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Supporting the integrating of technology
Students are supported with the integration of technology 
in a number of ways. The eBook includes ‘How to’ user 
guides covering all basic functionality for the following 
three graphing calculators:

• TI-84 Plus CE 

• TI-Nspire CX (non CAS) 

• CASIO fx-CG50AU

Throughout the student book are Technology worked 
examples strategically placed within the theory for both 
the TI-Nspire CX (non CAS) and CASIO fx-CG50AU.  

The examples clearly demonstrate how the technology 
can be used effectively and efficiently for the content 
being covered in that chapter. 

Graphing calculators are not the only technology 
integrated throughout the Pearson Queensland senior 
mathematics series. Spreadsheets, Desmos and 
interactive widgets have been included to provide 
students with the opportunity to visualise concepts, 
consolidate their understanding and make mathematical 
connections.  
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Pearson Reader+
Pearson Reader+ is our next generation eBook. This is an electronic textbook that students 
can access on any device, online or offline, and is linked to features, interactives and visual 
media that will help consolidate their understanding of concepts and ideas, as well as other 
useful content developed specifically for senior mathematics. It supports students with 
appropriate online resources and tools for every section of the student book, providing 
access to exemplar worked solutions that demonstrate high levels of mathematical and 
everyday communication. Students will have the opportunity to learn independently 
through the Explore further tasks and Making connections interactive widgets, which have 
been designed to engage and support conceptual understanding. Additionally, teachers 
have access to syllabus maps, a teaching program, sample exams, problem-solving and 
modelling tasks, and additional banks of questions for extra revision.

Exam preparation workbook
Additional component for Year 12 only
The exam preparation workbook provides additional support 
in preparing students for the external exam. It has been 
constructed to guide the students through a sequence of 
preparatory steps and build confidence leading up to the 
external exam.

Mathematical Methods 12 
eBook

Mathematical Methods 12

Exam preparation workbook

PEARSON 

MATHEMATICAL 
METHODS
QUEENSLAND
EXAM PREPARATION WORKBOOK 

UNITS 3 & 4

Student book
The student book has been written by local authors, ensuring quality content 
and complete curriculum coverage for Queensland, enabling students to prepare 
with ease and confidence. We have covered the breadth of the content within 
our exercise questions, from simpler skills-focused questions to those using 
unfamiliar contexts and application of the theory learnt. The theory, worked 
examples and question sets are written in line with the assessment objectives, 
with the aim of familiarising students with QCE cognitive verbs in the process of 
dependent and guided instruction. Additional interactives that help explain the 
theory and consolidate concepts have been included throughout all chapters.
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287Chapter 5 Definite integrals

5.4

Area between two curves 
Watch the video demonstrating how 
to determine the area between two 
curves, then complete the activity.

Additional information

  

Area between curves
Explore the relationship between the areas 
of curves bound by the x-axis and the areas 
of curves bound by other curves.

Making connections

If f (x) and  g(x) represent two functions, where f (x) ≥ g (x) for all x in the interval [a, b], the area enclosed 
by f (x) and  g(x) between x = a and x = b is given by:

∫ ( )( ) ( )−f x g x dx
a

b
 or ∫ ∫( ) ( )−f x dx g x dx

a

b

a

b

Area enclosed by two curves

Determine the area enclosed by the graphs of f (x) = x(3 − x) and g (x) = 2x.

THINKING WORKING 

1 Solve f (x) = g (x) to determine the x-values  
of the points of intersection.

3 2
3 2

0
1 0

0 or 1

2

2

( )

( )

− =
− =
− =
− =

= =

x x x
x x x
x x

x x
x x

The x-values of the points of intersection are  
at x = 0 and x = 1.

2 Sketch the graphs and identify the 
required region.

0 1

y

f(x) = x(3 – x)

g(x) = 2x

x

3 Express the integral in the form: 

∫ ( )( ) ( )−f x g x dx
a

b
, where f (x) is the upper 

function, and simplify the integrand.

Area 3 2

3 2

3 2

0

1

0

1

0

1

2
0

1

2
0

1

∫ ∫
∫
∫
∫

( )
( )

( )
( )

( ) ( )

( )

= − −

= − −

= − −

= −

x x dx x dx

x x x dx

x x x dx

x x dx

13
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How to use this book

Pearson Mathematical Methods 12 Queensland Units 3 & 4
This Queensland senior mathematics 
series has been written by a team of 
experienced Queensland teachers for the 
QCE 2019 syllabus. It offers complete 
curriculum coverage, rich content and 
comprehensive teachers support.

Every worked example and question is graded
Every example and question is graded using the three 
levels of difficulty, as specified in the QCE syllabus: 
• simple familiar (1 bar) 
• complex familiar (2 bars) 
• complex unfamiliar (3 bars) 
The visibility of this grading helps ensure all levels of 
difficulty are well covered.

Meeting the needs of the QCE 
Syllabus
The authors have integrated 
both the cognitive verbs and 
the language of the syllabus 
objectives throughout the worked 
examples and questions.

Explore further
This eBook feature provides 
an opportunity for students to 
consolidate their understanding 
of concepts and ideas with the aid 
of technology, and answer a small 
number of questions to deepen 
their understanding and broaden 
their skills base. These activities 
should take approximately  
5–15 minutes to complete.

Key information 
Key information and rules are 
highlighted throughout the 
chapter.

Additional information
These interactives appear in the 
eBook in two forms, as videos 
explaining specific concepts or 
as interactive questions to check 
students’ understanding. 
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143Chapter 3 Logarithmic functions and their derivatives 

3.1

Logarithmic functions and their properties

 1 Simplify each of the following expressions. 
(a) log 14 ( )  (b) 2 log 14 ( ) (c) log 1010 ( )  (d) 3 log 44 ( )

 2 Which expression is equal to x xlog log 3 22 2( ) ( )− + ?

A xlog 4 22 ( )+  B 
x

log 3 3
2 +







  C xlog 2 22 ( )+  D x

x
log

3 22 +






  

 3 Simplify each of the following expressions. 

(a) log 3 log 55 5( ) ( )+  (b) log 4 log 28 8( ) ( )+  (c) log 5 log 43 3( ) ( )−  

(d) log 8 log 42 2( ) ( )−  (e) log 6 log 3
510 10( ) −









(f) log 6 log 5 log 310 10 10( ) ( ) ( )+ −  (g) log 12 log 2 log 32 2 2( ) ( ) ( )− −

 4 Consider the expression x x xe e e3log 2 log log 4( ) ( ) ( )+ + .
(a) Which expression is equivalent to the original?

A x xelog 2 42( )+  B x x xelog 43 2( )+ +  C xelog 4 6( )  D xe6 log 4( )
(b) Explain the common error made by a student who obtained an expression with a coefficient of 

6 for part (a). 

