygons based on given conditions (e.g., ngle measures side measures) and eneralizes whether there is a unique shape.

Identifies, describes, and constructs circle based on attributes (e.g., radius, diameter, (e.g.,., radius, dia
circumference).

Develops and applies understanding of angle relationships of intersecting lines, transversals, and problems.

Extends understanding of circle attributes to include arcs, sectors, chords, tangents, etc.

Uses interior angle properties of polygons to solve problems and determine similarity.

Identifies and constructs nets for 3-D objects made from polygons and circles (e.g., cylinder, hexagonal prism)

Visualizes and predicts the 2-D shape that results from cross-sectioning 3-D objects (e.g., see and identify a plane section of right rectangular prisms and pyramids).

Geometry
2-D shapes and 3-D solids can be transformed in many ways and analyzed for change.

Conceptual Thread:
EXPLORING 2-D SHAPES AND 3-D SOLIDS BY APPLYING AND VISUALIZING TRANSFORMATIONS

\title{
understanding of congruency (i.e., same side length
} and angles).

Identifies, describes, and performs single transformations (i.e., translation, reflection, rotation) on 2-D shapes.

Identifies, describes, applies, and creates a combination of successive transformations on 2-D shapes.

Conceptual Thread:
EXPLORING SYMMETRY TO ANALYZE 2-D SHAPES AND 3-D SOLIDS
 oblique) in 2-D shapes and designs.

Sorts, describes, constructs, and classifies 2-D shapes based on line symmetry.

Explores and classifies quadrilaterals based on lines of symmetry.
xplores and classifie ines of symmetry

Draws, creates, and identifies shapes that have rotational symmetry, and identifies the centre of rotation and angle of rotation.

BIG IDEA:
Objects can be located in space and viewed from multiple perspectives.

Conceptual Thread:

\section*{LOCATING AND MAPPING OBJECTS IN SPACE}

Extends understanding of locating, describing, and relating the on arids and maps.

Uses cardinal directions (e.g., north, south) to describe movement on maps and in the world.

Develops understanding of a artesian plane as using perpendicular axes.

Plots and locates points on a Cartesian plane, and relates the location to the two axes. (Limited to the first quadrant.)

Investigates dilation as a form of transformation and creates scale drawings using scale factors.

Understands similarity as a form of transformation (i.e., dilation) that maintains angle congruence and proportional side length.

Analyzes and explains the properties of shapes (e.g., angles, symmetry, congruency) and transformations that transformations are necessary to the (e.g., writing code for tiling a plane using one or more subprograms).
ses properties of shapes and transformations to design tessellations.

\section*{PURPOSE:}

Representing space and spatial relations from different reference points is necessary for navigation and describing how objects move through space.

Analyzes and locates points, lines, and shapes on a Cartesian plane after successive transformations.

Extends understanding of congruency and similarity through investigations of shape transformations on a Cartesian plane.

Analyzes and predicts the location of 2-D shapes under transformation on a Cartesian plane.

VIEWING AND REPRESENTING OBJECTS FROM MULTIPLE PERSPECTIVES

Interprets and creates coded plans, and constructs objects from plans (e.g., uses linking cubes to build 3-D object from plan).

\section*{\begin{tabular}{|l|l|}
\hline 3 & \\
\hline 2 & 1 \\
\hline
\end{tabular}}
coded Plan 3-D Object
onstructs 3-D models rom isometric
ketches.

Makes isometri sketches of 3-D rectilinear structure (e.g., linking cube structures).

Investigates, predicts, and draws orthographic
projections of 3-D
objects (e.g., If you shine a light onto the front of a linking cube structure, what will the shadow look like?)

BIG IDEA:
Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness.

Conceptual Thread:
FORMULATING QUESTIONS TO LEARN ABOUT GROUPS, COLLECTIONS, AND EVENTS BY COLLECTING RELEVANT DATA

Extends experiences of formulating, clarifying, and refining question
about the class and
community (e.g., What
schoolyard?).
formulates questions to understand past (statistical) events and predict future (probable) events.
ormulates questions to make comparisons between two groups or events.

Distinguishes between numerical (e.g., What is your heart rate?) and statistical questions involving variability (e.g., What is the typical resting heart rate for 12-year-olds?)

Conceptual Thread:

\section*{COLLECTING DATA AND ORGANIZING IT INTO CATEGORIES}

Distinguishes between categorical (e.g., pe
tyd discrete (e.g.,
class size, free throws made) data.
\begin{tabular}{l|l}
Constructs data organizers to support data & Records the results \\
\hline
\end{tabular} collection (e.g., creates tally chart or line plot on a grid to collect survey data).

\section*{Records the results} of multiple trial
simple events.

Differentiates between primary (i.e., first-nand) and secondary data sources.

\section*{Distinguishes between discrete (e.g., votes) and continuous (e.g., height) data.}

Selects and justifies an appropriate method of data collection (e.g., experiment, (e.g., experiment,
observation, survey) based on question posed.

Uses a simulato to collect data and explore convergence of experimental and theoretical probability (i.e., Law of Large Numbers).

\section*{Conceptual Thread:}

\section*{CREATING GRAPHICAL DISPLAYS OF COLLECTED DATA}

Creates charts
and graphs with labels to represent data collected (e.g., bar graph, line plot, pictograph, stem-and-leaf plot).

Represents data graphically using many-to-on correspondence with appropriate scales and intervals (e.g., each symbol on pictograph represents 10 people)
hooses and justifie appropriate visual appropriate visua for displaying discrete (e.g., bar graph) and continuous (e.g. ine graph) data.

