PEARSON MATHEMATIGGSL METHODS QUEENSLAND

STUDENT BOOK

PEARSON

MATHEMATICAL METHODS

QUEENSLAND
UNITS $3 \& 4$

STUDENT BOOK

Writing and development team

We are grateful to the following people for their time and expertise in contributing to Pearson Mathematical Methods 12.

Nicola Silva

Retired teacher, QLD
Author

Greg Bland

Senior mathematics teacher, QLD
President QAMT 2016-18
Recipient of Australian Award for Teaching
Excellence
Author
Gillian Anderson
Former Head of Mathematics, VIC IB Mathematics teacher (Higher and Standard)
IB examination assessor Author

Georgia Sotiriou

Mathematics author, VIC
Contributing author

Daniel Hernandez Navas

Lead publisher
Content and learning specialist
Pearson Australia
Lindy Bayles
Mathematics teacher, VIC
Development editor
Rodney Anderson
Mathematics teacher, QLD
Reviewer

Chris Brennan

Mathematics teacher, VIC
Reviewer and answer checker

David Coffey

Mathematics teacher and author, VIC
Answer checker and teacher support author

Elizabeth Constable

Mathematics teacher, QLD
Reviewer, answer checker and teacher support author

Heath Copeland

Mathematics teacher, SA
Reviewer, answer checker and teacher support author

Shelley Cross

Mathematics teacher, QLD Teacher support author

Andrew Duncan

Mathematics teacher, QLD Reviewer

Emily Frazer

Mathematics teacher, QLD
Answer checker
Paul Grace
Mathematics teacher, VIC
Answer checker

Amy Hawke

Mathematics teacher, QLD
Teacher support author

Kerri Hill

Mathematics teacher and HoD, QLD
Reviewer and answer checker

Emily Hobbs

Mathematics teacher and HoD, VIC
Reviewer

Karleigh Nicholls

Mathematics teacher, QLD
Answer checker

Thomas Schmierer

Mathematics teacher, QLD
Answer checker

Nigel Treloar

Mathematics teacher, QLD Reviewer

Julie Watson-Hayward
Associate Lecturer, Griffith University, QLD
Reviewer and answer checker

Contemits

Pearson Mathematical Methods Year 12
Writing and development team iii
How to use this book vii
UNIT 3CHAPTER 1 Derivatives of exponential functions
Recall 4
1.1 Euler's number and index laws 5
1.2 Graphing exponential functions 14
1.3 Differentiating exponential functions 26
1.4 Applications of exponential functions 34
1.5 Further differentiation 48
Summary 55
Chapter review 57
CHAPTER 2 Derivatives of trigonometric functionsRecall66
2.1 Radians and the unit circle 67
2.2 Solving trigonometric equations 83
2.3 Graphs of trigonometric functions
2.4 Derivatives of trigonometric functions94
2.5 Applications of trigonometric functionsSummary126
Chapter review 129
CHAPTER 3 Logarithmic functions and their derivatives
Recall136
3.1 Logarithmic functions and their properties 137
3.2 Logarithmic equations 145
3.3 Logarithmic bases and exponential equations 152
3.4 Graphs of logarithmic functions 158
3.5 Logarithmic scales 172
3.6 The derivative of the natural logarithm 181
3.7 Applications of logarithms 190
Summary 197
Chapter review 199
Mixed review (Chapters 1-3) 204
CHAPTER 4 Anti-differentiation
Recall 208
4.1 Introduction to anti-differentiation 209
4.2 Anti-differentiation of power functions 219
4.3 Anti-differentiation of linear binomial power functions 226
4.4 Anti-differentiation of exponential functions 231
4.5 Anti-differentiation of sine and cosine functions 235
4.6 Anti-differentiation of linear reciprocal functions 240
4.7 Further anti-differentiation 245
Summary 249
Chapter review 250 250
CHAPTER 5 Definite integrals
Recall 256
5.1 Estimating area beneath curves 258
5.2 Definite integrals 269
5.3 Calculating area under curves 277
5.4 The area between curves 286
5.5 Kinematics and applications of integration 296
Summary 306
Chapter review 309
Exam review Unit 3 316
UNIT 4CHAPTER 6 Further applications of differentiation
Recall 322
6.1 The derivative and curve sketching 323
6.2 Motion and derivatives 334
6.3 The second derivative and curve sketching 341
6.4 Maximum and minimum problems 352
Summary 362
Chapter review 364
CHAPTER 7 Sine and cosine rules
Recall 370
7.1 Trigonometry review 372
7.2 The area of a triangle 383
7.3 The sine rule 389
7.4 The cosine rule 399
Summary 409
Chapter review 412
CHAPTER 8 Binomial distributions
Recall 418
418
8.1 Discrete probability distributions review 420
8.2 Bernoulli trials and the binomial distribution 430
8.3 Statistics of binomial probability distributions 440
Summary 448
Chapter review 450
Mixed review (Chapters 6-8) 454
CHAPTER 9 Continuous random variables and the normal distribution
Recall 458
9.1 Continuous random variables 459
9.2 The normal distribution 473
9.3 The standard normal distribution 485
9.4 Inverse of standard normal distributions 493
Summary 502
Chapter review 504
CHAPTER 10 Interval estimates for proportions Recall 512
10.1 Random sampling 513
10.2 The central limit theorem 520
10.3 Proportions 527
10.4 Estimating with confidence 535
Summary 548
Chapter review 551
Exam review Unit 4 554
Exam review Units 3 \& 4 559
Answers 566

Supporting the integrating of technology

Students are supported with the integration of technology in a number of ways. The eBook includes 'How to' user guides covering all basic functionality for the following three graphing calculators:

- TI-84 Plus CE
- TI-Nspire CX (non CAS)
- CASIO fx-CG50AU

Throughout the student book are Technology worked examples strategically placed within the theory for both the TI-Nspire CX (non CAS) and CASIO fx-CG50AU.