 5 Simplify each of the following expressions. 

(a) log 22
3( )  (b) log 273 ( )  (c) log 1

22








(d) log 0.0110 ( )  (e) 3 log 28 ( )  

(f) ee2 log ( ) (g) -2 log 1
42









 6 Convert each of the following to logarithmic form. 

(a) 3 814 =  (b) 10 10003 =   (c) 2 1
4

-2 =  (d) 10 0.001-3 =

 7 Convert each of the following to exponential form. 

(a) log 16 42 ( ) =  (b) log 27 33 ( ) =  (c) log 1
8

-32






 =   (d) log 0.1 -110 ( ) =  

 8 Simplify each of the following expressions. 

(a) 2log 32 ( )  (b) e e3log 3( )  (c) log 33
4( )

(d) 
eelog 1






  (e) a

xalog 2( )  (f) bb
xlog 1( )+  

 9 Simplify each of the following expressions.

(a) log 4
3

log 62 2 ( )





 +  (b) log 20 log 510 10( ) ( )+

(c) log 24 log 32 2( ) ( )−   (d) 4 log 2 log 1610 10( ) ( )−  

(e) log 4 2 log 3 log 92 2 2( ) ( ) ( )+ −  (f) 2 log 3 log 6 2 log 3
22 2 2( ) ( )+ −







  

EXERCISE 

3.1
Worked 
Example

1

2

3

4
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1.1

Solving exponential equations using the inverse function 
Two functions are said to be inverse functions if their graphs 
are the reflection of each other across the line y = x. 

The inverse of an exponential function is the logarithmic 
function to the same base. The graph on the right shows that 

( )xelog  is the reflection of ex across the line y = x. This also 
shows that logarithms of negative numbers do not exist.

The exponential function and its inverse
Explore the properties of the exponential graph and its 
inverse, the logarithmic graph.

Making connections

Hence, when working with equations involving numbers 
expressed as a power of e, the exact answer can be found 
using an inverse operation that will involve elog , which is sometimes expressed as ‘ln’ (natural log). For 
example, if =a yx , then ( )=x yalog . So if =e yx , then ( )=x yelog , or x = ln (y). 

Solve exponential equations using the natural logarithm 

Solve for x in exact form, and then approximate the value, correct to 2 decimal places.

(a) =ex 2

THINKING WORKING

1 Convert to a logarithm to solve for x. 

( ) ( )
( ) ( )

( )

=
=
=
=

e
e

x e
x

x

e
x

e

e e

e

2
log log 2

log log 2
log 2

2 Use the ln key to approximate the value.

( )
( ) = …

=
ln 2 0.693

0.69 2 d.p.
 

3 Evaluate the reasonableness of your solution 
by substituting the answer into the original 
equation.

= …
≈

1.99
2

0.69e

(b) − =e x3 10 05

1 Solve for the power. − =
=

=

e
e

e

x

x

x

3 10 0
3 10

10
3

5

5

5

0-1-2-3-4 4321
-1

-2

-3

-4

1

2

3

4
y

x

y = ex y = x

y = loge(x)

3

10 Pearson Mathematical Methods 12 Queensland

1.1

4 If there is an answer that needs to be excluded, 
always give a reason.

=ex -4 is rejected because ex is always positive.

5 Solve for x. 
( )

=
=

e
x

x

e

2
log 2

Using technology to solve exponential equations 
For complex equations for which algebraic 
techniques cannot be found, you can use the ‘solve’ 
function on a graphics calculator to find approximate 
solutions. Drawing one or more graphs is an excellent 
method to ensure all solutions are found. To solve 

− + =e ex x5 6 02 , graph = − +y e ex x5 62  and determine  
the x-intercepts, where y = 0.

To solve − =
e

ex
x8 2, graph = −y

e
ex

x8  and y = 2, then  

determine the x-value of the point of intersection.

y =
8

ex
ex

0

2
(0.69, 2)

y

y = 2

x1

Exponential functions in real contexts
In some situations, decimal approximations are appropriate as solutions to exponential equations.

Model exponential growth

The value of a particular investment sitting in the bank can be given by ( ) = ×v t e t10000 0.095 , where v is 
the value at any time t years after the money is deposited.

(a) Determine the initial amount deposited.

THINKING WORKING 

1 Substitute t = 0 and calculate v ( 0 ). 

 Recall that =e 10 .
( )
( )

= ×
= ×
= ×
=

×
v t e
v e

t10000
0 10000

10000 1
10000

0.095

0.095 0

0

2

(0.69, 0)

(1.10, 0)

y

y = e2x − 5ex + 6

x1

Solving exponential equations
Technology worked example

5
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3.1

Properties and laws of logarithms

• alog 1 0( ) =

• aalog 1( ) =

• m n mna a alog log log( ) ( ) ( )+ =

• m n m
na a alog log log( ) ( )− =









• m n ma
n

alog log( ) ( )=

• 
m

m ma a alog 1 log - log-1( ) ( )





 = =

• a na
nlog ( ) =

• a nnalog =( )

• a a mp m m pa a
p

log log
= =( )( )

WARNING
It is a common misconception that these expressions are equivalent.

m
n

m na

a
a a

log
log

log log( )
( ) ( ) ( )≠ −    m n m na a alog log log( ) ( ) ( )+ ≠ +

Use the properties and laws of logarithms

Simplify: x x xa a a
3
2

log log log 12( )( )( ) + − +

THINKING WORKING

1 Recall the relevant law. m n ma
n

alog log( ) ( )=

2 Substitute the values. 3
2

log log log 1

log log log 1

2

3
2

1
2

2

( )
( )

( )( ) + − +

= 





+ 





− +

x x x

x x x

a a a

a a a

3 Simplify by using the laws for addition and 
subtraction of logarithms.

log log 1

log
1

3
2

1
2 2

3
2

1
2

2

( ) ( )= × − +

=
+













+

x x x

x
x

a a

a

4 Use the index laws to simplify the numerator. x
xalog

1

2

2=
+











5
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Making connections
This eBook feature provides 
teachers and students with a 
visual interactive of specific 
mathematics concepts or 
ideas to aid students in their 
understanding.

Technology worked examples
These worked examples offer 
support in using technology 
such as spreadsheets, graphing 
calculators and graphing software, 
and include technology-focused 
worked examples and activities.

Tech-free questions
These questions are designed 
to provide students with the 
opportunity to practise algebraic 
manipulations to prepare them 
for technology-free examination 
papers.

Highlighting common errors
Throughout the exercises, 
authors have integrated 
questions designed to highlight 
common errors frequently made 
by students. Explanations are 
given in the worked solutions.