Visually represents two or more data sets (e.g., double bar chart, stacked bar graph multi-line graph, multi-column table).

Chooses and justifies Chooses and justifies appropriate visual displaying different data types (i.e., nominal, ordinal, discrete, continuous) distribution (i.e., shape), and range (i.e., spread).

Compares the perceived differences of using different graphical representations and scales for a data set.

\section*{Uses conjectures and inferences of a completed} study to formulate new questions.

Formulates questions about a population that require data collection from representative samples.

Generates questions seeking a potential relationship between two variables or attributes (e.g., Do test scores?).
nvestigates questions in society involving statistics (e.g., population growth) and probability (e.g., insurance options, weather).

Understands variation in data collection and explains the potential
sources of variation
in collected data
(e.g., natural variatio
(e.g., natural vari
of plant height;
measurement process variation).
esigns a simulation to generate large-scal data (i.e., greater than 100) for two or mor independent events (e.g., rolling number cubes)

Explores methods for collecting data (e.g., census) and a representative sample of a population.

Critiques methods for selecting representativ samples from a population (e.g., bias, ethics, cost, privacy).

Generates bivariate data (i.e., two variables such as foot size and height) to explore relationships.

Visually represent
Visually represent
bivariate data to beveal relationship (e.g., scatter plots; line of best fit; two-way tables).
```

Creates graphical
representations to
illustrate parts of
a whole (e.g., circle

```
 graph).

Visually represents large-scale data (e.g., histograms, box plots).

Informally fits straight lines on a scatter plot to model and assess linear relationships between two variables. and Probability minimum, difference) and relates values to the variability of data collected.

Visualizes and determines the median value as a middle measure representing a whol data set.

Compares the similarities and differences in distribution (i.e., shape) of data sets same data display.

Visualizes and determines the mean of a data set.

Understands that measures of central tendency (i.e., mode, median, mean) are summary measures that represent all values in a data set
with a single number with a single number
(i.e., most frequent value; middle value; balance point of values).

\section*{Understands and} describes the differences between the central tendency values (i.e., mode, median, mean measure is most appropriate for the data collected.

Conceptual Thread:
escribes data using frequency counts e.g., 5 people chose peppermint) and modal value (e.g., dogs re the most common pet).

Locates the likelihood of outcomes on a vocabulary-based probability continuum (e.g., impossible, unlikely, likely, certain).
 an experiment (e.g., flipping a cup, drawing coloured cube from
a bag).
\[
\begin{aligned}
& \text { Investigates and } \\
& \text { calculates the } \\
& \text { experimental } \\
& \text { probability (i.e., } \\
& \text { relative frequency) } \\
& \text { of simple events } \\
& \text { (e.g., } 3 \text { heads in } 5 \text { co } \\
& \text { tosses is } \frac{3}{5} \text {). }
\end{aligned}
\]
the differences in the relative frequencies of a given outcome in a repeated experiment (e.g., number of head repeated three ti
etermines theoretical probability as a ratio (i.e., number of outcomes for a given vent to total number ef possible outcomes).

Uses theoretical probability to predic the outcome of an experiment or game.

Extends understanding of the probability continuum by expressing and
comparing probabilities using decimals (between 0 and 1), ratios, fractions, and percents.

\begin{abstract}
Explains the effect of adding, removing, or changing values (including outliers) on measures of central tendency.
\end{abstract}

Compares two or more data sets based on variability (e.g., range, interquartile range) and numerical summary values (e.g., mean, median).

Uses variability and central tendency measures to make comparisons of populations (e.g., representative representative population (e.g., polls)
ritiques the ways in which data is presented graphs and tables (e.g., misleading graphs; changing scale).
```

Explores possible
relationships (e.g.,
positive, negative,
linear, non-linear)
between two variables
(e.g., temperature

```

Uses properties of linear model (e.g., slope, intercepts) to analyze the relationshi of bivariate data.

\section*{Determines the}
relative frequency of
each outcome in an
experiment involving
two independent
events by performing multiple trials.

Determines and represents theoretical probability foutcomes for two independent events (e.g., rolling a die and tossing a coin) using graphica tools (e.g., tree diagram, lists, matrix).

Generalizes the multiplication rule of probability for independent events (e.g.,. probability of tossing two head is \(\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}\)),

\section*{stimates values} between and beyon data displayed.

Connects random sampling to probability and variability in data sets.

Formulating questions, collecting data, and consolidating data in visual and graphical displays help us understand, predict, and interpret situations that involve uncertainty, variability, and randomness.

Conceptual Thread:
DRAWING CONCLUSIONS BY MAKING INFERENCES AND JUSTIFYING DECISIONS BASED ON DATA COLLECTED

Draws conclusions based on data presented.

Uses inferences to make predictions about future event (e.g., Would the pictograph of shoe every day?).

Interprets the result of data presented graphically from primary (e.g., class survey) and secondary e.g., online new report) sources.

Interprets results and makes inferences about the similarities and differences of past and future events based on data collected.

Compares short- and long-run experimental probabilities of events to their heoretical expectations, and explains the differences.

Investigates how different representations of data may influence interpretations and conclusions drawn.

Makes comparative inferences about two populations based on representative samples.

Identifies and describes trends in data presented over time, and predicts future results.
interprets and critiques presented results of an investigation based on potential bias, ethical mplications, and cultural context.```