The examples clearly demonstrate how the technology can be used effectively and efficiently for the content being covered in that chapter.
Graphing calculators are not the only technology integrated throughout the Pearson Queensland senior mathematics series. Spreadsheets, Desmos and interactive widgets have been included to provide students with the opportunity to visualise concepts, consolidate their understanding and make mathematical connections.

PEARSON MATHEMATICAL METHODS

QUEENSLAND

UNITS 3 \& 4

Mathematical Methods 12
Student book

Student book

The student book has been written by local authors, ensuring quality content and complete curriculum coverage for Queensland, enabling students to prepare with ease and confidence. We have covered the breadth of the content within our exercise questions, from simpler skills-focused questions to those using unfamiliar contexts and application of the theory learnt. The theory, worked examples and question sets are written in line with the assessment objectives, with the aim of familiarising students with QCE cognitive verbs in the process of dependent and guided instruction. Additional interactives that help explain the theory and consolidate concepts have been included throughout all chapters.

Pearson Reader+

Pearson Reader+ is our next generation eBook. This is an electronic textbook that students can access on any device, online or offline, and is linked to features, interactives and visual media that will help consolidate their understanding of concepts and ideas, as well as other useful content developed specifically for senior mathematics. It supports students with appropriate online resources and tools for every section of the student book, providing access to exemplar worked solutions that demonstrate high levels of mathematical and everyday communication. Students will have the opportunity to learn independently through the Explore further tasks and Making connections interactive widgets, which have been designed to engage and support conceptual understanding. Additionally, teachers have access to syllabus maps, a teaching program, sample exams, problem-solving and modelling tasks, and additional banks of questions for extra revision.

Mathematical Methods 12 eBook

Exam preparation workbook

Additional component for Year 12 only
The exam preparation workbook provides additional support in preparing students for the external exam. It has been constructed to guide the students through a sequence of preparatory steps and build confidence leading up to the external exam.

Mathematical Methods 12
Exam preparation workbook

How to use this book

Pearson Mathematical Methods 12 Queensland Units 3 \& 4

This Queensland senior mathematics series has been written by a team of experienced Queensland teachers for the QCE 2019 syllabus. It offers complete curriculum coverage, rich content and comprehensive teachers support.

Additional information

These interactives appear in the eBook in two forms, as videos explaining specific concepts or as interactive questions to check students' understanding.

Key information

Key information and rules are highlighted throughout the chapter.

Explore further

This eBook feature provides an opportunity for students to consolidate their understanding of concepts and ideas with the aid of technology, and answer a small number of questions to deepen their understanding and broaden their skills base. These activities should take approximately 5-15 minutes to complete.

Meeting the needs of the QCE Syllabus

The authors have integrated both the cognitive verbs and the language of the syllabus objectives throughout the worked examples and questions.

Every worked example and question is graded

Every example and question is graded using the three levels of difficulty, as specified in the QCE syllabus:

- simple familiar (1 bar)
- complex familiar (2 bars)
- complex unfamiliar (3 bars)

The visibility of this grading helps ensure all levels of difficulty are well covered.

Making connections

This eBook feature provides teachers and students with a visual interactive of specific mathematics concepts or ideas to aid students in their understanding.

Technology worked examples

These worked examples offer support in using technology such as spreadsheets, graphing calculators and graphing software, and include technology-focused worked examples and activities.

Tech-free questions

These questions are designed to provide students with the opportunity to practise algebraic manipulations to prepare them for technology-free examination papers.

Highlighting common errors

Throughout the exercises, authors have integrated questions designed to highlight common errors frequently made by students. Explanations are given in the worked solutions.

EXERCISE

3.1 Logarithmic functions and their properties

1 Simplify each of the following expressions.
(a) $\log _{4}(1)$
(b) $2 \log _{4}(1)$
(c) $\log _{10}(10)$
(d) $3 \log _{4}(4)$

2 Which expression is equal to $\log _{2}(x)-\log _{2}(3 x+2)$
A $\quad \log _{2}(4 x+2)$
$\log _{2}\left(3+\frac{3}{x}\right)$
$\log _{2}(2 x+2)$
D $\quad \log _{2}\left(\frac{x}{3 x+2}\right)$

3 Simplify each of the following expressions.
(a) $\log _{5}(3)+\log _{5}(5)$
(b) $\log _{8}(4)+\log _{8}(2)$
(c) $\log _{3}(5)-\log _{3}(4)$
(d) $\log _{2}(8)-\log _{2}(4) \quad$ (e) $\log _{10}(6)-\log _{10}\left(\frac{3}{5}\right)$
(f) $\log _{10}(6)+\log _{10}(5)-\log _{10}(3)$ (g) $\log _{2}(12)-\log _{2}(2)-\log _{2}(3)$

4 Consider the expression $3 \log _{e}(x)+2 \log _{e}(x)+\log _{e}(4 x)$.
a) Which expression is equivalent to the original?

$$
\mathrm{A} \log _{e}\left(2 x^{2}+4 x\right) \quad \text { B } \quad \log _{e}\left(x^{3}+x^{2}+4 x\right) \quad \text { C } \log _{e}\left(4 x^{6}\right) \quad \text { D } 6 \log _{e}(4 x)
$$

b) Explain the common error made by a student who obtained an expression with a coefficient of 6 for part (a).
5 Simplify each of the following expressions.
(a) $\log _{2}\left(2^{3}\right)$
(b) $\log _{3}(27)$
(d) $\log _{10}(0.01)$
(e) $3 \log _{8}(2)$
(f) $2 \log _{e}(\sqrt{e})$
(g) $-2 \log _{2}\left(\frac{1}{4}\right)$

6 Convert each of the following to logarithmic form.
(a) $3^{4}=81$
(b) $10^{3}=1000$
(c) $2^{-2}=\frac{1}{4}$
(d) $10^{-3}=0.001$

7 Convert each of the following to exponential form.
(a) $\log _{2}(16)=4$
(b) $\log _{3}(27)=3$
(c) $\log _{2}\left(\frac{1}{8}\right)=-3$
(d) $\log _{10}(0.1)=-1$

Warning boxes

Warning boxes are located throughout the chapter to alert students to common errors and misconceptions.