Warning boxes
Warning boxes are located 
throughout the chapter to alert 
students to common errors and 
misconceptions.
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Recall
Use index laws
 1 Simplify the following expressions, giving your answer with positive indices.

(a) ×m n mn3 4 2  (b) ×a a
a

8 3
12

6

4
 (c) 

2

3

2

5





a b
c

Convert to negative and fractional indices 
 2 Convert each of the following to index form.

(a) +x x x3   (b) −
x x
1 5
3

  (c) +
x x x

4 1
2

 

Factorise quadratic expressions
 3 Factorise the following expressions.

(a) +x x3 92  (b) −x 92  (c) + −x x7 182  (d) − +x x3 11 102

Solve quadratic equations
 4 Solve the following equations for x. 

(a) (x − 2)(x + 3) = 0 (b) + =x x5 62  (c) − =x x2 92

Solve exponential equations using the inverse function
 5 Solve the following equations for x, giving the answer in exact form.

(a) = x37 5  (b) = +x-13 -5 7  (c) − × + =x x5 17 5 60 02

Graph exponential functions
 6 Sketch the following functions, showing x- and y-intercepts, asymptotes and one extra point.

(a) = +y x2 1 (b) = +y x-2 6  (c) = −y x6 5-

Differentiate powers of x
 7 Differentiate the following functions.

(a) = − + +y x x x5 3 2 13 2  (b) =y
x
3
2  (c) = −y x x5  

Use the chain rule = ×dy

dx

dy

du

du

dx
 for differentiation of composite functions

 8 Differentiate the following functions using the chain rule.

(a) ( )= +y x5 1 3  (b) 

( )
=

+ −
y

x x

1

3 72 2  (c) = −y x x33 2  

Use the product rule = +dy
dx

u
dv
dx

v
du
dx

 and the quotient rule =
−dy

dx

v u

v

du
dx

dv
dx

2
 for differentiation

 9 Differentiate the following functions.

(a) ( )( )= + +y x x x2 1 33 2  (b) =
−

y x
x
5

3 1
 (c) 

( )
=

−
y x

x2

2

3  

1
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Recall
Each chapter begins with a review 
of assumed knowledge for the 
chapter.

Pearson Mathematical Methods 12 Queensland412

7Chapter review

 1 Convert each of the following angles. 
(a) Convert to degrees, correct to 2 decimal places where necessary.
 (i) 3

4
π  (ii) 1.26c

(b) Convert 124° to radians, in terms of π.
(c) Convert 47° to radians, correct to 3 decimal places.

 2 At 3 pm a telecommunications tower 50 3 m high produces a shadow of length 50 m. 
Determine the angle that the Sun’s rays make with the horizontal at this time. 

 3 The values of x and y respectively in the given triangle are closest  
to which one of the following pairs of values? 
A 25.66 and 22.31
B 22.31 and 25.66 
C 29.56 and 25.66 
D 22.31 and 29.56 

 4 Determine the length of side x, correct to 2 decimal places. 

 5 A right-angled triangle has a side of length 62 cm and a hypotenuse of 110 cm. Calculate the 
angle opposite the 62 cm side length, correct to 2 decimal places. 

 6 Singh is standing 20 m from the base of a building. He measures the angle to the top of the 
building and finds it to be 40°. He then measures the angle to the top of a radio mast on top of 
the building, finding that it is 52°. Determine the height of the radio mast, correct to 2 decimal 
places. 

 7 From the top of a 45 m skyscraper the angle of depression of an object at P on the wall of a 
smaller building opposite is 40°. The width of the street is 18 m. 
(a) Determine the height of the object at P, correct to the nearest metre.
(b) Determine the angle of elevation of P from the foot of the skyscraper, correct to the nearest 

degree.

 8 In order to try to control a bushfire in the Avon Wilderness, firefighters plan to form 
containment lines in a triangular shape around the perimeter of the fire. Two containment lines 
starting from Huggetts Crossing will be 33 km and 36 km long and the angle between them is 
30°. Determine the area enclosed by the containment lines.  

Exercise 7.1

Exercise 7.1

Exercise 7.1

y

x
41°

34

Exercise 7.1

x

34.53°
654.32

Exercise 7.1

Exercise 7.1

Exercise 7.1

Exercise 7.2
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Chapter review
Every chapter review follows the 
QCAA examination proportions 
for level of difficulty, which is 60% 
simple familiar, 20% complex 
familiar and 20% complex 
unfamiliar.

Mixed and exam review
Exam reviews provide cumulative 
practice of content already 
covered, to prepare students 
for the end-of-year exam. They 
have been placed at the end of 
each unit. Mixed reviews provide 
cumulative reviews placed 
midway through each unit.

Pearson Mathematical Methods 12 Queensland448

Summary
Discrete random variables 
For a discrete random variable: 

• The number of outcomes is countable.
• 0 ≤ P (X = x) ≤ 1 for all values of x.
• ∑P  (X = x) = 1.

Statistics of discrete random variables 
Expected value: E (X) = µ = ∑ x pi i

Variance: 2 2( ) ( )( ) ( )= −Var X E X E X

Standard deviation: σ ( ) ( )=X Var X

Statistics of transformed data
E(aX + b) = aE(X) + b

2( ) ( )+ =Var aX b a Var X

σ σ( ) ( )+ =aX b a X

Estimated probability of an interval 
For normal distributions, about 95% of results lie within two standard deviations of the mean. This 
is also true of binomial distributions where p = 0.5. This interval can be represented as µ ± 2σ. 

Bernoulli trials 
In a Bernoulli trial, the experiment has exactly two outcomes, usually described as success and 
failure.

Statistics of Bernoulli distributions 
The expected probability of success in a Bernoulli trial is the theoretical probability of success, p.

The variance in the probability of success is p(1 − p), where 1 − p is the probability of failure.

Binomial distribution 
A binomial variable x is the number of successes from a series of independent Bernoulli trials.

X ∼ B (n, p) indicates a variable X with a binomial distribution, where the parameters are n, the 
number of trials, and p, the probability of success per trial.

1( )( )= = 





− −P X x n
x p px n x

8
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Summary
At the end of each chapter, there 
is a summary of the key facts and 
rules discussed in the chapter.

Pearson Mathematical Methods 12 Queensland454

CHAPTERS 6–8Mixed review

 1 Consider the function f defined by ( ) ( )( )= − −-2 4 1 2f x x x .
(a) Use calculus to locate any stationary points and determine their nature.
(b) Sketch the graph of y = f (x), showing all key features.

 2 Determine expressions for the acceleration a (t) of particles given by each of the following 
functions, whose positions are x metres from a fixed origin at time t seconds. 
(a) ( ) = − +2 3 42x t t t  (b) ( ) =

+
1

2 5
x t

t
 3 Determine the coordinates of the point of inflection on the graph of = − − −-2 12 3 23 2y x x x .

