Australian

Alan McSeveny
Alan Parker

Diane McSeveny-Foster
Rachel McSeveny

Erika Johnson

What is Australian Signpost Maths?

Australian Signpost Maths is a mathematics activity book series for students from Foundation to Year 6. The series has been written to meet the requirements of the Australian Curriculum.
The components of the series include Student Books, Teacher's Books, Mentals Books and an interactive

Website. Teachers can select an appropriate program for every student from the rich and varied material provided. The content has been carefully sequenced within each year level and across the series to take into account students' likely mathematical development.

Student Books

Teacher's Books

Mentals Books

Website

Structure of Australian Signpost Maths

Australian Signpost Maths emphasises the curriculum's syllabus content as well as problem-solving strategies, language development and the use of technology.
To maximise the benefits of the program, the Student Book, Teacher's Book, Mentals Book and Website should be used together.
The sequence of units in the Student Book forms a suggested program for the year. The Teacher's Book also provides lesson plans for each page of the Student Book, and blackline masters to assist teachers in implementing the program.
The Student Book presents lessons as a mix of content strands. However, the Contents and Contents Crossreference pages in the Student Book allow teachers to construct programs based on the specific content strands
(Number and Algebra, Measurement and Geometry, and Statistics and Probability). Progress Tests and remediation records are located in the Teacher's Book and on the website. These tests are also now included in the back of this book.
The Mentals Book mixes examples from all content strands, reviewing the content of previous units of the Student Book.
The innovative Website help teachers to bring mathematics alive with technology. The website provides interactive maths tools, games and practice opportunities as well as relevant resource masters and worksheets for all year levels. These can be used for whole-class, small-group and individual learning. The website also includes Concept Check-In, a new diagnostic screener.

Special Features of Australian Signpost Maths

- Traffic Light system allows students to reflect on their work and highlight any units that they are having trouble
 understanding. They tick the red for units they feel they still don't understand, and green for those they feel they understand fully.
- Exercises are well graded. Work is reinforced in the Mentals Book.
- The Progress Tests (now also in the back of this book) allow the teacher to discover each student's strengths and weaknesses, and the cross-references direct students to the pages where that work is introduced.
- Answers are supplied in the Teacher's Book.
- The Dictionary at the beginning of this Student Book will help students to learn the language of mathematics.
- ID Cards (in the Mentals Book, Teacher's Book and Website) review the language of mathematics by asking students to identify common terms, shapes and symbols.
- Important rules and concepts are clearly highlighted.
- Worked examples and explanations are given throughout the Student Book where new ideas are introduced.
- The use of colour makes emphasis clear and is highly motivating.
- Cartoons give instruction and friendly advice.
- Interactive Activities are provided on the website for whole-class, small-group and individual learning.

Australian Signpost Icons

Signpost icons are used throughout the book as cues to the essential nature of exercises and activities, and as a guide to ways of engaging with them. These icons often indicate alternative or more concrete approaches to dealing with concepts.

The proficiency strands of the Australian Curriculum describe how content is explored or developed - that is, the 'thinking and doing' of mathematics.

Understanding
 Learning the concepts

Students build a robust knowledge of adaptable and transferable mathematical concepts. They make connections between related concepts and progressively apply the familiar to develop new ideas. They develop an understanding of the relationship between the 'why' and the 'how' of mathematics. *

Conceptual understanding of maths ideas includes the explanation of a concept using text and diagrams. This occurs throughout Australian Signpost Maths at the top of many pages and is indicated by the Concept icon.

Fluency

Using the concepts

Students develop skills in choosing appropriate procedures, carrying out procedures flexibly, accurately, efficiently and appropriately, and recalling factual knowledge and concepts readily.*
The practice of maths skills to build fluency occurs on every page of Australian Signpost Maths.

[^0]
Problem Solving

Applying concepts and strategies to develop solutions to problems
Students develop the ability to make choices, interpret, formulate, model and investigate problem situations, and communicate solutions effectively.*

Problem solving provides opportunities for students to use strategies and skills such as investigating and questioning, to collaborate with others and to communicate their findings to different audiences. Such activities are often indicated throughout Australian Signpost Maths by the Activity and Investigation icons.