WARNING

It is a common misconception that these expressions are equivalent.

$$
\frac{\log _{a}(m)}{\log _{a}(n)} \neq \log _{a}(m)-\log _{a}(n) \quad \log _{a}(m+n) \neq \log _{a}(m)+\log _{a}(n)
$$

Recall

Each chapter begins with a review of assumed knowledge for the chapter.

Chapter review

Every chapter review follows the QCAA examination proportions for level of difficulty, which is 60% simple familiar, 20\% complex familiar and 20% complex unfamiliar.

Mixed and exam review

Exam reviews provide cumulative practice of content already covered, to prepare students for the end-of-year exam. They have been placed at the end of each unit. Mixed reviews provide cumulative reviews placed midway through each unit.

Recall

Differentiate functions of the form $f(x)=x^{n}$
1 Determine the derivative of each of the following.
(a) $y=4 x^{3}-2 x^{2}-3 x+2$
(b) $y=(x+1)^{2}+x^{2}$
(c) $f(x)=3 x^{6}+4 x-5$
(d) $f(x)=2 x^{\frac{2}{3}}$
(e) $y=\sqrt{x}-x^{-3}+\frac{4}{x}$

Determine a derivative at a given value

2 Determine the value of each of the following.
(a) $\frac{d y}{d x}$ if $y=4-3 x^{3}+x^{2}$ and $x=-2$
(b) $f^{\prime}(3)$ if $f(x)=3 x-4 x^{2}$
(c) $f^{\prime}(16)$ if $f(x)=x^{-\frac{1}{2}}-2 x^{-\frac{1}{4}}$
Differentiate functions of the the form $f(x)=(a x+b)^{n}$

3 Determine the derivative of each of the following.
(a) $y=(3 x+2)^{4}$
(b) $y=(2 x+5)^{3}$
(c) $y=(2 x-1)^{\frac{1}{2}}$
(d) $y=5(3 x-4)^{-2}$
(e) $y=(2 x+3)^{\frac{3}{2}}$

Differentiate exponential and logarithmic functions
4 Differentiate the following functions.
(a) $y=e^{5 x}$
$y=e^{\frac{x}{2}}$
(c) $f(x)=3 e^{5 x^{2}-x}$
(d) $f(x)=7 \log _{e}(2 x-1)$,
(e) $y=\log _{e}\left(\frac{x^{2}}{3+x}\right), x>-3$

Differentiate trigonometric functions

5 Determine the derivative of each of the following.
(a) $\sin (3 x)$
(b) $\cos (5 x)$
(c) $y=3 \sin \left(\frac{2 x}{3}\right)+2 \cos (\pi x)$
(d) $f(x)=\sin (3-5 x)$
(e) $f(x)=3 \cos (11 x-2)$

Differentiate using the product and quotient rule
6 Use the product or quotient rule to differentiate the following functions.
(a) $y=x^{2} \sin (x)$
(b) $y=x^{4} e^{2 x}$
(c) $y=\frac{x^{3}}{\sin (x)}$
(d) $y=\frac{\log _{e}(x)}{e^{-x}}$
(e) $y=\frac{\sin (x)}{\cos (x)}$
(f) $y=\frac{\sqrt{x}}{x+5}$

Differentiate using the chain rule
7 Use the chain rule to determine the derivative of each of the following.
(a) $y=\left(3 x^{2}+2 x\right)^{4}$
(b) $y=\sin \left(x^{2}\right)$
(c) $y=\sqrt{x^{3}-4 x+2}$
(d) $y=e^{x^{2}}$
(e) $y=\sin ^{2}(x)$

Introduction to anti-differentiation

An anti-derivative is a function $F(x)$, such that $F^{\prime}(x)=f(x)$. Anti-differentiating can be considered the reverse process of differentiating. Hence anti-differentiation is the process of determining a function $f(x)$ from its derivative or gradient function $f^{\prime}(x)$. The derivative of $3 x^{2}$ is $6 x$, so an anti-derivative of $6 x$ is $3 x^{2}$.

Consider the following functions and their derivatives:

$f(x)$	$f^{\prime}(x)$
$3 x^{2}$	$6 x$
$3 x^{2}+2$	$6 x$
$3 x^{2}-7$	$6 x$

Additional information
 Anti-differentiation as the reverse process of differentiation
 In this activity, determine the expressions on the right that are anti-derivatives of the expressions on the left.

You can see that $3 x^{2}, 3 x^{2}+2$, and $3 x^{2}-7$ are all anti-derivatives of $6 x$, differing only by the constant. Hence there is an infinite number of anti-derivatives of $6 x$, all with the same gradient function. Therefore you write the anti-derivative of $6 x$ as $3 x^{2}+c$, where c is an arbitrary constant, also known as the constant of integration. The notation you use to indicate the process of anti-differentiation is $\int 6 x d x=3 x^{2}+c$, where $c \in \mathbb{R}$. This is called the indefinite integral of $6 x$ with respect to x.