 4 Calculate the length of side x, correct to 2 decimal places, in each of the following triangles. 
(a) 

42.15 m

x m
35°

 (b) 

6.23 cm

x cm 75°

 5 Solve ΔABC by calculating, correct to 2 decimal places, the unknown side lengths and angle.
(a) 

72.34°

68.56°

56.34

C

A

B

 (b) 

105.03°

31.45°
34.24

A

C

B

 6 A block of land is advertised as having an approximate area of 400 m2. If the three boundaries of 
the block are 22 m, 36 m and 19 m, determine the size of the smallest angle, correct to 2 decimal 
places, and hence the area, to the nearest square metre. 

 7 Three fences surround a triangular paddock as shown.  
Determine the true bearing of corner A from corner B, to the  
nearest degree.

Exercise 6.1

Exercise 6.2

Exercise 7.1

Exercise 7.3

Exercise 7.2

Exercise 7.4

C

B

N

A

38 m

35 m

40 m
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UNIT 4Exam review

Paper 1: Technology-free

 1 If = + − + −( ) 6 2 34 3 2f x x x x x , determine the value of f ′′ (-2). 

 2 A rectangular garden is to be formed next to an existing fence. It is enclosed on three 
sides (excluding the fence side) by 32 m of border trim. The width of the garden that runs 
perpendicular to the fence is x m, and its length, which runs parallel to the fence, is y m. 
(a) Determine an expression for the length y in terms of x. 
(b) Determine an expression in factorised form for the area A (x).
(c) Use second derivative analysis to determine the maximum area of the garden. 
(d) Hence determine the dimensions of the garden of maximum area.

 3 Determine the exact value of x. 

 4 A Brahminy kite (bird of prey) is being photographed by two ornithologists on the ground, who 
are 2 km apart. From one ornithologist, the direct distance to the Brahminy kite is 100 m and the 
angle of elevation is 30°. Determine the exact distance, in metres, of the Brahminy kite from the 
other ornithologist. 

 5 A coin is biased in such a way that P (Heads) = 4 × P (Tails). Determine the probability that 
exactly 5 tosses out of 8 land heads up. Write your answer as a product of prime factors. 

 6 Three coins are tossed and you count the outcome of two heads and a tail as a success. 
Determine the exact values of the mean and the variance of the Bernoulli distribution  
(the number of successes in a single trial).

 7 If f (x) represents a probability density function, determine the exact value of P (X < 2) given:

  
π π

( ) =




 ≤ ≤









16
sin

8
0 8

0 otherwise
f x

x x

 8 For a particular normal distribution, P (X < a) = 0.18 and P (X < b) = 0.45. Determine the 
following probabilities. 
(a) P (X > a)  (b) P (X > b)  (c) P (a < X < b)

Exercise 6.3

Exercise 6.4

Exercise 7.3

40 cm

x

45°

60°

Exercise 7.4

Exercise 8.2

Exercise 8.3

Exercise 9.1

Exercise 9.3
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Recall
Differentiate functions of the form f(x) = xn

 1 Determine the derivative of each of the following.
(a) = − − +4 2 3 23 2y x x x  (b) ( )= + +1 2 2y x x  (c) ( ) = + −3 4 56f x x x  

(d) ( ) = 2
2
3f x x   (e) = − + 4-3y x x

x
 

Determine a derivative at a given value 
 2 Determine the value of each of the following.

(a) dy
dx

 if = − +4 3 3 2y x x  and x = -2 (b) f ′ (3) if ( ) = −3 4 2f x x x  

(c) f ′ (16) if ( ) = − 2- -1
2

1
4f x x x  

Differentiate functions of the the form f(x) = (ax + b)n

 3 Determine the derivative of each of the following. 
(a) ( )= +3 2 4y x  (b) ( )= +2 5 3y x  (c) ( )= −2 1

1
2y x  

(d) ( )= −5 3 4 -2y x   (e) ( )= +2 3
3
2y x

Differentiate exponential and logarithmic functions 
 4 Differentiate the following functions.

(a) = 5y e x  (b) = 2y e
x

 (c) ( ) = −3 5 2
f x e x x  

(d) ( ) ( )= − >7 log 2 1 , 1
2

f x x xe   (e) =
+







>log
3

, -3
2

y x
x

xe  

Differentiate trigonometric functions
 5 Determine the derivative of each of the following.

(a) sin (3x) (b) cos (5x) (c) π( )= 



 +y x x3sin 2

3
2cos

(d) f (x) = sin (3 − 5x) (e) f (x) = 3 cos (11x − 2)

Differentiate using the product and quotient rule
 6 Use the product or quotient rule to differentiate the following functions.

(a) ( )=y x xsin2  (b) =y x e x4 2  (c) 
( )=y x
xsin

3
 

(d) ( )
=y

x
e

e
x

log
-  (e) ( )

( )=y
x
x

sin
cos

 (f) =
+

y x
x 5

Differentiate using the chain rule
 7 Use the chain rule to determine the derivative of each of the following.

(a) ( )= +y x x3 22 4
 (b) ( )=y xsin 2  (c) = − +y x x4 23  

(d) =y ex2
 (e) ( )=y xsin2

4
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4.1Introduction to anti-differentiation
An anti-derivative is a function F (x), such that F ′ (x) = f (x).  
Anti-differentiating can be considered the reverse process of differentiating. 
Hence anti-differentiation is the process of determining a function f (x)  
from its derivative or gradient function f ′ (x). The derivative of x3 2 is 6x,  
so an anti-derivative of 6x is x3 2. 

Consider the following functions and their derivatives:

f (x) f ′ (x)

x3 2 6x 

+x3 22 6x

−x3 72 6x

You can see that x3 2, +x3 22 , and −x3 72  are  
all anti-derivatives of 6x, differing only by the 
constant. Hence there is an infinite number of 
anti-derivatives of 6x, all with the same 
gradient function. Therefore you write the 
anti-derivative of 6x as +x c3 2 , where c is an 
arbitrary constant, also known as the constant 
of integration. The notation you use to 
indicate the process of anti-differentiation is 

∫ = +x dx x c6 3 2 , where ∈c . This is called 
the indefinite integral of 6x with respect to x. 

Note that a constant coefficient can be written 
before or after the integral sign without 
changing the value of the integral; for 

example, ∫ ∫=x dx x dx6 6 .

The two useful results in the box below can be used to simplify anti-differentiation. The first one allows 
placement of a constant coefficient either inside or outside the integral sign. The second one allows for 
anti-differentiation term by term of a series of terms.