Reasoning

Coherent and logical thought
Students develop an increasingly sophisticated capacity for logical thought and actions, such as analysing, proving, evaluating, explaining, inferring, justifying and generalising. *
Students require opportunities to explain their mathematical thinking and can do so through both diagrams and written explanations. Reasoning questions are located throughout Australian Signpost Maths.
2
Contents Cross-reference ix
Dictionary xiii
Diagnostics Tests. 148Contents and Syllabus Overview

KEY

Page	Unit	Title
1		Thinking Skills
2	1A	Addition Combinations to 10
3	1B	Subtraction to 10
4	1C	One Half
5	1D	Parallel Lines
6	2A	Ordinal Numbers
7	2B	Position Words
8	2C	Revision of Time
9	2D	Ordering Capacities
10	3A	Counting Patterns
11	3B	Counting
12	3C	One Quarter
13	3D	Describing 3D Objects
14	4A	Addition to 20
15	4B	Addition to 20
16	4C	Comparing Masses
17	4D	Balance Scales
18	5A	Modelling Numbers
19	5B	Doubling and Near Doubling 20 5C 2 2D Shapes
21	5D	Informal Units of Length
22	6A	Groups and Rows
23	6B	Groups and Rows
24	6C	Analogue Time
25	6D	Analogue Time
26	7A	Sharing
27	7B	Sharing
28	7C	Graphing the Weather
29	7D	Thinking About Graphs
30	8A	Subtraction to 20
31	8B	Addition to 20
32	8C	Half of a Group
33	8D	Quarter of a Group

Page	Unit	Title	$\dot{\sigma}$	$\frac{\varepsilon}{2}$	$\sum_{\Sigma}^{\mathscr{0}}$	$\begin{aligned} & \stackrel{7}{0} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\frac{5}{2}$	$\begin{aligned} & \text { U } \\ & \text { L } \end{aligned}$	$\sum \sum$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { N } \end{aligned}$	$\stackrel{\sqrt{n}}{s}$	$\frac{\pi}{\pi}$	O	$\frac{\pi}{U}$		0
34	9A	Numbers to 150						\bigcirc									Term 2
35	9B	Numbers to 1000						\bigcirc									
36	9C	Features of 2D Shapes											\bigcirc				
37	9D	Looking at 3D Objects											\bigcirc				
38	10A	Problem Solving						\bigcirc									
39	10B	Multiplication Sign						\bigcirc									
40	10C	Chance													\bigcirc		
41	10D	Area										\bigcirc					
42	11A	Subtraction to 20						\bigcirc									
43	11B	Number Lines						\bigcirc									
44	11C	Number Lines						\bigcirc									
45	11D	Cones and Cylinders											\bigcirc				
46	12A	Fair Shares						\bigcirc									
47	12B	Division						\bigcirc									
48	12C	Halves and Quarters								-							
49	12D	Halves and Quarters															
50	13A	Linking Addition and Subtraction															
51	13B	Linking Addition and Subtraction															
52	13C	Left and Right												\bigcirc		\bigcirc	
53	13D	The Trapezium and Kite											\bigcirc				
54	14A	Sharing						\bigcirc									
55	14B	Using Groups						\bigcirc									
56	14C	Digital Time										\bigcirc					
57	14D	Lists, Graphs and Tables														\bigcirc	
58	15A	Numbers to 1000						\bigcirc									
59	15B	Numbers to 1000						\bigcirc									T2*
60	15C	Reading Graphs														\bigcirc	
61	15D	Using Graphs														\bigcirc	
62	16A	Ordering Numbers						\bigcirc			\bigcirc						
63	16B	Addition by Looking for Tens						\bigcirc									
64	16C	Fraction of a Whole							\bigcirc								
65	16D	Fraction of a Group							\bigcirc								
66	17A	Adding 10s						\bigcirc			\bigcirc						
67	17B	Adding and Subtracting 10s						-									
68	17C	Analogue Time										\bigcirc					
69	17D	Months of the Year										\bigcirc					
70	18A	How Many More?						\bigcirc									
71	18B	Flipping a Shape												\bigcirc			
72	18C	Chance													0		
73	18D	Sliding a Shape												-			