Note that a constant coefficient can be written before or after the integral sign without changing the value of the integral; for
$\int f(x) d x$ is the indefinite integral or primitive of $f(x)$, and it indicates that you are finding the anti-derivative of the expression $f(x)$ with respect to x. The $d x$ indicates that x is the variable with respect to which the anti-differentiation takes place.
Hence $\int f(x) d x=F(x)+c$
alse, $\int f^{\prime}(x) d x=f(x)+c$
or $\int \frac{d y}{d x} d x=y+c$
The derivative of the integral gives the original function, but the integral of the derivative does not (because of any constant term that may be present, c).
example, $\int 6 x d x=6 \int x d x$.
The two useful results in the box below can be used to simplify anti-differentiation. The first one allows placement of a constant coefficient either inside or outside the integral sign. The second one allows for anti-differentiation term by term of a series of terms.

Rules for indefinite integrals:

$$
\begin{aligned}
& \int k f(x) d x=k \int f(x) d x \\
& \int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x
\end{aligned}
$$

Additional information

Identify the components of an indefinite integral
This activity provides an explanation of the different components of an indefinite integral.

Use differentiation to determine an anti-derivative

Differentiate $f(x)=4 x^{3}+3 x^{2}$ and hence determine the anti-derivative of $12 x^{2}+6 x$.

THINKING
1 Determine the derivative.

2 Rewrite in the form $\int f^{\prime}(x) d x=f(x)+c$.

WORKING

$$
\begin{aligned}
f^{\prime}(x) & =3 \times 4 x^{3-1}+2 \times 3 x^{2-1} \\
& =12 x^{2}+6 x
\end{aligned}
$$

$$
\int\left(12 x^{2}+6 x\right) d x=4 x^{3}+3 x^{2}+c
$$

2 Use differentiation to determine an anti-derivative with adjustment of a constant coefficient

Differentiate each of the following and hence determine the required anti-derivative.
(a) Differentiate $f(x)=6 x^{4}-2 x^{3}$ and hence determine the anti-derivative of $4 x^{3}-x^{2}$.

THINKING

1 Determine the derivative.
2 Express the derivative in terms of the required anti-derivative.
3 Express the anti-derivative required in terms of the derivative found where $\int f^{\prime}(x) d x=f(x)+c$.

4 Express the anti-derivative in the required form.
(b) Differentiate $f(x)=(3 x-2)^{3}$ and hence determine the anti-derivative of $\int 27(3 x-2)^{2} d x$.

2 Express the derivative in terms of the required

3 Express the anti-derivative required in terms

1 Differentiate the function. anti-derivative. of the derivative found where
$\int f^{\prime}(x) d x=f(x)+c$.

4 Express the anti-derivative in the required form.

WORKING

$$
\begin{aligned}
& f^{\prime}(x)=24 x^{3}-6 x^{2} \\
& f^{\prime}(x)=6\left(4 x^{3}-x^{2}\right)
\end{aligned}
$$

$$
\int\left(4 x^{3}-x^{2}\right) d x=\frac{1}{6} \times 6 \int\left(4 x^{3}-x^{2}\right) d x
$$

$$
=\frac{1}{6}\left(6 x^{4}-2 x^{3}+c_{1}\right)
$$

$$
=x^{4}-\frac{1}{3} x^{3}+c \text { where } c=\frac{c_{1}}{6}
$$

$$
\begin{aligned}
f^{\prime}(x) & =3(3 x-2)^{2} \times 3 \\
& =9(3 x-2)^{2}
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{1}{3} \times 27(3 x-2)^{2}
$$

$$
\frac{1}{3} \int 27(3 x-2)^{2} d x=\int 9(3 x-2)^{2} d x
$$

$$
\int 27(3 x-2)^{2} d x=3 \times \int 9(3 x-2)^{2} d x
$$

$$
=3 \times\left[(3 x-2)^{3} c_{1}\right]
$$

$$
=3(3 x-2)^{3}+c, \text { where } c=3 c_{1}
$$

Graphing anti-derivatives

You will recall that the graph of a derivative function $y=f^{\prime}(x)$ gives the value of the gradient of the original function $y=f(x)$ for each point on the graph. The graphs of each of the two functions below result in the same derivative graph because these functions have the same gradient for every value of x in the domain. You can obtain either of the graphs of $y=f(x)$ from the other by a simple translation up or down.

Where the function has a maximum or minimum, the graph of the derivative has an x-intercept, i.e. the function has a gradient of zero. Also, where the function has a positive gradient, the derivative graph is positive, and where the function has a negative gradient, the derivative graph is negative.

Finding an anti-derivative graph $y=F(x)$, given the graph of a function $y=f(x)$, is the reverse process of finding a derivative graph. You can look at the values of $f(x)$ and create a corresponding gradient for $F(x)$. From the graphs above, it is clear there will not be a unique result, so possible anti-derivative graphs are drawn.

In this case, where the function has an x-intercept, the graph of the anti-derivative has a maximum or minimum. Where the function is positive, the graph of the anti-derivative is increasing, and where the function is negative, the graph of the anti-derivative is decreasing. Wherever you position the possible $y=F(x)$ graph, it belongs to the family of anti-derivative graphs for $y=f(x)$ obtained by translating the graph in a direction parallel to the y-axis. It is possible to determine the nature of the turning point on the graph of $y=F(x)$ by examining the sign of the original function around the x-intercept. Consider the graph above, in which $f(x)$ indicates the gradient of $F(x)$.

If the graph of the original function has a discontinuity, such as a hyperbola, you can deduce a possible anti-derivative graph for each part of the domain separately. The graph of $F(x)$ will have asymptotes at the same x-values as $f(x)$; more explicitly if a function has a vertical asymptote, then both the derivative and the anti-derivative are undefined for the value of x at the asymptote.

3 Sketch anti-derivatives
Sketch a possible graph of the anti-derivative of each of the following functions.

THINKING
1 Consider the x-intercepts of $f(x)$ and the corresponding features of $F(x)$.