Rules for indefinite integrals:

∫ ∫
∫ ∫ ∫( )

( ) ( )
( ) ( ) ( ) ( )

=

± = ±

k f x dx k f x dx

f x g x dx f x dx g x dx

Anti-differentiation as the reverse process of 
differentiation
In this activity, determine the expressions on the 
right that are anti-derivatives of the expressions 
on the left.

Additional information

∫ ( )f x dx is the indefinite integral or primitive of f (x), 
and it indicates that you are finding the anti-derivative  
of the expression f (x) with respect to x. The dx 
indicates that x is the variable with respect to which 
the anti-differentiation takes place. 

Hence ∫ ( ) ( )= +f x dx F x c  

also, ∫ ( ) ( )′ = +f x dx f x c

or ∫ = +
dy
dx

dx y c  

The derivative of the integral gives the original 
function, but the integral of the derivative does not 
(because of any constant term that may be present, c).

Identify the components of an indefinite integral
This activity provides an explanation of the 
different components of an indefinite integral.

Additional information

dy
dx

y = f(x)  = f '(x)

Differentiation

Anti-differentiation
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4.1

Use differentiation to determine an anti-derivative 

Differentiate ( ) = +f x x x4 33 2 and hence determine the anti-derivative of +x x12 62 . 

THINKING WORKING 

1 Determine the derivative. ′ = × + ×
= +

− −( ) 3 4 2 3
12 6

3 1 2 1

2
f x x x

x x

2 Rewrite in the form ∫ ( ) ( )′ = +f x dx f x c. ∫ ( )+ = + +x x dx x x c12 6 4 32 3 2  

Use differentiation to determine an anti-derivative with adjustment of a constant coefficient

Differentiate each of the following and hence determine the required anti-derivative.

(a) Differentiate ( ) = −f x x x6 24 3 and hence determine the anti-derivative of −x x4 3 2. 

THINKING WORKING 

1 Determine the derivative. ( )′ = −f x x x24 63 2  

2 Express the derivative in terms of the required 
anti-derivative.

( )( )′ = −f x x x6 4 3 2  

3 Express the anti-derivative required in terms 
of the derivative found where

∫ ( ) ( )′ = +f x dx f x c. 

∫ ∫( ) ( )
( )

− = × −

= − +

= − + =

x x dx x x dx

x x c

x x c c
c

4 1
6

6 4

1
6

6 2

1
3

where
6

3 2 3 2

4 3
1

4 3 1

 

4 Express the anti-derivative in the required 
form.

(b) Differentiate ( ) ( )= −f x x3 2 3 and hence determine the anti-derivative of ∫ ( )−x dx27 3 2 2 . 

1 Differentiate the function. ( ) ( )
( )

′ = − ×
= −

f x x
x

3 3 2 3
9 3 2

2

2
 

2 Express the derivative in terms of the required 
anti-derivative.

( ) ( )′ = × −f x x1
3

27 3 2 2 

3 Express the anti-derivative required in terms 
of the derivative found where

∫ ( ) ( )′ = +f x dx f x c. 

x dx x dx

x dx x dx

x c

1
3

27 3 2 9 3 2

27 3 2 3 9 3 2

3 3 2

2 2

2 2

3
1

∫∫
∫ ∫

( ) ( )

( ) ( )

( )

− = −

− = × −

= × −   

4 Express the anti-derivative in the required 
form.

( )= − + =x c c c3 3 2 , where 33
1

1

2
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4.1

Graphing anti-derivatives
You will recall that the graph of a derivative function y = f ′ (x) gives the value of the gradient of the 
original function y = f (x) for each point on the graph. The graphs of each of the two functions below 
result in the same derivative graph because these functions have the same gradient for every value of x in 
the domain. You can obtain either of the graphs of y = f (x) from the other by a simple translation up 
or down.

f(x)

0

0

0

0

f '(x)

x

x

f(x)

f '(x)

x

x

Where the function has a maximum or minimum, the graph of the derivative has an x-intercept, i.e. the 
function has a gradient of zero. Also, where the function has a positive gradient, the derivative graph is 
positive, and where the function has a negative gradient, the derivative graph is negative.

Finding an anti-derivative graph y = F (x), given the graph of a function y = f (x), is the reverse process of 
finding a derivative graph. You can look at the values of f (x) and create a corresponding gradient for F (x). 
From the graphs above, it is clear there will not be a unique result, so possible anti-derivative graphs 
are drawn.

f(x)

F(x)

f(x)

F(x)

0

00

0

x x

x

x

In this case, where the function has an x-intercept, the graph of the anti-derivative has a maximum or 
minimum. Where the function is positive, the graph of the anti-derivative is increasing, and where 
the function is negative, the graph of the anti-derivative is decreasing. Wherever you position the possible 
y = F (x) graph, it belongs to the family of anti-derivative graphs for y = f (x) obtained by translating  
the graph in a direction parallel to the y-axis. It is possible to determine the nature of the turning  
point on the graph of y = F (x) by examining the sign of the original function around the x-intercept. 
Consider the graph above, in which f (x) indicates the gradient of F (x). 
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4.1

Maximum turning point

Sign of f (x) + 0 −

0

y

f(x)

x

F(x)

0

y

x

Description of 
f (x)

Above the 
x-axis 

x-intercept Below the 
x-axis

Shape of F (x) / − \ 

Description of 
F (x)

Increasing Stationary 
point

Decreasing

Minimum turning point

Sign of f (x) − 0 +

0

y

f(x)

F(x)

x

0

y

x

Description of 
f (x)

Below the 
x-axis 

x-intercept Above the 
x-axis

Shape of F (x) \ − /  

Description of 
F (x)

Decreasing Stationary 
point

Increasing
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4.1

A stationary point of inflection where f (x) is above the x-axis

Sign of f (x) + 0 + 

0

y

f(x)

F(x)

x

0

y

x

Description of 
f (x)

Above the x-axis x-intercept Above the x-axis

Shape of F (x) /  − /  

Description of 
F (x)

Increasing Stationary point Increasing

A stationary point of inflection where f (x) is below the x-axis

Sign of f (x) − 0 −

0

y

f(x)

F(x)

x

0

y

x

Description of f (x) Below the x-axis x-intercept Below the x-axis

Shape of F (x) \ − \ 

Description of F (x) Decreasing Stationary 
point

Decreasing

Sam
ple

 pa
ge

s



214 Pearson Mathematical Methods 12 Queensland

4.1

If the graph of the original function has a discontinuity, such as a hyperbola, you can deduce a possible 
anti-derivative graph for each part of the domain separately. The graph of F (x) will have asymptotes at the 
same x-values as f (x); more explicitly if a function has a vertical asymptote, then both the derivative and 
the anti-derivative are undefined for the value of x at the asymptote.

Sketch anti-derivatives

Sketch a possible graph of the anti-derivative of each of the following functions.