Page	Unit	Title	あ	$\frac{5}{5}$	$\stackrel{\mathbb{D}}{\sum}$	$\frac{7}{i n}$	ら	$\frac{气}{2}$	进	$\sum \stackrel{0}{\mathrm{E}}$	菏	$\stackrel{\sqrt[5]{3}}{5}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\pi}{n} \end{aligned}$	O	U		co
115	29B	Jump Strategy （Subtraction）						－									
116	29C	Dice，Cards and Spinners													\bigcirc		
117	29D	Following Instructions												\bigcirc			
118	30A	The Division Sign						\bigcirc									Term 4
119	30B	Division as Repeated Subtraction						\bigcirc									
120	30C	Comparing Areas										\bigcirc					
121	30D	Gathering Data														－	
122	31A	Multiplication						\bigcirc									
123	31B	Division as Repeated Subtraction						\bigcirc									
124	31C	Turning a Shape												\bigcirc			
125	31D	Turning Shapes												\bigcirc			
126	32A	Subtraction Using Blocks						\bigcirc									
127	32B	Addition Using Blocks															
128	32C	Quarters and Eighths															
129	32D	Naming Fractions															
130	33A	Choosing a Strategy															T4＊
131	33B	Choosing a Strategy						\bigcirc									
132	33C	Faces，Edges and Corners											\bigcirc				
133	33D	Comparing Volume				，						－					
134	34A	Problem Solving						\bigcirc									
135	34B	Counting Coins								\bigcirc							
136	34C	Informal Units of Length										\bigcirc					
137	34D	Comparing Objects										\bigcirc					
138	35A	Using a Calculator						\bigcirc									
139	35B	The Calculator						\bigcirc			－						
140	35C	Flip，Slide and Turn												\bigcirc			
141		Appendix 1： Australian Money															
142		Appendix 2： Money															

＊Suggested placement for Progress Tests 1 to 4 （see the Teacher＇s Book）．It is assumed that there are 10 weeks in each term．

1	Counting	Pages	Australian Curriculum Reference
	Counting to and from any starting point	10, 11, 18, 59	Investigate number sequences, initially those increasing and decreasing by twos, threes, fives and tens from any starting point, then moving to other sequences (ACMNA026); Group, partition and rearrange collections up to 1000 in hundreds, tens and ones to facilitate more efficient counting (ACMNA028)
	Number sequences of twos, threes, fives and tens	10, 11, 18, 75, 79, 94, 139	Investigate number sequences, initially those increasing and decreasing by twos, threes, fives and tens from any starting point, then moving to other sequences (ACMNA026)
	Using a calculator	$\begin{aligned} & 10,11,102,103,126,127, \\ & 130,138,139 \end{aligned}$	Investigate number sequences, initially those increasing and decreasing by twos, threes, fives and tens from any starting point, then moving to other sequences (ACMNA026)
	Ordinal numbers	6,112,113	Recognise, model, represent and order numbers to at least 1000 (ACMNA027)
2	Numeration		
	Numbers to 1000	$10,17,18,34,35,58,59,74$	Investigate number sequences, initially those increasing and decreasing by twos, threes, fives and tens from any starting point, then moving to other sequences (ACMNA026); Recognise, model, represent and order numbers to at least 1000 (ACMNA027); Group, partition and rearrange collections up to 1000 in hundreds, tens and ones to facilitate more efficient counting (ACMNA028)
3	Place value		
	Grouping in tens and in hundreds	$34,35,58,59,74$	Recognise, model, represent and order numbers to at least 1000 (ACMNA027); Group, partition and rearrange collections up to 1000 in hundreds, tens and ones to facilitate more efficient counting (ACMNA028)
	Partitioning and regrouping numbers	58, 59, 74	Recognise, model, represent and order numbers to at least 1000 (ACMNA027); Group, partition and rearrange collections up to 1000 in hundreds, tens and ones to facilitate more efficient counting (ACMNA028)
4	Addition and subtraction		
	Addition problems	$2,14,15,19,31,43,50,51$, $63,66,67,70,86,87,102$, $114,127,130,131$	Explore the connection between addition and subtraction (ACMNA029); Solve simple addition and subtraction problems using a range of efficient mental and written strategies (ACMNA030); Describe patterns with numbers and identify missing elements (ACMNA035)
	Subtraction problems	$\begin{aligned} & 3,30,42,43,44,50,51,66, \\ & 103,115,126,130,131 \end{aligned}$	Explore the connection between addition and subtraction (ACMNA029); Solve simple addition and subtraction problems using a range of efficient mental and written strategies (ACMNA030)

(1) Look at these blocks.
a Which have the same shape as E?
b Which have the same shape as K?
c Which has the same shape as I?
d Which have the same shape as G?
e Which has the same shape and size as B?
f Which has the same shape and size as A?
g Which has the same shape and size as G ?
h Which have the same shape as P?
i Which have the same shape as Q? \square
j Which have four corners?
(2) What is the name of:
a shape A? \square b shape B ?
c shape C? \square d shape F?
e shape N ? \square f shape L?

MEASUREMENT \& GEOMETRY
 9D Looking at 3D Objects

One curved surface, no edges

A sphere can roll but not slide.
(1) Write some examples of spheres.