2 Consider the other features.

A minimum turning point on the graph of $F(x)$.

Near the minimum turning point, the gradient follows:

$f(x)$	+	0	+
$F(x)$	1	-	1

A stationary point of inflection exists on the graph of $F(x)$.

The maximum turning point indicates that the gradient increases to a maximum positive value and then starts to decrease (still positive). There is a point of inflection.

3 Sketch a possible graph of the anti-derivative.

This graph has been drawn passing through the origin, but any vertical translation of the shape is correct.
(b)

1 Consider the asymptotes.

2 Consider the other features.

3 Sketch a possible graph of the anti-derivative.

The vertical asymptote will remain in the same position.
The horizontal asymptote indicates that the gradient approaches zero as $x \rightarrow \pm \infty$, but it might not be at $y=0$.

The derivative (gradient) is always negative.
Left-hand branch: the gradient is close to zero, then becomes increasingly negative.
Right-hand branch: The gradient is negative and becomes less negative, approaching zero.

Any vertical translation of this graph is correct.

EXERCISE

1 Differentiate each of the following functions and use the results to determine the given anti-derivatives.
(a) $f(x)=2 x^{3}-4 x$, hence determine the anti-derivative of $6 x^{2}-4$.
(b) $f(x)=3 x^{2}-2 \sqrt{x}$, hence determine the anti-derivative of $6 x-\frac{1}{\sqrt{x}}$.
(c) $f(x)=5 x^{2}+2 x-6$, hence determine the anti-derivative of $10 x+2$.
(d) $f(x)=5 x^{2}-\frac{1}{x}$, hence determine $\int\left(10 x+\frac{1}{x^{2}}\right) d x$.

2 Differentiate each of the following functions and use the results to determine the given anti-derivatives.
(a) $f(x)=6 x^{3}-10 x$, hence determine the anti-derivative of $9 x^{2}-5$.
(b) $f(x)=5 x^{3}-x^{5}$, hence determine the anti-derivative of $3 x^{2}-x^{4}$.
(c) $f(x)=3 x^{4}-5 x^{3}$, hence determine the anti-derivative of $4 x^{3}-5 x^{2}$
(d) $f(x)=x^{2}-\frac{1}{x}$, hence determine $\int\left(4 x+\frac{2}{x^{2}}\right) d x$.
$\rightarrow \sim$
3 Differentiate each of the following functions and use the results to determine the given anti-derivatives.
(a) $f(x)=(3 x-2)^{5}$, hence determine $\int 15(3 x-2)^{4} d x$.
(b) $f(x)=(6 x-1)^{3}$, hence determine $\int 36(6 x-1)^{2} d x$.

4 Differentiate each of the following trigonometric functions and use the results to determine the given anti-derivatives.
(a) $f(x)=\sin (2 x)$, hence determine $\int \cos (2 x) d x$.
(b) $f(x)=3 \cos ^{3}(x)$, hence determine $\int 27 \cos ^{2}(x) \sin (x) d x$.
(c) $f(x)=\sin ^{2}(3 x)-\cos ^{2}(3 x)$, hence determine $\int \sin (3 x) \cos (3 x) d x$.

5 Differentiate each of the following exponential functions and use the results to determine the given anti-derivatives.
(a) $f(x)=e^{x}$, hence determine $\int e^{x} d x$.
(b) $f(x)=e^{k x}$, hence determine $\int e^{k x} d x$.
(c) $f(x)=3 e^{5 x}$, hence determine $\int 30 e^{5 x} d x$.

6 Differentiate each of the following logarithmic functions and use the results to determine the given anti-derivatives.
(a) $f(x)=\log _{e}(7 x)$, hence determine $\int \frac{1}{2 x} d x$.
(b) $f(x)=\log _{e}(2 x+1)$, hence determine $\int \frac{1}{2 x+1} d x$.

7 Sketch the graph of a possible anti-derivative function for each of the given functions, matching key values.
(a)

(b)

8 Sketch the graph of a possible anti-derivative function for each of the given functions, matching key values.
(a)

(b)

9 If the derivative of $x^{2} \sin (2 x)$ is $2 x(x \cos (2 x)+\sin (2 x))$, then $\int\left(x^{2} \cos (2 x)+x \sin (2 x)\right) d x$ is equal to which one of the following?
A $x^{2} \sin (2 x)+c$
B $\quad 2 x(x \cos (2 x)+\sin (2 x))+c$
C $\frac{1}{2} x^{2} \sin (2 x)+c$
D $2 x^{2} \sin (2 x)+c$

10 Which one of the following integrals cannot be determined by differentiating $x^{3} e^{x}$?
A $\int x^{2} e^{x}(x+3) d x \quad$ B $\int e^{x}(x+3) d x \quad \int \frac{1}{2} e^{x}\left(x^{3}+3 x^{2}\right) d x \quad$ D $\int 2 x^{3} e^{x}+6 x^{2} e^{x} d x$

11 Which one of the following is a possible anti-derivative graph for the graph of $f(x)$ shown?

A

B

C

D

12 Verify that the derivative of $x^{2}(2 x-1)^{3}$ can be expressed as $2 x(5 x-1)(2 x-1)^{2}$. Hence, determine the value of the constant of integration c, given that $\int x(5 x-1)(2 x-1)^{2} d x=20$ at $x=2$.

13 Differentiate $3(2 x-1)^{4}$ and hence determine the equation of the curve $y=f(x)$ with a gradient function of $3(2 x-1)^{3}$ that passes through the point $(1.5,8)$.

14 A child began to feel unwell around $1: 30 \mathrm{pm}$ on Sunday, and by $1: 50 \mathrm{pm}$ she was very hot and feverish. The child's temperature was taken at 10 -minute intervals for the next few hours. The graph shows the rate of change of temperature over time.