(a) 

0 x

f(x)

THINKING WORKING 

1 Consider the x-intercepts of f (x) and the 
corresponding features of F (x).

Near the origin, the gradient follows:

f (x) _ 0 + 

F (x) \ _ /

A minimum turning point on the graph of 
F (x). 

Near the minimum turning point, the 
gradient follows:

f (x) + 0 + 

F (x) / _ / 

A stationary point of inflection exists on the 
graph of F (x). 

2 Consider the other features. The maximum turning point indicates that 
the gradient increases to a maximum 
positive value and then starts to decrease 
(still positive). There is a point of inflection.

3
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4.1

3 Sketch a possible graph of the anti-derivative.

x0

F(x)

This graph has been drawn passing through 
the origin, but any vertical translation of the 
shape is correct.

(b) f(x)

x0

1 Consider the asymptotes. The vertical asymptote will remain in the 
same position. 

The horizontal asymptote indicates that the 
gradient approaches zero as → ± ∞x , but it 
might not be at y = 0. 

2 Consider the other features. The derivative (gradient) is always negative.

Left-hand branch: the gradient is close to 
zero, then becomes increasingly negative.

Right-hand branch: The gradient is negative 
and becomes less negative, approaching zero.

3 Sketch a possible graph of the anti-derivative. F(x)

x0

Any vertical translation of this graph is 
correct.
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4.1

Introduction to anti-differentiation

 1 Differentiate each of the following functions and use the results to determine the given anti-derivatives. 

(a) ( ) = −f x x x2 43 , hence determine the anti-derivative of −x6 42 .

(b) ( ) = −f x x x3 22 , hence determine the anti-derivative of −x
x

6
1

.

(c) ( ) = + −f x x x5 2 62 , hence determine the anti-derivative of 10x + 2.

(d) ( ) = −f x x
x

5 12 , hence determine ∫ +



x

x
dx10

1
2 . 

 2 Differentiate each of the following functions and use the results to determine the given anti-derivatives.

(a) ( ) = −f x x x6 103 , hence determine the anti-derivative of −x9 52 .

(b) ( ) = −5 3 5f x x x , hence determine the anti-derivative of −x x3 2 4.

(c) ( ) = −f x x x3 54 3, hence determine the anti-derivative of −x x4 53 2.

(d) ( ) = −f x x
x
12 , hence determine ∫ +



x

x
dx4 2

2 . 

 3 Differentiate each of the following functions and use the results to determine the given 
anti-derivatives.

(a) ( ) ( )= −f x x3 2 5, hence determine ∫ ( )−x dx15 3 2 4 .

(b) ( ) ( )= −f x x6 1 3, hence determine ∫ ( )−x dx36 6 1 2 . 

 4 Differentiate each of the following trigonometric functions and use the results to determine the given 
anti-derivatives. 
(a) ( ) ( )= sin 2f x x , hence determine ∫ ( )x dxcos 2 . 

(b) ( ) ( )= 3cos3f x x , hence determine ∫ ( ) ( )27 cos sin2 x x dx. 

(c) ( ) ( ) ( )= −sin 3 cos 32 2f x x x , hence determine ∫ ( ) ( )sin 3 cos 3x x dx. 

 5 Differentiate each of the following exponential functions and use the results to determine the given 
anti-derivatives. 
(a) ( ) =f x ex, hence determine ∫ e dxx .

(b) ( ) =f x ekx, hence determine ∫ e dxkx .

(c) ( ) = 3 5f x e x , hence determine ∫ 30 5e dxx .

 6 Differentiate each of the following logarithmic functions and use the results to determine the given 
anti-derivatives.

(a) ( ) ( )= log 7f x xe , hence determine ∫
1

2x
dx. 

(b) ( ) ( )= +log 2 1f x xe , hence determine ∫ +
1

2 1x
dx.

EXERCISE 

4.1
Worked 
Example

1

2

Sam
ple

 pa
ge

s



217Chapter 4 Anti-differentiation

4.1

 7 Sketch the graph of a possible anti-derivative function for each of the given functions, matching key values.
(a) 

x0

f(x)  (b) 

0 x

f(x)

 8 Sketch the graph of a possible anti-derivative function for each of the given functions, matching key values. 
(a) 

x0

f(x)  (b) 

x0

f(x)

 9 If the derivative of ( )sin 22x x  is 2x(x cos (2x) + sin (2x)), then ∫ ( )( ) ( )+cos 2 sin 22x x x x dx is equal to 
which one of the following?
A ( ) +sin 22x x c    B 2x(x cos (2x) + sin (2x)) + c   C ( ) +1

2
sin 22x x c    D ( ) +2 sin 22x x c 

 10 Which one of the following integrals cannot be determined by differentiating 3x ex? 

A ∫ ( )+ 32x e x dxx    B ∫ ( )+ 3e x dxx    C ∫ ( )+1
2

33 2e x x dxx    D ∫ +2 63 2x e x e dxx x

 11 Which one of the following is a possible  
anti-derivative graph for the graph of  f (x) shown?

A 

10-1

F(x)

x

 B 

1-1 0

F(x)

x

C 

10-1

F(x)

x

 D 

10-1

F(x)

x

3

Worked 
Example

0-1 1

f(x)

x
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4.1

 12 Verify that the derivative of ( )−2 12 3x x  can be expressed as ( )( )− −2 5 1 2 1 2x x x . Hence, determine 

the value of the constant of integration c, given that ∫ ( )( )− − =5 1 2 1 202x x x dx  at x = 2. 

 13 Differentiate ( )−3 2 1 4x  and hence determine the equation of the curve y = f (x) with a gradient 
function of ( )−3 2 1 3x  that passes through the point (1.5, 8).

 14 A child began to feel unwell around 1:30 pm on Sunday, and by 1:50 pm she was very hot and feverish. 
The child’s temperature was taken at 10-minute intervals for the next few hours. The graph shows the 
rate of change of temperature over time.

1:5
0

Rate of change
in temperature
(°C/10 min) 

0

Time (pm)
2:1

0
2:0

0
2:2

0
2:4

0
3:0

0
3:2

0
3:4

0
4:0

0
4:2

0
2:3

0
2:5

0
3:1

0
3:3

0
3:5

0
4:1

0
4:3

0
4:4

0

(a) At what approximate time was the child’s temperature rising most rapidly?
(b) Between what times was the temperature rising?
(c) Describe what was happening to the temperature at approximately 3:40 pm. 
(d) Sketch a possible graph of the child’s temperature over the same period of time.Sam
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4.2Anti-differentiation of power functions 
In the previous section, you were introduced to anti-differentiation as the reverse operation of 
differentiation, noting that the indefinite integral has an arbitrary constant added. In this section, you will 
learn how to determine the anti-derivative (indefinite integral) of a power function and use given 
conditions to determine a particular value of the anti-derivative.