2 Choose words from the list that describe each object.

rounded
smooth

\square

10A) Problem Solving

Each bag has 5 apples.

(

To find how many apples are in 4 bags, we count the 5 apples four times.

(1) Use the picture above to find how many apples are in:
a 2 bags \square b 3 bags \square (c) 4 bags
\square
(2)

In each packet there are 6 pens.
How many pens are in:
a 2 packets?
b 3 packets?
\square
(3)

In each pod there are 4 peas.

How many peas are in:
a 2 pods?
\square
b 3 pods?
c 4 pods?
d 5 pods?

4)

In each can there are 3 tennis balls.

How many balls are in:
a 2 cans? \square b 3 cans?
d 5 cans?
\square

(1) Complete:

(2) Use counters to make groups to answer these questions.

a $4 \times 2=\square$	b $3 \times 5=\square$
d $5 \times 4=\square$	c $2 \times 4=\square$
e $4 \times 4=\square$	f $5 \times 5=\square$

Complete the graph and table, then tell the story.
(1) Children at the party. Graph:

At the Party	Girl, Boy, Boy, Girl	
	Boys	
	Girls	
Boys	Girls	

Tell the story.
\qquad

Numbers of Buttons		
1		
2		
3		
4		
5		

1	2	3	4	5
button	buttons	buttons	buttons	buttons

Tell the story.
\square
$32+45$
Add the tens, add the ones.
$=(30+40)+(2+5)$
$=77$
(1) Use the split strategy to find the answers.
a $23+15$
$=(20+10)+(3+5)$
$=\square$

$$
\text { b } \begin{aligned}
& 32+47 \\
& =(30+40)+(2+7) \\
& =\square
\end{aligned}
$$

c $16+71$
$=(10+70)+(6+1)$
$=$
e $81+15$

d $52+24$

$$
\begin{aligned}
& =\square+\square \\
& =\square
\end{aligned}
$$

$45+54$

$$
=\square+\square
$$

$$
=\square
$$

(2) Use the split strategy or place-value blocks to answer these.
a $14+14=\square$
(b $24+24=\square$
c $32+17=\square$
d $33+21=$
e $18+51=$ \square f $35+40=$
h $35+11=$ \square i $22+66=$

(3) Try to do these in your head.

a $32+64=$	b $33+44=$
c $70+27=$	d $52+30=$
e $17+22=$	f $31+17=$
g $25+71=$	h $24+81=$
i $43+51=$	j $66+43=$
k $82+26=$	\| $35+24=$

Use a calculator to check your work.

26B Split Strategy (Subtraction)

86-35
subtract tens
$=(80-30)+(6-5)$
$=51$

(1) Use the split strategy to find the answers.
a 96-23
$=(90-20)+(6-3)$
$=\square$
b 54-24
c $56-35$
$=(50-20)+(4-4)$
$=\square$
$=(50-30)+(6-5)$

d 67-35
e 77-62
f $89-58$

$=\square+\square$

$=$
$=\square$
g 75-45
$=\square+\square+\square=\square$
$=\square=\square$
h 87-81
i 68-8

$=\square$

CONCEPT
(2) Use the split strategy or place-value blocks to answer these.
a $58-16=$
b $34-21=\square$
c $79-23=\square$
f $75-64=\square$
(3) Try to do these in your head.
a $46-16=\square$
c $73-21=\square$
e $97-26=\square$
d $66-32=\square$

Use a calculator to check your work.

26C) Seasons

Summer	Autumn	Winter	Spring
December	March	June	September
January	April	July	October
February	May	August	November

(1) a The season after winter is
b The season before autumn is
c The first month of spring is
d The first month of summer is

(2) Would you use minutes, hours, days or months to measure:
a the time to boil an egg?
b the time to build a house?
c the time to sleep at night?

In Australia, we use the same four seasons as the northern hemisphere.
Some Indigenous people in Arnhem Land, Northern Territory, use six major seasons: Dhuludur, Barramirri, Mayaltha, Midawarr, Dharratharramirri and Rarrandharr. Use the internet to investigate these six seasons.

There are four seasons in one year.

(1) Write the months in their correct order.

(2) Colour your answers from Question 1 so that: a the summer months are yellow.
b the autumn months are brown.
c the winter months are blue.
d the spring months are green.

(1) Trace or draw the coins you could use to buy each object.
a

$25 c$
c

55c
e

g

[^0]: *The Australian Curriculum: Mathematics, v1.2 - Content structure