(a) At what approximate time was the child's temperature rising most rapidly?
(b) Between what times was the temperature rising?
(c) Describe what was happening to the temperature at approximately 3:40 pm .
(d) Sketch a possible graph of the child's temperature over the same period of time.

Anti-differentiation of power functions

In the previous section, you were introduced to anti-differentiation as the reverse operation of differentiation, noting that the indefinite integral has an arbitrary constant added. In this section, you will learn how to determine the anti-derivative (indefinite integral) of a power function and use given conditions to determine a particular value of the anti-derivative.

Consider the following derivatives:
$\frac{d\left(x^{2}\right)}{d x}=2 x$

$$
\frac{d\left(x^{3}\right)}{d x}=3 x^{2}
$$

$\int 2 x d x=x^{2}+c_{1}$

$$
\int 3 x^{2} d x=x^{3}+c_{1}
$$

$2 \int x d x=x^{2}+c_{1}$

$$
3 \int x^{2} d x=x^{3}+c_{1}
$$

$$
\int x d x=\frac{1}{2}\left[x^{2}+c_{1}\right]
$$

$$
\int x^{2} d x=\frac{1}{3}\left[x^{3}+c_{1}\right]
$$

$\int x d x=\frac{1}{2} x^{2}+c$

$$
\int x^{2} d x=\frac{1}{3} x^{3}+c
$$

where $c=\frac{1}{2} c_{1}$

You can check these by differentiating the result in each case.
Note that for the anti-derivative, the power is increased by one and the result is divided by the new power.

Cdditional information
ati-differentiating powers of x Practise using the pattern for anti-differentiating expressions of the form x^{n}.

In the general case:

$$
\int x^{n} d x=\frac{1}{n+1} x^{n}+c, \quad n \neq-1
$$

As you will have observed in the previous section, a constant coefficient may be written inside the anti-derivative sign or before it.

$$
\begin{aligned}
\int a x^{n} d x & =a \int x^{n} d x, \quad n \neq-1 \\
& =\frac{a x^{n+1}}{n+1}+c
\end{aligned}
$$

4 Anti-differentiate expressions of the form $a x^{n}$

Determine the following anti-derivatives.
(a) $\int 3 x^{4} d x$

THINKING

1 Express in the form $a \int x^{n} d x$.

2 Recall the formula.

3 Substitute the known values.
4 Interpret the answer.

WORKING

$$
\begin{aligned}
\int 3 x^{4} d x & =3 \int x^{4} d x \\
a \int x^{n} d x & =\frac{a x^{n+1}}{n+1}+c, \quad n \neq-1 \\
& =\frac{3 x^{5}}{5}+c
\end{aligned}
$$

The anti-derivative of $3 x^{4}$; that is, $\int 3 x^{4} d x$ is equal to $\frac{3 x^{5}}{5}+c$.
(b) $\int 4 x \sqrt{x} d x$

1 Express in the form $a \int x^{n} d x$.
2 Recall the formula.

3 Substitute the known values and simplify as needed.

4 Interpret the answer.

$$
\begin{aligned}
& \int 4 x \sqrt{x} d x=4 \int x^{\frac{3}{2}} d x \\
& \begin{aligned}
a \int x^{n} d x & =\frac{a x^{n+1}}{n+1}+c, \quad n \neq-1 \\
4 \int x^{\frac{3}{2}} d x & =\frac{4 x^{\frac{5}{2}}}{\frac{5}{2}}+c \\
& =\frac{8 x^{\frac{5}{2}}}{5}+c
\end{aligned}
\end{aligned}
$$

The anti-derivative of $4 x \sqrt{x}$; that is, $\int 4 x \sqrt{x} d x$ is equal to $\frac{8 x^{\frac{5}{2}}}{5}+c$.

You will note that if $f(x)=2 x$, then $f^{\prime}(x)=2$, hence $\int 2 d x=2 x+c$. Writing $\int 2 d x$ as $\int 2 x^{0} d x$ and applying the rule for anti-differentiating x^{n}, you obtain:

$$
\begin{aligned}
2 \int x^{0} d x & =2 \times \frac{x^{1}}{1}+c \\
& =2 x+c
\end{aligned}
$$

The anti-derivative of a sum or difference of a series of terms is equal to the sum or difference of the

$$
\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x
$$ anti-derivative of each individual term.

5 Anti-differentiate term by tarm

Determine $\int\left(3 x^{2}-3 \sqrt{x}+4\right) d x$.

THINKING

1 Express terms in the form $a \int x^{n} d x$.

2 Use the rule for anti-differentiating powers of x. Since c represents an arbitrary constant, you only need to add c once at the end.

3 Simplify the expression on the right-hand side of the equation.

4 Express the anti-differentiated expression.

WORKING

$\int\left(3 x^{2}-3 \sqrt{x}+4\right) d x=3 \int x^{2} d x-3 \int x^{\frac{1}{2}} d x+\int 4 d x$
This step can be omitted, and the anti-differentiation can be done under the one integral sign.
$\int\left(3 x^{2}-3 \sqrt{x}+4\right) d x=3\left(\frac{x^{3}}{3}\right)-3\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)+4 x+c$

$$
=x^{3}-3 \times \frac{2}{3} x^{\frac{3}{2}}+4 x+c
$$

$\int\left(3 x^{2}-3 \sqrt{x}+4\right) d x=x^{3}-2 x^{\frac{3}{2}}+4 x+c$

Notation

The following notations are used at various times to indicate the process of anti-differentiation.
$\int f^{\prime}(x) d x=f(x)+c$
$\int \frac{d y}{d x} d x=y+c$
$\int f(x) d x=F(x)+c$

6 Simplify before anti-differentiating

Determine the anti-derivative of $\frac{\left(3 x^{2}-2\right)\left(x^{2}+1\right)}{x^{2}}$.