Consider the following derivatives:

∫
∫
∫
∫

( )
=

= +

= +

= + 

= +

2

2

2
1
2
1
2

2

2
1

2
1

2
1

2

d x

dx
x

x dx x c

x dx x c

x dx x c

x dx x c

where = 1
2 1c c

∫
∫
∫

∫

( )
=

= +

= +

= + 

= +

3

3

3
1
3
1
3

3
2

2 3
1

2 3
1

2 3
1

2 3

d x

dx
x

x dx x c

x dx x c

x dx x c

x dx x c

where = 1
3 1c c

You can check these by differentiating the result in each case.

Note that for the anti-derivative, the power is increased by one and  
the result is divided by the new power.

As you will have observed in the previous section, a constant  
coefficient may be written inside the anti-derivative sign or before it.

Anti-differentiate expressions of the form axn 

Determine the following anti-derivatives.

(a) ∫ 3 4x dx

THINKING WORKING 

1 Express in the form ∫a x dxn . ∫ ∫=3 34 4x dx x dx  

2 Recall the formula. ∫ =
+

+ ≠
+

a x dx ax
n

c nn
n

1
, -1

1

3 Substitute the known values.  = +3
5

5x c  

4 Interpret the answer. The anti-derivative of 3 4x ; that is, ∫ 3 4x dx is 

equal to +3
5

5x c. 

Anti-differentiating powers of x
Practise using the pattern for 
anti-differentiating expressions 
of the form xn.

Additional information

In the general case: 

∫ =
+

+ ≠1
1

, -1x dx
n

x c nn n

∫ ∫= ≠

=
+

+
+

, -1

1

1

ax dx a x dx n

ax
n

c

n n

n
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4.2

(b) ∫ 4x x dx  

1 Express in the form ∫a x dxn . ∫ ∫=x x dx x dx4 4
3
2  

2 Recall the formula. ∫ =
+

+ ≠
+

a x dx ax
n

c nn
n

1
, -1

1

3 Substitute the known values and simplify as 
needed.

∫ = +

= +

x dx
x

c

x
c

4 4

8
5

5
2

3
2

5
2

5
2

 

4 Interpret the answer. The anti-derivative of 4x x ; that is, 

∫ 4x x dx is equal to +x c8
5

5
2

. 

You will note that if f (x) = 2x, then f ′ (x) = 2, hence ∫ = +2 2dx x c. Writing ∫ 2dx as ∫ 2 0x dx and applying 
the rule for anti-differentiating xn, you obtain:

∫ = × +

= +

2 2
1

2

0
1

x dx x c

x c
  ∫ = +adx ax c

The anti-derivative of a sum or difference of a series of  
terms is equal to the sum or difference of the  
anti-derivative of each individual term.

Anti-differentiate term by term

Determine ∫ ( )− +3 3 42x x dx.

THINKING WORKING 

1 Express terms in the form ∫a x dxn . ∫ ∫ ∫ ∫( )− + = − +3 3 4 3 3 42 2 1
2x x dx x dx x dx dx 

This step can be omitted, and the anti-differentiation 
can be done under the one integral sign.

2 Use the rule for anti-differentiating powers 
of x. Since c represents an arbitrary constant, 
you only need to add c once at the end.

∫ ( )− + =






−








 + +3 3 4 3

3
3 43

2

2
3 3

2

x x dx x x x c  

3 Simplify the expression on the right-hand 
side of the equation.

 = − × + +3 2
3

43 3
2x x x c  

4 Express the anti-differentiated expression. ∫ ( )− + = − + +3 3 4 2 42 3 3
2x x dx x x x c

∫ ∫ ∫( )( ) ( ) ( ) ( )± = ±f x g x dx f x dx g x dx
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Notation 
The following notations are used at various times to indicate the process of anti-differentiation. 

∫
∫

∫

( ) ( )

( ) ( )

′ = +

= +

= +

f x dx f x c
dy
dx

dx y c

f x dx F x c

Simplify before anti-differentiating 

Determine the anti-derivative of  
( )( )− +3 2 12 2

2

x x

x
. 

THINKING WORKING 

1 Expand the brackets and collect like terms. ∫ ∫
( )( )− +

= + −3 2 1 3 2
2 2

2

4 2

2

x x

x
dx x x

x
dx 

2 Rewrite each term with the denominator and 
express each one in the form axn.  

3 2

3 1 2

4

2

2

2 2

2 -2

∫

∫ ( )
= + −







= + −

x
x

x
x x

dx

x x dx
 

3 Anti-differentiate each term using the rule 
and introduce the constant of integration.  = × + − × +3

3
2

-1

3 -1x x x c 

4 Simplify, expressing with positive powers, and 
write down the answer.

 = + + +23 -1x x x c 

5 Express the anti-differentiated expression. ∫
( )( )− +

= + + +
3 2 1 2

2 2

2
3

x x

x
dx x x

x
c

Applications of anti-differentiation 
Given a rate of change, anti-differentiating can lead you to information about the quantity whose rate you 
are measuring. For example, velocity is a measure of the rate of change of position. In other words, the 

velocity v may be expressed as =v dx
dt

, where x is the position of a particle at time t. Anti-differentiating 

with respect to t gives you an expression for the position. 

Apply anti-differentiation

Determine an expression for the position x of an object if its velocity v is modelled by the function 

= −3 52v
t

 at time t, for [ ]∈ 2,5t .

THINKING WORKING 

1 Express as an anti-derivative. ∫
∫

=

= −





3 52

x v dt

t
dt

 

6
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2 Write terms in the form ∫a x dxn . ∫ ∫ ( )−



 = −3

5 3 52
-2 0

t
dt t t dt  

3 Use the rule to anti-differentiate each term, 
introduce the constant of integration and 
simplify the expression.

 = × − +

= − +

3
-1

5
1

-
3

5

-1 1t t c

t
t c

4 Interpret the answer. The position equation is given by = − +- 3 5x
t

t c.

Determine the value of the constant of integration

If = −



4 3

2

2dy
dx x

, determine y in terms of x if y = 13 when x = 1.

THINKING WORKING 

1 Expand the expression and write each term 

in the form ∫a x dxn . 
−



 = − +

= − +

4 3 16 24 9

16 24 9

2

2

2 4

-2 -4
x x x

x x

 

2 Express y as an anti-derivative of dy
dx

. ∫
∫ ( )

=

= − +16 24 9-2 -4

y
dy
dx

dx

x x dx

3 Anti-differentiate the expression, introduce 
the constant of integration and simplify.

  = − × + × +

= + − +

16 24 9
-3

16 24 3
-1

-1 -3

3

x x x c

x
x x

c

 

4 Use the given conditions to determine the 
value of the constant.

When x = 1, y = 13:

( )= + − +

= + − +
=

13 16 1 24
1

3
1

13 16 24 3
-24

3 c

c
c

 

5 Interpret the answer. The anti-derivative of = −



4 3

2

2dy
dx x

 that includes 

the point (1, 13) is = + − −16 24 3 243y x
x x

.
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4.2

Families of curves 
If ( )′ = 2f x x, then ( ) = +2f x x c. A set of graphs for various values of the arbitrary constant c represents 
a family of curves, all of which have the same gradient function 2x. 