THINKING

1 Expand the brackets and collect like terms.

$$
\begin{aligned}
& \text { WORKING } \\
& \begin{aligned}
\int \frac{\left(3 x^{2}-2\right)\left(x^{2}+1\right)}{x^{2}} d x & =\int \frac{3 x^{4}+x^{2}-2}{x^{2}} d x \\
& =\int\left(\frac{3 x^{4}}{x^{2}}+\frac{x^{2}}{x^{2}}-\frac{2}{x^{2}}\right) d x \\
& =\int\left(3 x^{2}+1-2 x^{-2}\right) d x \\
& =3 \times \frac{x^{3}}{3}+x-2 \times \frac{x^{-1}}{-1}+c \\
& =x^{3}+x+2 x^{-1}+c
\end{aligned}
\end{aligned}
$$

2 Rewrite each term with the denominator and express each one in the form $a x^{n}$.

4 Simplify, expressing with positive powers, and write down the answer.
5 Express the anti-differentiated expression. $\int \frac{\left(3 x^{2}-2\right)\left(x^{2}+1\right)}{x^{2}} d x=x^{3}+x+\frac{2}{x}+c$

Applications ofanti-ditferentiation

Given a rate of change, anti-differentiating can lead you to information about the quantity whose rate you are measuring. For example, velocity is a measure of the rate of change of position. In other words, the velocity v may be expressed as $v=\frac{d x}{d t}$, where x is the position of a particle at time t. Anti-differentiating with respect to t gives you an expression for the position.

7 Apply anti-differentiation

Determine an expression for the position x of an object if its velocity v is modelled by the function $v=\frac{3}{t^{2}}-5$ at time t, for $t \in[2,5]$.

THINKING

1 Express as an anti-derivative.

$$
\begin{aligned}
& \text { WORKING } \\
& \begin{aligned}
x & =\int v d t \\
& =\int\left(\frac{3}{t^{2}}-5\right) d t
\end{aligned}
\end{aligned}
$$

2 Write terms in the form $a \int x^{n} d x$.

$$
\begin{aligned}
\int\left(\frac{3}{t^{2}}-5\right) d t & =\int\left(3 t^{-2}-5 t^{0}\right) d t \\
& =3 \times \frac{t^{-1}}{-1}-\frac{5 t^{1}}{1}+c \\
& =-\frac{3}{t}-5 t+c
\end{aligned}
$$

4 Interpret the answer.
The position equation is given by $x=-\frac{3}{t}-5 t+c$.

Determine the value of the constant of integration

If $\frac{d y}{d x}=\left(4-\frac{3}{x^{2}}\right)^{2}$, determine y in terms of x if $y=13$ when $x=1$.

THINKING

1 Expand the expression and write each term in the form $a \int x^{n} d x$.

WORKING

$$
\begin{aligned}
\left(4-\frac{3}{x^{2}}\right)^{2} & =16-\frac{24}{x^{2}}+\frac{9}{x^{4}} \\
& =16-24 x^{-2}+9 x^{-4}
\end{aligned}
$$

2 Express y as an anti-derivative of $\frac{d y}{d x}$.

3 Anti-differentiate the expression, introduce the constant of integration and simplify,

Use the given conditions to determine the value of the constant.

5 Interpret the answer.
When $x=1, y=13$:

$$
\begin{aligned}
13 & =16(1)+\frac{24}{1}-\frac{3}{1^{3}}+c \\
13 & =16+24-3+c \\
c & =-24
\end{aligned}
$$

The anti-derivative of $\frac{d y}{d x}=\left(4-\frac{3}{x^{2}}\right)^{2}$ that includes
the point $(1,13)$ is $y=16 x+\frac{24}{x}-\frac{3}{x^{3}}-24$.

Families of curves

If $f^{\prime}(x)=2 x$, then $f(x)=x^{2}+c$. A set of graphs for various values of the arbitrary constant c represents a family of curves, all of which have the same gradient function $2 x$.

Each graph represents a translation of $y=x^{2}$ parallel to the y-axis. At any x-value, the curves will have the same gradient.
(i) Acditional information

Changing the value of the constant
Use the slider and observe the gradient of the tangents when the graph is translated up or down, representing different values of the constant.

EXERCISE

4.2

Anti-differentiation of power functions

1 Determine each of the following anti-derivatives.
(a) $\int x^{6} d x$
(b) $\int 12 x^{3} d x$
(c) $\int 4 x^{2} d x$
(d) $\int \frac{1}{3} x^{5} d x$
(e) $\int 3 \sqrt{x} d x$
(f) $\int 2 x^{\frac{2}{3}} d x$
(g) $\int \frac{3}{4} x^{\frac{2}{5}} d x$
(h) $\int 3 x^{-2} d x$

2 Determine each of the following anti-derivatives.
(a) $\int\left(6 x^{2}-x+2\right) d x$
(b) $\int\left(x^{3}-3 x^{2}+2 x\right) d x$
(c) $\int\left(6 x^{2}+2 \sqrt{x}\right) d x$
(d) $\int\left(4-\frac{x^{2}}{2}\right) d x$
(e) $\int\left(4 x-\frac{1}{\sqrt{x}}+x^{3}\right) d x$
(f) $\int\left(7+\frac{2}{3 w^{2}}+w^{\frac{2}{3}}\right) d w$

3 Determine each of the following anti-derivatives.
(a) $\int \frac{x^{2}+x}{x} d x$
(b) $\int \frac{x^{3}-2 x^{2}}{x^{2}} d x$
(c) $\int \frac{x^{4}-2 x^{2}+3}{x^{2}} d x$
(d) $\int(x-1)\left(x^{2}+2\right) d x$
(e) $\int \frac{(x-2)(x+2)}{x^{2}} d x$
(f) $\int \frac{\left(x^{2}-3\right)\left(x^{2}+4\right)}{x^{2}} d x$
(g) $\int \frac{x^{2}+x}{\sqrt{x}} d x$
(h) $\int \sqrt{x}(x-3) d x$

4 The velocity v of a particle is the rate of change of its position x at time t, so $v=\frac{d x}{d t}$. If $v=3 t^{2}-4 t+18$, determine an expression for the position of the particle at time t.

5 If the particle in question 4 is at a position $x=2$ when $t=0$, determine the value of each of the following.
(a) the constant of integration, c
(b) the position of the particle when $t=3$

6 Determine $f(z)$, given:
(a) $f^{\prime}(z)=z-6 z^{2}$
(b) $f^{\prime}(z)=(z-2)(z+4)$
(c) $f^{\prime}(z)=\frac{3 z^{5}-4 z}{z^{3}}$
(d) $f^{\prime}(z)=\frac{-2}{z^{2}}$

7 For each of the following, determine y in terms of x for the given conditions.
(a) $y=\int\left(6 x^{2}-2 x\right) d x$, and $y=-10$ when $x=2$
(b) $\frac{3}{x^{2}}-\frac{4}{x^{3}}$, and $y=1$ when $x=4$

8 The gradient of a curve at any point is given by $f^{\prime}(x)=(1+\sqrt{x})^{2}$. Determine the equation of the curve if it passes through the point $\left(1,-\frac{1}{6}\right)$.
9 Determine an anti-derivative of each of the following
(a) $\int\left(3-\frac{x}{2}\right)^{5} d x$
(b) $\int \sqrt{x}(4-x)^{2} d x$

10 For each of the following, express y in terms of x.
(a) $\frac{d y}{d x}=8 x^{3}+\frac{3}{x^{2}}$
(b) $\frac{d y}{d x}=2 x^{-3}+x^{-\frac{3}{2}}$

11 Differentiate $f(x)=\frac{2}{3}\left(1+x^{2}\right)^{\frac{3}{2}}$ and use the result to determine $\int 2 x \sqrt{1+x^{2}} d x$.

12 The gradient of a curve yaries directly as x^{2}. If the curve passes through the origin and the point $(3,18)$, determine each of the following.
(a) the equation of the curve
(b) the value of the gradient at $x=-3$
(c) the value of y at $x=-3$

13 The gradient of a curve is given by $\frac{d y}{d x}=3(2 x-1)^{2}$.
(a) Determine the equation of the family of curves that have this gradient.
(b) Determine the member of this family of curves that passes through each of the given points.
(i) $(0,4)$
(ii) $(-1,5)$
(c) Explain why the two curves from part (b) have no points of intersection.

14 The position x, velocity v, and acceleration a of a particle at time t are related by: $v=\frac{d x}{d t}, a=\frac{d v}{d t}$. If the acceleration of a particle is modelled by $a=3 t^{2}-t-2, t \geq 0$, determine the following.
(a) the velocity of the particle at $t=10$ if the particle starts from rest
(b) the position of the particle at $t=2$, if $x=\frac{1}{12}$ when $t=1$

15 A tank of water is emptying at a rate given by $\frac{d V}{d t}=-2.8 t$, where V is the volume in cubic metres m^{3} at time t seconds.
(a) Determine an expression for the volume of water remaining in the tank in terms of time, if it is empty after 30 seconds.
(b) How long does it take for half of the initial volume to empty out? Give your answer correct to 1 decimal place.
16 Which one of the following is the anti-derivative of $x\left(3 x^{2}-1\right)$?
A $\frac{x^{2}}{2}\left(\frac{3 x^{3}}{3}-x\right)+c$
c $3 x^{4}-x+c$

B $\left(3 x^{2}-1\right) \times 1+x(6 x)+$
D $\frac{1}{2} x^{2}\left(\frac{3 x^{2}}{2}-1\right)+c$
17 Which one of the following statements is correct?
A $\quad \int(x-3) d x$ represents a family of parabolas with axes of symmetry at $x=3$.
B $\int(x-3) d x$ represents a family of parabolas with axes of symmetry at $x=6$.
c $\int(x-3) d x$ represents a family of parabolas with two x-intercepts.
D $\int(x-3) d x$ could be equal to $\frac{x^{2}}{2}-3 x+10 x^{2}$.
18 Determine the following anti-derivatives.
(a) $\int \frac{\left(x+\frac{1}{x}\right)^{2}}{x^{2}}+5 d x$
(b) $\int \frac{x^{3}-2 \sqrt{x}+x^{-2}}{x^{2}} d x$

19 Differentiate $f(x)=(x+3)^{\frac{1}{2}} x^{2}$ and hence determine $\int \frac{5 x^{2}+12 x}{2 \sqrt{x+3}} d x$.
20 If $f^{\prime}(x)=p x^{2}+\frac{2}{x^{3}}$, determine $f(x)$ if $f(1)=2$ and $f(-1)=4$.
21 Differentiate $(3 x+1)^{4}$ and hence determine the anti-derivative of $(3 x+1)^{3}$.
22 (a) Differentiate $(a x+b)^{n+1}$ and hence determine the anti-derivative of $\int(a x+b)^{n} d x$.
(b) Use the result found in part (a) to determine the following.
(i) $\int(6 x+1)^{4} d x$
(ii) $\int(3-2 x)^{3} d x$
(iii) $\int(3 x-2)^{\frac{1}{2}} d x$
(iv) $f(x)$ if $f^{\prime}(x)=4(7 x+2)^{3}$ and $f(0)=-\frac{3}{7}$