0-1-2-3 2

y = x2 + 2

y = x2 – 3
y = x2

31
-2

-4

2

4

6

8

10

12
y

x

Each graph represents a translation of = 2y x  parallel to 
the y-axis. At any x-value, the curves will have the same 
gradient.

Anti-differentiation of power functions

 1 Determine each of the following anti-derivatives. 
(a) ∫ 6x dx   (b) ∫12 3x dx   (c) ∫ 4 2x dx   (d) ∫

1
3

5x dx  

(e) ∫ 3 x dx   (f) ∫ 2
2
3x dx  (g) ∫

3
4

2
5x dx  (h) ∫ 3 -2x dx  

 2 Determine each of the following anti-derivatives. 
(a) ∫ ( )− +6 22x x dx   (b) ∫ ( )− +3 23 2x x x dx   (c) ∫ ( )+6 22x x dx   

(d) ∫ −






4
2

2x dx  (e) ∫ − +





4 1 3x
x

x dx   (f) ∫ + +



w

w dw7 2
3 2

2
3  

 3 Determine each of the following anti-derivatives.

(a) ∫
+2x x
x

dx  (b) ∫
− 23 2

2
x x

x
dx  (c) ∫

− +2 34 2

2
x x

x
dx

(d) ∫ ( )( )− +1 22x x dx   (e) ∫
( )( )− +2 2

2
x x

x
dx   (f) ∫

( )( )− +3 42 2

2

x x

x
dx  

(g) ∫
+2x x
x

dx   (h) ∫ ( )− 3x x dx  

Changing the value of the constant
Use the slider and observe the gradient of the 
tangents when the graph is translated up or down, 
representing different values of the constant.

Additional information

EXERCISE 

4.2

4

Worked 
Example

5
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4.2

 4 The velocity v of a particle is the rate of change of its position x at time t, so =v
dx
dt

. If = − +3 4 182v t t ,  
determine an expression for the position of the particle at time t. 

 5 If the particle in question 4 is at a position x = 2 when t = 0, determine the value of each of the 
following.
(a) the constant of integration, c 
(b) the position of the particle when t = 3

 6 Determine f (z), given:
(a) f ′ (z) = −z z6 2 (b) f ′ (z) = (z − 2)(z + 4)

(c) f ′ (z) = −z z
z

3 45

3  (d) f ′ (z) = 
z
-2

2

 7 For each of the following, determine y in terms of x for the given conditions.

(a) ∫ ( )= −y x x dx6 22 , and y = -10 when x = 2

(b) −
x x
3 4
2 3 , and y = 1 when x = 4

 8 The gradient of a curve at any point is given by ( )( )′ = +f x x1
2
. Determine the equation of the 

curve if it passes through the point 

1, - 1

6
.

 9 Determine an anti-derivative of each of the following. 

(a) ∫ −





x dx3
2

5

  (b) ∫ ( )−x x dx4
2

 

 10 For each of the following, express y in terms of x. 

(a) = +
dy
dx

x
x

8 33
2

 (b) = +
dy
dx

x x2 -3 - 3
2

 11 Differentiate ( )( ) = +f x x2
3

1 2
3
2  and use the result to determine ∫ +x x dx2 1 2 .

 12 The gradient of a curve varies directly as x2. If the curve passes through the origin and the 
point (3, 18), determine each of the following.
(a) the equation of the curve
(b) the value of the gradient at x = -3 
(c) the value of y at x = -3 

 13 The gradient of a curve is given by ( )= −
dy
dx

x3 2 1 2. 

(a) Determine the equation of the family of curves that have this gradient.
(b) Determine the member of this family of curves that passes through each of the given points.
 (i) (0, 4) (ii) (-1, 5) 
(c) Explain why the two curves from part (b) have no points of intersection.

7

Worked 
Example
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 14 The position x, velocity v, and acceleration a of a particle at time t are related by: = =v
dx
dt

a dv
dt

, . If 

the acceleration of a particle is modelled by = − − ≥a t t t3 2, 02 , determine the following.
(a) the velocity of the particle at t = 10 if the particle starts from rest

(b) the position of the particle at t = 2, if =x
1

12
 when t = 1

 15 A tank of water is emptying at a rate given by =dV
dt

t-2.8 , where V is the volume in cubic metres m3 
at time t seconds. 
(a) Determine an expression for the volume of water remaining in the tank in terms of time, if it is 

empty after 30 seconds. 
(b) How long does it take for half of the initial volume to empty out? Give your answer correct to 

1 decimal place.

 16 Which one of the following is the anti-derivative of ( )−x x3 12 ?

A −






+x x x c
2

3
3

2 3
 B ( ) ( )− × + +x x x c3 1 1 62  

C − +x x c3 4  D −






+x x c1
2

3
2

12
2

 

 17 Which one of the following statements is correct?

A ∫ ( )−x dx3  represents a family of parabolas with axes of symmetry at x = 3.

B ∫ ( )−x dx3  represents a family of parabolas with axes of symmetry at x = 6. 

C ∫ ( )−x dx3  represents a family of parabolas with two x-intercepts.

D ∫ ( )−x dx3  could be equal to − +x x x
2

3 10
2

2. 

 18 Determine the following anti-derivatives.

(a) ∫
( )+

+
x

x
dxx 5

1 2

2
  (b) ∫

− +x x x
x

dx23 -2

2

 19 Differentiate ( ) ( )= + 3 21
2f x x x  and hence determine ∫

+
+

x x
x

dx5 12
2 3

2
.

 20 If ( )′ = +f x px
x
22
3 , determine f (x) if f (1) = 2 and f (-1) = 4.

 21 Differentiate ( )+x3 1 4 and hence determine the anti-derivative of ( )+x3 1 3. 

22  (a) Differentiate ( )+ +ax b n 1 and hence determine the anti-derivative of ∫ ( )+ax b dxn . 
(b) Use the result found in part (a) to determine the following.

 (i) ∫ ( )+x dx6 1 4   (ii) ∫ ( )− x dx3 2 3  

 (iii) ∫ ( )−3 2
1
2x dx   (iv) f (x) if ( ) ( )′ = +f x x4 7 2 3 and ( ) =f 0 - 3
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